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fine-grid spacing is used in the direction normal to the wall.
Finite difference approximation to the viscous equationsThis paper is concerned with time-stepping numerical methods

for computing stiff semi-discrete systems of ordinary differential with these small-size grids lead to stiff systems of ordinary
equations for transient hypersonic flows with thermo-chemical non- differential equations. The source terms are stiff because
equilibrium. The stiffness of the equations is mainly caused by the the chemical and thermal nonequilibrium processes have a
viscous flux terms across the boundary layers and by the source

wide range of time scales, some of which are much smallerterms modeling finite-rate thermo-chemical processes. Implicit
than the transient flow ones. As a result, if explicit methodsmethods are needed to treat the stiff terms while more efficient

explicit methods can still be used for the nonstiff terms in the equa- are used to integrate the stiff governing equations, the com-
tions. This paper studies three different semi-implicit Runge–Kutta putations will become very inefficient because the time-step
methods for additively split differential equations in the form of sizes dictated by the stability requirements are much smaller
u9 5 f(u) 1 g(u), where f is treated by explicit Runge–Kutta methods

than those required by the accuracy considerations.and g is simultaneously treated by three implicit Runge–Kutta meth-
In order to remove the stability restriction on the explicitods: a diagonally implicit Runge–Kutta method and two linearized

implicit Runge–Kutta methods. The coefficients of up to third-order methods, implicit methods need to be used. For computing
accurate additive semi-implicit Runge–Kutta methods have been multidimensional reactive flow, global implicit methods
derived such that the methods are both high-order accurate and are seldom used because it takes a prohibitively large
strongly A-stable for the implicit terms. The results of two numerical

amount of computer time and large memory to converttests on the stability and accuracy properties of these methods are
full implicit equations. Practical implicit methods for multi-also presented in the paper. Q 1996 Academic Press, Inc.

dimensional reactive flow calculations include the frac-
tional step method (or time-splitting method) and the addi-

1. INTRODUCTION tive semi-implicit method.
The fractional step methods [3, 4] solve the stiff terms

This paper is concerned with numerical methods for and the nonstiff terms in two independent steps. The results
computing stiff equations for transient hypersonic flows from the partial calculations are combined together after
with thermo-chemical nonequilibrium. This work is moti- the computations of the individual steps. The time-step
vated by our studies on the stability and transition of hyper- restriction by stability conditions is removed by using dif-
sonic boundary layers involving shock interactions and real ferent methods to compute the stiff and nonstiff terms. The
gas effects [1, 2]. In addition to the effects of viscosity, heat- drawback of these methods is that the temporal accuracy is
conduction, and diffusion, hypersonic flows often contain limited to second-order accurate at most if a Strang [5]
nonequilibrium processes of thermal excitations and chem- splitting method [6] is used.
ical reactions because of high gas temperature and high The additive semi-implicit1 methods, on the other hand,
speeds. One of the major difficulties in computing such additively split the ordinary differential equations into stiff
flows is the stiffness of the governing equations in tempo- and nonstiff terms, where the stiff terms are treated implic-
ral integrations. itly while the nonstiff terms are treated explicitly. The semi-

The stiffness is mainly caused by the viscous stress and implicit methods are more efficient than the full implicit
heat flux terms in the boundary layers and by the source methods for reactive flow computations because the stiff
terms modeling finite-rate thermo-chemical processes. The
viscous terms across the boundary layer are stiff because 1 The term ‘‘semi-implicit,’’ which is different from the term ‘‘semi-

implicit Runge–Kutta methods’’ defined by Butcher [7–9], is used in
this paper following the terminology often used in computational fluid
dynamics literatures [10].* E-mail: xiaolin@seas.ucla.edu.
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terms can be easily separated from the rest of the equa- 2. ADDITIVE SEMI-IMPLICIT
RUNGE–KUTTA METHODStions. The standard semi-implicit method for direct numer-

ical simulation of incompressible turbulence is to use the
2.1. General Formulas of Three ASIRK Methodsimplicit Crank–Nicolson method for the viscous terms nor-

mal to the wall and the explicit Adams–Bashford method In the semi-discretization approach, the spatial deriva-
for the rest of terms [10–14] (ABCN method). For com- tives in the governing partial differential equations are
pressible reactive flow, a semi-implicit MacCormack first approximated by spatial discretization methods. The
method [15–17, 6] has been used to compute the chemical spatial discretization leads to a system of first-order ordi-
source terms implicitly while the fluid terms are com- nary differential equations,
puted explicitly.

The temporal accuracy of these two methods, however, du
dt

5 f(u) 1 g(u), (1)is usually only second-order accurate at most. To obtain
simultaneous high-order accuracy and good stability prop-
erties, additive semi-implicit Runge–Kutta methods can where u is the vector of discretized flow field variables.
be used. The derivation of an additive semi-implicit The right-hand side of the differential equation above is
method with both high accuracy and good stability is not additively split into two terms, g and f, where g is the vector
a straightforward task because of the coupling between the resulting from the spatial discretization of the stiff terms
explicit and implicit terms. The first additive Runge–Kutta and f is the vector resulting from the spatial discretization
methods for stiff ordinary differential equations were stud- of the rest of the nonstiff flow equations. In general, the
ied by Cooper and Sayfy [18, 19]. They derived additive splitting of f and g terms is not unique.
Runge–Kutta methods to solve a system of differential The Runge–Kutta methods are one-step methods in-
equations in a form of x9 5 J(t)x 1 g(t, x), where the volving intermediate stages to achieve high-order accuracy
linear term on the right-hand side of the equation was stiff. [9, 7]. A general r-stage additive semi-implicit Runge–
Their additive methods solve the linear term using implicit Kutta method integrates Eq. (1) by simultaneously treating
A-stable Runge–Kutta methods and solve g(t, x) simulta- f explicitly and g implicitly:
neously using explicit Runge–Kutta methods. Additive
methods of up to fourth order were studied. Recently,

un11 5 un 1 Or

j51
gjkj (2)Engquist and Sjogreen [20] derived additive semi-implicit

Runge–Kutta methods for computing detonation waves.
Their third-order schemes are A(a) stable for the stiff

ki 5 h Hf Sun 1 Oi21

j51
bijkjD1 g Sun 1 Oi21

j51
cijkj 1 aikiDJsource term when the nonstiff term satisfies an explicit

stability condition. Other methods for stiff ordinary (i 5 1, ..., r), (3)
differential equations were summerized in Hairer and
Wanner [21]. where h is the time-step size, and ai , bij , cij , gj are parame-

Numerical methods for time-accurate computations of ters to be determined by accuracy and stability require-
nonequilibrium hypersonic flow need to have simultaneous ments. Because g is treated by a diagonally implicit Runge–
higher-order accuracy and good stiff stability properties. Kutta method, Eq. (3) is a nonlinear equation at every
In this paper, three different sets of additive semi-implicit stage of the implicit calculations if g is a nonlinear function
Runge–Kutta (ASIRK) methods are studied for additively of u. The computations of this method are relatively ineffi-
split ordinary differential equations in the form of u9 5 cient, since nonlinear solvers are required to solve such
f(u) 1 g(u), where the nonstiff term f is treated by explicit nonlinear equations.
Runge–Kutta methods, and the stiff term g is simultane- A more computationally efficient additive semi-implicit
ously treated by three implicit Runge–Kutta methods. The Runge–Kutta method is a semi-implicit extension of the
three implicit methods for g are a diagonally implicit Rosenbrock Runge–Kutta method [22],
Runge–Kutta method and two Rosenbrock linearized
Runge–Kutta methods [22] with different ways of evaluat-

un11 5 un 1 Or

j51
gjkj (4)ing Jacobian matrixes. The new methods, which are differ-

ent from those used in Ref. [20], are derived to be both
high-order accurate and strongly A-stable (A(f/2) stable) FI 2 haiJ Sun 1 Oi21

j51
dijkjDG kifor the implicit term g. The strongly A-stable methods are

needed for numerical results to reach correct asymptotic
values for very stiff problems. Numerical test results on 5 h Hf Sun 1 Oi21

j51
bijkjD1 g Sun 1 Oi21

j51
cijkjDJ

these methods for the stability and accuracy properties are
also presented in this paper. (i 5 1, ..., r), (5)
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where J 5 ­g/­u is the Jacobian matrix of the stiff term g stepping scheme is analyzed by considering a simplified
linear model equation,and dij is an additional set of parameters. Most of the

Rosenbrock methods similar to Eqs. (4) and (5) use a
single ai 5 a with dij 5 0 in order to use a single LU
decomposition in solving Eq. (5) for all intermediate stages du

dt
5 lf u 1 lgu, (6)

[23]. However, LU decomposition is often not possible for
multidimensional reactive flow problems because of the
enormous requirement for computer memory and CPU where lf and lg represent the eigenvalues of ­f/­u and
times in the LU decomposition method. Therefore, in this ­g/­u in Eq. (1). They are complex parameters satisfying
paper, the ai’s are allowed to be different at different stages Rehlf j # 0 and Rehlg j # 0, respectively. In general, ulg u
in order to have more flexibility in searching for the optimal is much larger than ulf u for stiff equations. Although Eq.
parameters in both stability and accuracy. Two methods (1) cannot be reduced to this model equation if the Jacobi-
are used to compute the Jacobians by using either dij 5 0 ans of f and g do not commute, Eq. (6) is used as the
or dij 5 cij in this paper. first step in analyzing the linear stability properties of the

The Rosenbrock additive semi-implicit Runge–Kutta additive semi-implicit Runge–Kutta methods. Further
method given by Eqs. (4) and (5) is similar to the implicit studies are needed to analyze the general stability proper-
methods used in computational fluid dynamics and is much ties of the additive Runge–Kutta methods using the nonlin-
more efficient than the diagonally implicit version given ear stability analysis by Hairer, Bader, and Lubich [24].
by Eqs. (2) and (3). But, for some strongly nonlinear prob- Substituting Eq. (6) into any of the three additive semi-
lems, the nonlinear diagonally semi-implicit method given implicit Runge–Kutta methods leads to the same equation
by Eqs. (2) and (3) is necessary because it is more stable for the characteristic root as
than the Rosenbrock additive semi-implicit Runge–Kutta
method for nonlinear problems. Therefore, three versions
of the additive semi-implicit Runge–Kutta methods are c 5

un11

un 5 1 1 Or

j51
gjkj (7)

derived to be both high-order accurate and strongly
A-stable for the implicit terms, i.e.,

ki 5
hlf(1 1 oi21

j51 bijkj ) 1 hlg(1 1 oi21
j51 cijkj)

1 2 aihlg
Method A. ‘‘Fully implicit’’ additive semi-implicit

Runge–Kutta method given by Eqs. (2) and (3).
(i 5 1, ..., r), (8)Method B. Rosenbrock additive semi-implicit Runge–

Kutta method given by Eqs. (4) and (5), and dij 5 0.

Method C. Rosenbrock additive semi-implicit Runge– where c 5 chhlf , hlg j is a function of hlf and hlg .
Kutta method given by Eqs. (4) and (5), and dij 5 cij . An A(a) stability region of a semi-implicit method in

the complex plane of hlf is defined as the region whereThe rth-stage additive semi-implicit Runge–Kutta meth-
ods are termed ASIRK-rA methods, ASIRK-rB methods,
and ASIRK-rC methods for Methods A, B, C, respectively. uchhlf , hlgju # 1 (9)

2.2. Linear Stability Conditions
for hlf within the region and for all hlg within a wedge

The parameters of the additive semi-implicit Runge– bounded by [f 2 a, f 1 a] in the complex plane. When
Kutta methods are chosen based on both stability and a 5 f/2, the semi-implicit method is A-stable for hlg . The
accuracy requirements with the simultaneous coupling be- A(a) stability region of the semi-implicit Runge–Kutta
tween the explicit and implicit terms. The use of an implicit method is computed numerically in this paper.
method for the stiff term g permits a larger time step than In order to obtain a correct asymptotic decay for stiff
that allowed by a fully explicit method. Unlike the explicit terms, it is desirable to have a strong A-stability
Runge–Kutta methods, whose stability conditions are the (L-stability) condition for the semi-implicit schemes; i.e.,
same for different choices of parameters as long as they
have the same stages and accuracy, the stability properties

lim
h ulg uRy

uchhlf , hlgju 5 0. (10)of the additive semi-implicit Runge–Kutta methods of the
same stages are different for different choices of parame-
ters because of the coupling between the f and g terms.

For simplicity, only a linear stability analysis is con- The strong A-stability for the implicit term assures that
the numerical solutions approach the correct solutions asducted in this paper for a special kind of test function.

The stability condition for an additive semi-implicit time- step sizes increase. For the three additive semi-implicit
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Runge–Kutta methods, the strongly A-stable condition Third order,
can be obtained from Eqs. (7), (8), and (10) as

g2b2
21 1 g3(b31 1 b32)2 5 !d, (17)

g3b21b32 5 !h, (18)1 1 Or

j51
gjbj 5 0, (11)

g2(b21a2 1 b21a1) 1 g3

where (a1b31 1 a2b32 1 c21b32 1 b21c32 1 a3b31 1 a3b32) 5 !d,

(19)

bi 5 2F1 1 Oi21

j51
cijbjG/ai (i 5 1, ..., r). g1a2

1 1 g2(a2
2 1 a2c21 1 a1c21) 1 g3(a1c31 1 a2c32 1 c21c32

1 a3c31 1 a3c32 1 a2
3) 5 !h. (20)

For practical reactive flow problems, it is important that
Method A: g1a2

1 1 g2(c21 1 a2)2 1 g3(c31 1 c32 1 a3)2 5 !dthe intermediate variables at each stage of the Runge–
Kutta computations maintain their physical meanings; i.e., Method B: g2c2

21 1 g3(c31 1 c32)2 5 !d (21)
it is not acceptable to have negative temperatures in an

Method C:intermediate stage even if the final results are positive.
g2(c2

21 1 2a2c21) 1 g3h(c31 1 c32)2 1 2a3(c31 1 c32)j 5 !d.Consider the diagonally implicit Runge–Kutta method for
solving u9 5 g(u),

The accuracy equations for Methods A, B, or C are the
same, except in the third-order equation (21). In addition,un11 5 un 1 g1k1 1 g2k2
the accuracy conditions for explicit coefficients bij are de-

k1 5 hg(un 1 a1k1) (12) coupled from implicit coefficients, cij and ai , except in the
third-order Eq. (19). Therefore, for up to second-orderk2 5 hg(un 1 c21k1 1 a2k2),
accuracy, a direct combination of explicit and implicit
Runge–Kutta methods will result in an additive semi-im-where a1 5 0, and a2 5 c21 5 g1 5 g2 5 !s. This method
plicit Runge–Kutta method with the same order of accu-is second-order accurate and A-stable. However, the
racy, as long as the two schemes have the same set of gi .method in computing k1 in the first stage is an explicit
However, for accuracy equal to or higher than third order,method because a1 is zero. Because the explicit calculations
the direct combination of explicit and implicit methodsat that stage can lead to nonphysical results if the equations
will likely be only second-order accurate because of theare stiff, this scheme is not appropriate for stiff reactive
coupling between the explicit and implicit terms in Eq. (19).flow calculations. Therefore, we impose the following addi-

We search for the optimal parameters in the additivetional condition on the additive semi-implicit Runge–
semi-implicit Runge–Kutta schemes by simultaneously im-Kutta methods:
posing the stability and accuracy conditions discussed
above. For example, for the third-order schemes, the pa-

ai . 0. (13) rameters are searched for those simultaneously satisfying
the following conditions:

2.3. Accuracy Conditions
1. Eight accuracy equations given by Eqs. (14)–(21),

Additive semi-implicit Runge–Kutta schemes are de-
2. One strong A-stability condition given by Eq. (11),rived to be high-order accurate with the simultaneous cou-
3. Large stability region defined by (9) with ai . 0.pling between the explicit and implicit terms. Taylor series

expansions lead to the following accuracy conditions: Whenever possible, we try to choose the coefficients for
the explicit term f to be the same as those of the conven-First order,
tional explicit Runge–Kutta methods, so that when g 5 0,
the schemes reduce to conventional explicit Runge–Kuttag1 1 g2 1 g3 5 1; (14)
schemes. It turns out that we can only do that for the first-
and second-order additive semi-implicit schemes. For the

Second order, third-order additive semi-implicit schemes, we cannot find
satisfactory parameters using the same explicit coefficients

g2b21 1 g3(b31 1 b32) 5 !s, (15) as those from the third-order TVD Runge–Kutta schemes
of Shu and Osher [25] or other classical third-order meth-
ods [9]. Hence, the third-order methods in this paper areg1a1 1 g2(a2 1 c21) 1 g3(a3 1 c31 1 c32) 5 !s; (16)
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not the same as the conventional Runge–Kutta methods ASIRK-2B method,
in both the explicit and the implicit parts.

[I 2 ha1J(un)]k1 5 hhf(un) 1 g(un)j2.4. First-Order Additive Semi-Implicit
Runge–Kutta Methods [I 2 ha2J(un)]k2 5 hhf(un 1 b21k1) 1 g(un 1 c21k1) j (29)

The expressions for the first-order methods are un11 5 un 1 g1k1 1 g2k2 ;

ASIRK-1A method,
ASIRK-2C method,

k1 5 hhf(un) 1 g(un 1 a1k1)j
(22)

un11 5 un 1 g1k1 ; [I 2 ha1J(un)]k1 5 hhf(un) 1 g(un)j

ASIRK-1B and ASIRK-1C methods, [I 2 ha2J(un 1 c21k1)]k2
(30)

5 hhf(un 1 b21k1) 1 g(un 1 c21k1)j[I 2 ha1J(un)]k1 5 hhf(un) 1 g(un)j
(23) un11 5 un 1 g1k1 1 g2k2 .un11 5 un 1 g1k1 .

The accuracy condition given by Eq. (14) leads to
The coefficients for a conventional explicit second-order

Runge–Kutta method are used for the explicit parameters,g1 5 1 (24)
i.e., g1 5 !s, g2 5 !s, and b21 5 1. The equations for second-
order accuracy and strong A-stability (Eqs. (16) and (11))and the characteristic root is
lead to one free parameter:

c 5
1 1 hlf 1 (1 2 a1)hlg

1 2 a1hlg

. (25)

a1 5
!s 2 a2

1 2 a2
, c21 5 1 2 a2 2

!s 2 a2

1 2 a2
. (31)

It can be shown that when !s # a1 , 1, the method is
A-stable for lg , but it is not strongly stable. The only
choice for strongly A-stable semi-implicit method is a1 5

The requirement of a1 and a2 being positive numbers leads
1. Therefore, the parameters chosen for first-order strongly

to 0 # a2 # 0.5.
A-stable semi-implicit Runge–Kutta schemes are

A search for the parameters shows that the optimal
values for the parameters in stability are a1 5 a2 5 1 2g1 5 1, a1 5 1. (26)
Ï2/2, and c21 5 Ï2 2 1. But they involve irrational num-
bers. An alternative set of parameters for the second-orderThe coefficients are the same for ASIRK-1A, ASIRK-1B,
additive semi-implicit Runge–Kutta method areand ASIRK-1C methods. The stability condition with the

parameters given by Eq. (26) is

u1 1 hlf u # 1, Rehlg j # 0. (27) g1 5 As, g2 5 As, b21 5 1

a1 5 Af, a2 5 Ad, c21 5 aTs .
In other words, the stability condition for the first-order
additive semi-implicit Runge–Kutta methods is the same
as for first-order explicit Runge–Kutta methods for hlf The coefficients are the same for ASIRK-2A, ASIRK-2B,
and is strongly A-stable for hlg . and ASIRK-2C methods.

The methods are second-order accurate and strongly
2.5. Second-Order Additive Semi-Implicit A-stable for the implicit term hlg . The A(a) stability re-

Runge–Kutta Methods gions in the complex plane of hlf are given by Fig. 1.
The stability boundaries in the figure are not very smoothThe expressions for the second-order methods are
because only limited numbers of points are searched in
the intensive computations of the stability boundaries forASIRK-2A method,
lf with all possible lg . Only the upper half of the stability
region is plotted in the figure. The figure shows that thek1 5 hhf(un) 1 g(un 1 a1k1)j
A(a) stability region for the explicit term hlf is the same

k2 5 hhf(un 1 b21k1) 1 g(un 1 c21k1 1 a2k2)j (28)
as that for the explicit RK-2 methods when a is 0, but the
region becomes slightly smaller as a approaches f/2.un11 5 un 1 g1k1 1 g2k2 ;
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c32 are those satisfying Zmax # 1, Zmax1 5 0, and ai . 0
and can be located on the contours. From this figure, we
choose the optimal value around c31 5 0.5 and c32 P 20.69.
The exact value of c32 is then computed by solving the
additional strong stability condition given by Eq. (11)
by an iterative procedure. The approximate value of c32

is used as the initial guess in the iterative procedure.
The parameters of all three methods obtained by the search
are:

g1 5 !k , g2 5 !k

g3 5 #f , b21 5 *j

b31 5 sUgQs , b32 5 dUh .

FIG. 1. The A(a) stability region of the second-order semi-implicit
Runge–Kutta methods for the explicit terms hlf . ASIRK-3A,

2.6. Third-Order Additive Semi-Implicit
a1 5 .485561, a2 5 .951130

a3 5 .189208, c21 5 .306727

c31 5 .45, c32 5 2.263111;
Runge–Kutta Methods

The third-order ASIRK-3B method is

ASIRK-3B,[I 2 ha1J(un)]k1 5 hhf(un) 1 g(un)j

[I 2 ha2J(un)]k2 5 hhf(un 1 b21k1) 1 g(un 1 c21k1)j

[I 2 ha3J(un)]k3 (32)
a1 5 1.40316, a2 5 .322295

a3 5 .315342, c21 5 1.56056

c31 5 !s , c32 5 2.696345;
5 hhf(un 1 b31k1 1 b32k2) 1 g(un 1 c31k1 1 c32k2)j

un11 5 un 1 g1k1 1 g2k2 1 g3k3 .

ASIRK-3C,
Similar expressions for ASIRK-3A and ASIRK-3C can be
found in Section 2.1.

There are 12 undetermined parameters satisfying eight
accuracy equations, Eqs. (14)–(21), and a strong

a1 5 .797097, a2 5 .591381

a3 5 .134705, c21 5 1.05893

c31 5 !s, c32 5 2.375939;
A-stability condition, (Eq. 10). Therefore, there are three
free parameters to be chosen to meet the stability require-
ments. During the search, we specify the values of g1 and

where a1 , a2 , a3 , c21 , and c32 are irrational numbers withg2 , and then compute the values of all parameters numeri-
six significant digits. The double-precision values of thesecally by solving Eqs. (14) to (21) using c31 and c32 as free
parameters are listed in Table I.parameters. For each set of c31 and c32 , the values of Zmax

The methods using the coefficients above are third-orderand Zmax1 are computed, where Zmax is the maximum mag-
accurate and strongly A-stable for the implicit term hlg .nitude of the characteristic root ucu for all possible hlg in
The A(a) stability region of the ASIRK-3C method isthe left half-plane and all possible hlf satisfying Eq. (27),
shown in Fig. 3. Similar to the stability region of theand Zmax1 is the maximum characteristic roots ucu when
ASIRK-2C method, this figure shows that the A(a) stabil-huhlg ju R y. Optimal parameters with strong A-stability
ity region for the explicit term hlf is the same as that forfor implicit terms should lead to small Zmax and Zmax1 5
the explicit third-order RK methods when a is 0, but the0. Therefore, the contours of Zmax and Zmax1 are used to
region becomes slightly smaller as a approaches f/2.locate the approximate optimal values of parameters to

meet the strong A-stability condition.
Figure 2 shows the contours of Zmax and Zmax1 respec- 3. STABILITY OF OTHER SEMI-IMPLICIT SCHEMES

tively for the case of g1 5 g2 5 !k using c31 and c32 as
independent variables for the ASIRK-3B method. The Although the model equation (6) does not represent all

stiff equations, it can be used as a test of stability of semi-approximate values of the optimal parameters of c31 and
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FIG. 2. The contours of the maximum magnitude of the characteristic root Zmax and the maximum characteristic root Zmax1 when hulg u R y
(g1 5 g2 5 !k).

implicit methods. The stability properties of other com- This method is a two-stage semi-implicit Runge–Kutta
method similar to the ASIRK-2 methods. LeVeque andmonly used semi-implicit methods are presented below by

applying the methods to the model equation. Yee [6] showed that the traditional choice of c21 5 1 is
only first-order accurate, and the coefficient for a second-The semi-implicit MacCormack predictor–corrector

method used for reactive flow [15–17, 6] is order semi-implicit Runge–Kutta method is c21 5 0. This
method should have a similar stability region as the
ASIRK-2 method, but it is not strongly A-stable because[I 2 !shJ(un)]k1 5 hhf(un) 1 g(un)j

[I 2 !shJ(un)]k2 5 jhf(un 1 k1) 1 g(un 1 c21k1)j (33)

un11 5 un 1 !s(k1 1 k2). ucu R 1 as hulg u R y. (34)
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TABLE I

The Double-Precision Values of the Parameters for the
SIRK-3 Methods

SIRK-3A a1 5 .4855612330925677 a2 5 .9511295466999914
a3 5 .1892078709825326 c21 5 .3067269871935408
c31 5 .45 c32 5 2.2631108321468882

SIRK-3B a1 5 1.403160446775581 a2 5 .3222947153259484
a3 5 .3153416455775987 c21 5 1.560563684998894
c31 5 !s c32 5 2.6963447867610024

SIRK-3C a1 5 .7970967740096232 a2 5 .5913813968007854
a3 5 .1347052663841181 c21 5 1.058925354610082
c31 5 !s c32 5 2.3759391872875334

FIG. 4. The A(a) stability region of the ABCN method for the explicit
terms hlf .

The ABCN method, which uses a combined Crank–
Nicolson method and Adams–Bashford method, can be
written as

4. TEST CASES

4.1. Systems of Ordinary Differential Equations
un11 5 un 1

h
2

[3fn 2 fn21] 1
h
2

[gn 1 gn11]. (35)
Lambert [26] pointed out that for any nonlinear system

for which the solution suddenly increases in an isolated
peak due to the eigenvalue straying into the right half-The method is second-order accurate, and the A(a) stabil-
plane, there is a danger that a strongly A-stable methodity region is shown in Fig. 4. This figure shows that the
will lose solution information due to its excessive stability.stability region for the ABCN method becomes much
This is due to the stability region of a strongly A-stablesmaller when a increases. Like the previous method, the
method encroaches into the positive regime. Lambert [26]ABCN method is not strongly A-stable for the implicit
considered the test caseterm. Figure 5 compares the A(f/2) stability regions of

the semi-implicit Runge–Kutta methods with the ABCN
method. The semi-implicit Runge–Kutta methods have
much larger stability regions than the semi-implicit ABCN
method because of the strong coupling between the explicit 3

u

v

w
4

9

5 3
42.2 50.1 242.1

266.1 258 58.1

26.1 42.1 234
43

u

v

w
4 (36)

and implicit terms in the ASIRK methods.

with initial conditions

u(f/8) 5 exp(250f/8)

v(f/8) 5 2exp(.1f/8) 2 exp(250f/8) (37)

w(f/8) 5 2exp(.1f/8) 1 exp(250f/8).

The eigenvalues are 0.1 6 8i and 250. The exact solu-
tions are

u(x) 5 e0.1x sin 8x 1 e250x

v(x) 5 e0.1x cos 8x 1 e250x (38)
FIG. 3. The A(a) stability region of the ASIRK-3C method for the

explicit terms hlf . w(x) 5 e0.1x(cos 8x 1 sin 8x) 1 e250x.
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convection-diffusion equation bounded by two parallel
walls,

­u
­t

1
­u
­x

1
­u
­y

5
1
R

­2u
­y2 , (39)

where R is the ‘‘Reynolds number.’’ The boundary condi-
tions are u(x, 0) 5 u(x, 1) 5 0. This model problem is not
a practical flow problem, but it is used to test the accuracy
of the additive semi-implicit Runge–Kutta methods be-
cause it is simple enough to be use to evaluate the orders
of the methods.

Similar to the stability analysis of the Navier–Stokes
equations, we look for the temporal development of the
solution in the formFIG. 5. Comparison of the A(f/2) stability regions of semi-implicit

methods.
u(x, y, t) 5 Y( y)eikxe2igt, (40)

Although this problem does not satisfy Re(l) # 0, it can where k is a real number. The complex parameter g and
be taken as a model for nonlinear systems for which the Y( y) are an eigenvalue and an eigenfunction of the charac-
solutions suddenly increase for a restricted period of time. teristic equation. Substituting Eq. (40) into Eq. (39) leads

Lambert solved Eq. (36) with h 5 f/64 by the A-stable to the solution of g and Y(y),
trapezoidal method and by the strongly A-stable backward
Euler method. The results showed that the backward Euler Yn(y) 5 CeRy/2 sin nfy, gn 5 2ani 1 k, (41)
method damps out the solution quickly when it is supposed
to increase. The cause of the damping in the backward where an 5 R/4[1 1 (2nf/R)2] and n 5 1, 2, .... The corre-
Euler method is that its stability region is the whole com- sponding solution is
plex plane, except a circle with radius 1 about the center
1. The complex number h(0.1 6 8i) in this test case is not un(x, y, t) 5 CeRy/2 sin nfyeik(x2t)e2ant. (42)
in this circle. Therefore, the results of the backward Euler
method show damping for this particular step size. In order The solution represents an exponential decay of the oscilla-
to obtain an acceptable solution using the backward Euler tion energy. Therefore, if we use un(x, y, 0) given by Eq.
method, the step size has to be less than 0.00312 so that (42) as an initial condition, the exact solution of the model
h(0.1 6 8i) is within the region of instability. This indicates equation is also given by the same equation.
that the excessive damping is not a result of the strong When R is large, there is a thin viscous boundary layer
A-stability of the scheme; it is related to the particular on the upper wall with large gradients in y direction. Nu-
time step used in the computations.

We tested the semi-implicit Runge–Kutta schemes by
using the ASIRK-1, ASIRK-2, and ASIRK-3C methods
to solve Eq. (36) by dropping the explicit terms in the
methods. The numerical solutions are shown in Fig. 6,
where ASIRK-1 reduces to the backward Euler method.
The results show that the backward Euler method damps
the solution quickly as expected, but the strongly A-stable
second-order implicit Runge–Kutta scheme performs
slightly better than the trapezoidal method. The third-
order implicit Runge–Kutta method (ASIRK-3C) per-
forms better than the second-order methods. Therefore,
the unsatisfactory performance of the backward Euler
method is caused by the particular time step size used,
instead of its strong A-stability.

4.2. Model Convection-Diffusion Equation

The new semi-implicit Runge–Kutta methods are tested
FIG. 6. Solution of the system of equations used by Lambert (1980).by computing the linear decay of a two-dimensional model
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merical solutions of this equation will be stiff for large R
because fine grids are needed in y direction to resolve the
boundary layer. In order to overcome the stiffness in the
equation, we use the semi-implicit Runge–Kutta methods
developed in this paper to treat ux in Eq. (39) explicitly
and to treat uy and uyy implicitly. Although stretched grids
are often used in practice, simple uniform grids are used
here in order to evaluate the accuracies of the schemes by
grid refinement studies.

The finite-difference discretization of the spatial deriva-
tives leads to a system of semi-discrete ordinary differ-
ent equations

FIG. 7. The eigenvalues of the f term in Eq. (46).

­uij

­t
5 f(uij ) 1 g(uij ), (43)

are used in the computations to compare the results. Thewhere
numerical results show that the antisymmetric boundary
conditions for u at the wall reduce the accuracy of the
third-order results because it is only second-order accurate.f(uij ) 5 H2

­u
­xJij

(44)
The eigenvalues for the f terms in Eq. (46) with periodic

boundary conditions are located on the curve shown in
Fig. 7. The range of the real parts of the eigenvalues isg(uij ) 5 H2

­u
­y

1
1
R

­2u
­y2J

ij
, (45)

where explicit third-order upwind approximation is used
2

6.67
Dx

# Re(lf ) #
0.082

Dx
. (50)for ux and fourth-order central difference approximation

is used for uy and uyy terms, i.e.,

The very small positive values should not cause stabilityf(uij ) 5 2
11uij 2 18ui21 j 1 9ui22 j 2 2ui23 j

6Dx problems because of the strong effects of the g terms on
the combined systems. On the other hand, the eigenvalues
of the g terms, neglecting the first-order derivative and theg(uij ) 5 2

2uij12 1 8uij11 2 8uij21 1 uij22

12Dy
(46)

1
1
R

2uij12 1 16uij11 2 30uij 1 16uij21 2 uij22

Dy2
.

(47)

A periodic boundary condition is used in the x direction.
Either a three-point extrapolation or an antisymmetric
boundary condition is used at the walls ( j 5 1 and j 5 JL)
to calculate u located at one grid-point outside of the walls.
The boundary conditions at the lower wall are

ui1 5 0 (48)

and

ui0 5 H23ui2 1 ui3 , 3-point extrapolation,

2ui2 , antisymmetric.
(49)

Similar conditions are applied to the upper wall. Both FIG. 8. The distribution of transient solution in the x direction at
y 5 0.88, t 5 1.054237.methods of setting the boundary conditions at the walls
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of the solutions. These figures show that the first-order
ASIRK-1 method produces large errors in the solution.
While both the ASIRK-2 and ASIRK-3 methods are quite
accurate, the ASIRK-3 method is more accurate than the
ASIRK-2 method. Furthermore, as the order of accuracy
increases, the numerical results of the semi-implicit
Runge–Kutta methods become more accurate. The figures
also show that the use of antisymmetric condition at the
wall in the ASIRK-3x method leads to less accurate results.

In order to test the temporal accuracy of the semi-im-
plicit Runge–Kutta methods derived in this paper, a grid
refinement study is conducted by successively repeating
the computations with doubled time step numbers. The
same spatial grids are used for all test cases in order to
exclude the spatial discretization errors from the temporal
errors. The temporal order of accuracy is numerically de-
termined by computing the parameter Rp defined byFIG. 9. The distribution of transient solution in y direction at

x 5 0, t 5 1.054237.

eh 5 uex 2 uh (53)

Rp 5
eh

eh/2

, (54)

effects of boundary conditions, are located along the real
axis in the range of where eh is the numerical errors due to the temporal dis-

cretization only, uh is the numerical solution computed
using time step h, uex is the numerical exact solution com-

2
64

RDy2 # Re(lg ) # 0. (51)
puted using the Richardson extrapolated solution at the
smallest time step, and p is the computed order of the
method. For a pth order method, the expected value ofFor the current case of R 5 10, Dy 5 sQ;, and Dx 5 4f, it
Rp iscan be shown that

Rp 5 2 p. (55)max ulg u
max ulf u

P 2400. (52)

Table II shows the results of the grid refinement study.
Therefore, the g terms are much stiffer than the f terms From the table, we can see that the ASIRK-3C method is
for this case. The additive semi-implicit Runge–Kutta third-order accurate, while ASIRK-2 method is second-
methods can be used to treat the stiff g term implicitly and order accurate.
the nonstiff f term explicitly.

The semi-discretized Eq. (43) is solved using a first-order 5. CONCLUSIONS
ASIRK-1 method, a second-order ASIRK-2 method, and
two third-order ASIRK-3 and ASIRK-3x methods. Both Three additive semi-implicit Runge–Kutta methods up

to third-order accurate have been derived in this paper forASIRK-3 and ASIRK-3x use the same third-order semi-
implicit Runge–Kutta method (ASIRK-3C) in time but direct numerical simulation of nonequilibrium hypersonic

flows. These high-order accurate additive semi-implicitwith different boundary conditions at the walls: ASIRK-3
uses 3-point extrapolation method while ASIRK-3x uses schemes are strongly A-stable for the implicit terms when

the explicit terms are in stability regions similar to thosean antisymmetric condition. The conditions for calcula-
tions are: R 5 10, k 5 0.01, C 5 1, and n 5 3. The initial of pure explicit Runge–Kutta methods. Linear stability

analysis shows that these methods have good stability prop-condition is given by Eq. (42). The computations domain,
bounded by (0, 2f/k) 3 (0, 1), is discretized by a set of erties for the explicit terms. The new methods have been

tested by computing a test case used by Lambert and by51 3 21 grids.
Figure 8 shows the solution distribution along the x di- a two-dimensional model boundary layer stability problem.

The test results show that these schemes are stable andrection at y 5 0.88 and at t 5 1.054237 using h 5 t/60.
Figure 9 shows the distribution along the y direction at accurate for the calculations. The temporal orders of accu-

racy of the additive semi-implicit Runge–Kutta methodsx 5 377 at the same moment. Figure 10 shows the contours
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FIG. 10. The contours of instantaneous solution at t 5 1.054237.
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