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Linear stability of viscous supersonic plane Couette flow
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The linear stability of viscous compressible plane Couette flow is not well understood even though
the stability of incompressible Couette flow has been studied extensively and has been shown to be
stable to linear disturbances. In this paper, the viscous linear stability of supersonic Couette flow for
a perfect gas governed by Sutherland viscosity law was studied using two global methods to solve
the linear stability equations. The two methods are a fourth-order finite-difference method and a
spectral collocation method. Two families of wave modes, modes | and I, were found to be unstable
at finite Reynolds numbers, where mode 1l is the dominant instability among the unstable modes.
These two families of wave modes are acoustic modes created by sustained acoustic reflections
between a wall and a relative sonic line when the mean flow in the local region is supersonic with
respect to the wave velocities. The effects of viscosity on the stability of the two families of acoustic
modes were studied by comparing the viscous results at finite Reynolds numbers with the inviscid
results published by Duck, Erlebacher, and HusqdinFluid Mech.258(1994)]. It was shown that
viscosity plays a destabilizing role in both mode | and mode Il stability for supersonic Couette flow

in a range of Reynolds numbers and wavenumbers. The effects of compressibility,
three-dimensionality, and wall cooling on the two wave families were also studied. The stability of
supersonic Couette flow was found to be different from that of the unbounded boundary layers in
many aspects because of the effects of additional boundary conditions at the upper wa98©
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I. INTRODUCTION results indicated that the existence of the walls has a strong
effect on the acoustic instability waves in the bounded com-

The prediction of stability and transition of hypersonic . . .
P y yp ressible shear layers. These results are in agreement with

flows is critical to the accurate calculations of aerodynami K lusi th ist f i &
forces and heating rates for hypersonic vehicles. Much of th ;C ? corf1c uslon on . S eX|ds anfe 0 acc;]us |c|m Ces.
current understanding of the stability properties of hyper- eretore, forhypersonic bounded flows, such as piane L.ou-

sonic boundary layers comes from the linear stability theor;};f[te flow, it is ixpectedhthat tge st(;abélity properti-f)ls V;i" b%
(LST).1-5 Mack®*7 did extensive studies on the linear sta- ifferent from those of the unbounded compressible bound-

bility of compressible boundary layers and shear flows. He?'Y layers because of the combined effects of the upper and
found that there is a new family of multiple higher instability 'oWer walls. - _ _ . _
wave modes in supersonic boundary layers. The higher This paper is concerned with thg !mear stability of vis-
modes exist when the relative flow Mach numbers at the walfOUs compressible Couette flow at finite Reynolds numbers.
are supersonic while those in the free stream are subsoni&he stability of plane Couette flow is a standard problem in
The relative, or convective, Mach number is defined as dluid mechanics. Extensive studies have been done with re-
flow Mach number in a reference frame moving at the ve-gard to incompressible Couette flow because the exact solu-
locity of an instability wave. These higher modes are acoustions to the Navier-Stokes equations for the basic flow are
tic waves created by a substained reflection of acousti@vailable. A summary of the stability properties of incom-
waves in a relative supersonic region between the wall angressible Couette flow can be found in Drazin and Reid.
the relative sonic liné.The first of the higher modes, which Theoretical analyst$ and numerical solutiod$** have
was labeled as the second mode by Mack, has been found $§own that the flow is always stable to infinitesimal distur-
be the dominant unstable mode for a zero-pressure-gradiefginces. The first general proof of stability was given by
boundary layer over a flat plate at high Mach numbers. Romano®® that the normal modes of the linear problem are

Acoustic instability wave modes similar to the higher stable for all wavenumber@=0 and all Reynolds numbers
modes in compressible boundary layers have also been foudde>0. However, instabilities were observed in
in supersonic jets and mixing layetsi2 The effects of walls ~ experiment$*?>A number of investigations have been made
on acoustic instability modes in bounded compressible shede resolve the dichotomy. The evidence seems to point to the
layers were studied in Refs. 8, 12—15. Tam and®s$howed finite-amplitude effects.
that, in contrast with the unbounded flow of supersonic  The compressible stability of Couette flow, on the other
boundary layers, there are two families of unstable acoustiband, is much less well understood. Glat?éf studied the
modes when the relative Mach numbers of the flow at thenviscid and viscous stability properties and normal mode
walls on both sides of the shear layers are supersonic. Thaructures of plane compressible Couette flow using a sim-
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plified flow model of constant viscosity coefficients and acorrespond to the two families of inviscid acoustic modes
constant density profile for the basic-flow solutions. Such atudied by Ducket al., were obtained for supersonic viscous
model leads to a constant temperature distribution and a lincouette flow at finite Reynolds numbers. The characteristics
ear velocity profile for the basic flow. Giréfticonsidered of the viscous modes were investigated in details and the
the same problem allowing for variations in density and tem-effects of compressibility, three-dimensionality, and wall
perature, but with a constant viscosity assumption. For pragsooling were studied. In addition, the effects of viscosity on
tical compressible Couette flow, however, the mean temperdhe stability of compressible Couette flow were examined by
ture and density are not constant. The viscosity and heatomparing the viscous results with the inviscid stability re-
conductivity coefficients are functions of local temperature. sults obtained by Duclet al?®

Duck et al?® studied the linear inviscid and viscous sta-
bility of compressible Couette flow using realistic compress-
ible flow models. The viscosity coefficients were computedll. FORMULATION
by the Sutherland’s law with a constant Prandtl number of
0.72. Though closed-form solutions for the mean flow are
not available for such viscosity law, it is straight forward to The linear stability is considered for compressible vis-
generate highly accurate numerical solutions of compressibleous plane Couette flow confined between two infinite par-
Couette flow with little computational cost. Using numeri- allel walls located ay* =0 (lower wall) andy* =L* (upper
cally generated solutions for the basic flow, Dwuatkal. cal- ~ wall), where the superscript “*” represents dimensional
culated the inviscid stability modes of compressible Couettguantities. In the Cartesian coordinates, xtey*, z* coor-
flow. The inviscid stability characteristics of the boundeddinates are those in the stream wise, wall-normal, and span-
Couette flow was found to be quite different from that of thewise directions, respectively. The gas is assumed to be a
unbounded boundary layers. For supersonic Couette flowgerfect Newtonian gas. The upper wall is held at a constant
they found two families of inviscid wave modes. For the temperaturel’; and a constant velocity” in the x* direc-
viscous instability of compressible Couette flow, Dwatkal.  tion, where the flow variables at the upper wall are denoted
analyzed the effects of viscosity on the stability by by a subscript %.” The lower wall is stationary with either
asymptotic analysis. Viscosity was found to play a stabiliz-adiabatic or isothermal conditions with a wall temperature
ing role for the unstable modes. Duekal. also obtained the Ty, . The three-dimensional Navier-Stokes equations are:

. Equations

spectra of viscous eigen modes numerically from the linear- N
i;gd full Navier-Stokes equations for the vis.cous stability at x| Y HU* VU | = —Vp*+ V- [\5(V-U*)l
finite Reynolds numbers. Although the viscous unstable at*

modes were expected to exist at high Reynolds numbers, no
evidence of unstable modes was found in their numerical
solutions. One of the possible reasons is the inadequate nu- ,*
merical resolutions in their computations for the cases of m—*+V'(P* u*)=0, 2
Mach 2 at high Reynolds numbers and for the cases of Mach

+u* (Vu* +Vu*], @

5. Currently, the characteristics of the instability for viscous .o * . . R ap* .
compressible Couette flow with realistic flow model are still ~ P” Cp| & TU* VT | =V (K'VT*)+ == +u
not clear.

The purpose of this paper is to investigate the viscous Vur + ¥, ()
stability of compressible Couette flow at finite Reynolds p* =p*R¥T*, (4)

numbers. To ensure numerical accuracy of the solutions, two

global stability computer codes for general parallel sheatvhereu* is the velocity vectorp* is the densityp* is the
flows were developed using a fourth-order finite-differencePressureT* is the temperaturd®* is the gas constanty is
method and a Chebyshev spectral collocation metidhe  the specific heat at constant pressirejs the thermal con-
accuracy of these two linear stability codes was first vali-ductivity, u* is the first coefficient of viscosity, ane* is
dated by comparing their stability solutions with the pub-the second coefficient of viscosity. The viscous dissipation
lished solutions by Mali® for compressible boundary lay- function,®*, is given as

ers. The accuracy of stability solutions for compressible w*

Couette flow was also checked by grid refinement and by ®* =\*(V-u*)?+ 7[Vu*+Vu*”]2. (5)
comparing the solutions obtained by our two different meth-

ods. The linear stability results for compressible Couette The flow variables and equations are non-
flow were further checked by comparing with direct numeri-dimensionalized as follows: velocities ty? , length scales

cal simulations by Zhong' Good agreement was observed by L*, density by p*, temperature byT%, pressure by

in these comparisons. Our viscous stability results also comp*U%*?2, and time scale by.*/UZ* . All other variables are
pared well with those obtained by Duek al?° for the case nondimensionalized by their corresponding values on the up-
of Mach 2 Couette flow. After the validation of numerical per wall. The dimensionless variables are represented by the
accuracy, the viscous stability of compressible Couette flovsame symbols as those used for the dimensional variables but
was computed for a range of Mach numbers, wavenumbersyithout the superscript “*.” The Reynolds number is de-
and Reynolds numbers. Unstable eigenmodes | and Il, whicfined as
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U;piL* ..................... o,
Re= ————, (6) Tl T M_=20
Mo “~ = meseea. M_=5.0
; 12| \“\\ i M_=100
and the Mach number is s
U* 10 \'\\
M :)o:—:)o \“‘ﬂ\
(YRET)YZ, ™ 't N\

N,
whereR* =cy —c; , ¢, is the specific heat at constant vol- 3 ‘\
ume, andy is the ratio of specific heats. The Prandtl number P SRR R T \
is defined a®r=u*cy/k*. The viscosity coefficientisde- ~ f e A\
termined by Sutherland’s law, 2| RN

L 1 1 i ~ 3
1 + C 0.0 0.2 0.4 06 08 1.0
,u=T1'5 m , (8) Y
where C is a constant. In this paper, it is assumed that
C=0.5A=—2/3u, y=1.4, andPr=0.72. LT
B. Basic-flow solutions el ,
‘ g
For compressible Couette flow, the steady basic-flow so- 4
lutions are functions o§ only, i.e.,U=U(y) andT=T(y). os k- ’:‘,,:ﬁ"'
Although there is no closed-form solutions for a general vis- J‘;;""
cosity model, the basic-flow solution for can be accurately 0al ,,,,«:-”"
and efficiently integrated by a numerical methdd.he con- *,,,.«‘"“
stant shear of Couette flow allows the temperature solution to ,»-"'“ M_=20
be obtained by a quadratic algebraic relation with velocity. oz2f 7 I W
For the case of adiabatic lower wall, the recovery tempera- #
ture at the wall is 00 : : s L .
0.0 0.2 0.4 0.6 08 10
T,=1+3(y—1)PrM2. ) Y

Figure 1 shows the numerically obtained basic-flow Ve|0CityF|G' 1. Basic-flow temperatureT() and velocity (J) profiles at Mach 2, 5,
s and 10 with adiabatic lower wall.
and temperature distributions for Couette flow at three super-

sonic Mach numbers with adiabatic lower wall conditions.

C. Linear stability equations Malik.3® The perturbation velocity and temperature satisfy
The linear stability analysis is based on a normal mod(yomogeneous boundary conditions at the upper and lower

analysis of the linearized perturbation equations of the threi\é\' alls. Int;heﬂ nc;rm?I moc:e}l analy5|st.tf_or the linear d('jStturij
dimensional Navier-Stokes equations. The LST formula ances, the fluctuations ot low quantities are assumed to be
represented by harmonic waves of the following form:

presented in this paper for Couette flow can be easily ex-
tended to the normal mode analysis for general compressible

flows with parallel steady flow fields. The perturbation equa-  [u’,0’,p’,T',w' 1" =[u(y),o(y),p(y), T(y),w(y)]"
tions are derived by representing the instantaneous flow vari-
ables as a sum of a basic-flow solution and a small fluctua-
tion quantity, i.e.,

Xei(ax+,827wt)’ (11)

— wherea and 8 are the wavenumbers i andz directions,
u=U(y)+u’(xy,z1), respectively, andw is the frequency of the disturbance
v=v'(X,Y,z1), waves. These parameters are in general complex numbers.
(10  The complex amplitudéeigen function of a typical flow

w=w'(x,y,z,t), R
variable, say u, isi(y). Substituting Eq(11) into the linear-

p=p+p'(xy,z1), ized perturbation equations leads to a homogeneous system
T=T(y)+ T (x,y,2t). of ordinary differential equations:
Substituting Eq.(10) into the nondimensional form of the (AD?+BD+C)®=0, (12

governing Egs.(1)—(5), and dropping the nonlinear and

high-order terms yield a set of linear differential equationswhere D is the derivative operator iry direction, i.e.,
for the perturbation variables. Details of the linear perturbaD=d/dy and D?=d?/ dy?. In the equation aboved is a
tion equations and other formulations can be found invector defined as
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" U(y) T global or local methods. A global method computes all the

R eigenvalues of the discretized system, while a local method

v(y) only solves for a single eigenvalue and its eigenfunctions.

o=\ p(y) |, (13) The global methods are usually computationally more expen-
R sive, but they have the advantage of obtaining the whole set
T(y) of eigenvalues and eigenfunctions at the same time. On the

w(y) other hand, the local methods are limited to solving a single

set of eigenvalue and eigenfunction only, but they are usu-

andA, B andC, which are 5<5 matrices, are functions of,  ally more computationally efficient than global methods. In
B, w, Re, M., and the basic-flow solutions. The detailed this paper, the eigen spectra of the eigenvalue problem are
expressions of matrice, B andC can be found in Ref. 30, computed by global methods using two different discretiza-
and they are not repeated here. The boundary conditions fefon methods. The first method is a fourth-order finite-
Eqg. (12) are no-slip conditions for velocities at both walls, difference method4FD), and the second method is a Cheby-
isothermal temperature condition at the upper wall, and adiashev spectral collocation meth¢8C) described by Malik®
batic condition for the lower wall, i.e., The comparisons of the results from the two different dis-

AL A A A A s cretization methods are useful in determining the numerical

u)=v(1)=w(1)=u(0)=v(0)=w(0), resolution of the results and in separating spurious numerical
. g1 eigen modes from the physical ones in the solutions.
T(1)= W(O)=0. (14

In the case of isothermal condition for the lower wall, the
temperature condition at=0 is replaced byl (0)=0. The
above temperature perturbation boundary conditions are used In the finite-difference method, E(12) is discretized by
to be in accordance with Duait al?° In fact, T(0)=0 is a fourth-order finite-difference approximations B and D?
more physical condition to use regardless of the basic ﬂovgienvatlve operators. In implementing the fourth- _order f|n|t.e-
boundary conditions. Nonetheless, it is found that thisdifference method, we use a non-staggered grid. One-sided
boundary condition does not affect the main stability characdifference formulas are used to approximate the first-order
teristics of the flow. derivatives ofp on the walls. The following formulas are
The homogeneous equation systéh®) and homoge- derived based on uniformly distributed grid points, whose
neous boundary conditiori4) form an eigenvalue problem. indexj is from 1 toN+1. The lower wall §=0) corre-
For plane compressible Couette flow, the temporal linear staSPonds toj =1, while the upper wallf=1) corresponds to

A. Fourth-order finite-difference global (4FD) method

bility is considered, i.e., for a given set of real-valueand ] =N+1. The fourth-order finite-difference formulas at a
B, w is solved as an eigenvalue of the homogeneous boundid pointj are listed below.
ary value problem given by Eqg12) and (14): For 3<j<N-1:
w=w(a,B,ReM,). (15 1
D2® = (— P, o+ 160, ,— 30D+ 16D,
Meanwhile, The amplitude of the disturbance modes, N Jre I+1 ! -1
[u(y),o(y),p(y),T(y),w(y)]", is solved as an eigenfunc- —®;_,), (16)

tion of the boundary value problem. The real part «f
Re{w}, represents the frequency of the disturbance modes,
while the imaginary part, Ifw}, represents the temporal
amplification rate of the disturbances. When {lm is
greater, equal to, or smaller than 0, a disturbance mode #50r j =2

unstable with finite amplification, neutrally stable, or stable

with finite damping, respectivgly. We also define a complex qu)j: 1 (10D;_;— 150~ 4d,, , + 14D, ,
wave (phasg velocity ¢ of the disturbance waves as- w/ .

The disturbance waves are three dimensional in general.
Two-dimensional disturbance modes correspond to a special
case of3=0.

Dq) 2+8q)]-+1_8(bj*l+q)j*2)' (17)

i~1oay (P

_6(Dj+3+q)j+4)v (18)

D=5y (-

+®;. ). (19

I1l. NUMERICAL METHODS AND VALIDATION

For a given set of real-value and g8, the temporal sta-
bility analysis solves» and® as eigenvalues and eigenfunc- For j=N
tions of the homogeneous boundary value problem given by
Egs. (12) and (14). Various numerical methods for solving )
the eigenvalue problem of the linear stability equations for D70 = 124y z(q) 46D 3t 14D; 4D,
hypersonic boundary layers were discussed and evaluated by
Malik.%® The eigenvalue problem can be solved by either —150;+ 10D, ), (20)
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1 where 7»e[0,1] is the computational coordinate anyl
Dq)j:m(—q’jfsﬂL 6d;_1—18D;_;+10d; e[0,1] is the physical coordinate. However, this transforma-
tion has a singularity iW»/dy at the walls. Therefore, a
+3d,,). (21 modified transformation is used,
The first derivatives op near the wall are given below. __ cosmpy—cosmA (30
Forj=2: Y= co§m(1-A)]—cos7A’
where A is chosen to be 0.001pe[A,1-A], and y
—3dj,,). (22
Forj=3: B. Chebyshev spectral collocation global (SC)
method
D(I)jzm(—stbj,l— 10+ 18D, -6, The solut_ion procedure for the spectral c_oI_IocaFion glo-
bal method is the same as that for the finite-difference
+®j,3). (23)  method except that a Chebyshev polynomial is used in the
. discretization of Eq(12). The Chebyshev spectral colloca-
Forj=N: tion discretization method used in this paper follows that
given by Malilké® for his single domain spectral collocation
D(Dj:m(:gq)i—ll_ 160 _3+36D;_,—48D;_; method(SDSB. The Nth-order Chebyshev polynomiali
y are defined on the intervaf;e[—1,1]. The collocation
+250)). (24) points¢;, which are the extrema dfy, are
i=N—1: T
Forj=N-1: g=cosyy, j=01,... N. (31)
1
DO, =m(—¢’j—3+ 6d;_,—18P;_;+10d; In order to apply the spectral collocation method, an interpo-
lant polynomial is constructed for the dependent variables in
+3P;,). (25 terms of their values at the collocation points.N&h-order
polynomial is

In the above equations, a uniform grid sixg is assumed.

Discretized EQ. (12) using the fourth-order finite- N
difference formulas given above, along with the homoge- ‘1’(§):k20 AM(E) P (k). (32)
neous boundary conditions at the walls given by Edj),
leads to a matrix eigenvalue problem: where the interpolant (&) for the Chebyshev scheme is
!y — ’ 2 ’
A'®=wB'®, (26) }\k(g):(_l)(kﬂ)(l_%k)TN_(%), 33
where o is the eigenvalue, A’ and B’ are £~ &/ N7,

5(N—=1)xX5(N—1) matrices for the case of isothermal whereco=cy=2, andc,=1 for 0<k<N. From Eq.(32),
lower wall and (N —4)X(5N—4) matrices for the case of ihq first derivative ofb(£) can be written as

adiabatic lower wall, and is the discrete representation of

the eigenfunction at the grid points, i.e., do N
o e e 08,2 B @

O=[D,,...,o\]" (Isotherma), (27) i

®=[D,,...Dy]" (Adiabatic. 29) \;vgereEjk are the elements of the derivative matrix defined
The whole eigenvalue spectrum and eigenfunctions can be Gl (—1)k+]
obtained numerically by solving Eq26) using the QZ ei- Ejk:_]—u for j#k, (35)
genvalue algorithm of the IMSL computer subroutine li- Ck &5~ &k
brary.

In the actual calculations, a stretched grid is used to Ejj:_%, (36)
distribute more grid points near the walls. A coordinate 2(1-§)
transformation is used to transform the equation in the non- IN2+1
uniform coordinates into uniform computational ones. A EOOZ_ENN:T' (37)

natural choice for the stretching function in the coordinate

transformation for solving Couette flow is The transformation between physical and computational do-

1—cosmy mains Is

y=—", (29) &=2y;—1, whereye[0,1]. (38)
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The scaling factor for the transformation between physicalFABLE I. The eigenvalue solutions of complex frequeneyfor the tem-

domainy and computational domaia is thus given as poral linear stability of a compressible boundary layeM (=2.5,
Re=3000,T,=600R, T,,/Tagp=1, «=0.06, andg=0.1).

J
S =£ =2, j=0,1,...N, (39 Methods Grids Réw} Im{ w}
. 4CD (Malik) 61 0.0367321  0.0005847
then the first derivative matrik in the physical domain may SDSP(Malik) 61 0.0367339 0.0005840
be written as MDSP (Malik) 61 0.0367340  0.0005840
SC (Hu and Zhony 100 0.0367337  0.0005845
Fik=SEjk., (40 4FD (Hu and Zhony 100 0.0367338  0.0005840

and the second derivative matiG;, is

Gik=FjmFmk- (41)
Now the governing equatio(l2) can be written at the col- multi-domain spectral collocatioqMDSP) method. In our
location points as calculations, an exponential grid stretching function was
N N used for the boundary layer in the fourth-order finite-
_ difference global(4FD) method, while the stretching func-
A G, ®.+B; F.,®,+Cd =0. 42 i .
szo K=k ]kgo Wk =T 42 tion for our spectral collocation glob&C) method followed

o . the stretching function described in Maltkfor his SDSP
The Neumann boundary condition for temperature eigen- -

. . = scheme. For each scheme, Mafifirst used a global method
function at the lower wall is enforced using:

to compute all the eigenvalues of the discretized system, and

dT N then used a local method to purify the eigenvalues obtained
ayl =& FnkTk=0. (43 by the global method and the associated eigenfunctions. Bet-
y=0 ter accuracy may be achieved when both the global and local
The Neumann conditions for pressure eigenfunction are ermethods are used than that obtained by the global method
forced as only using the same grid points. Since our numerical meth-
N -~ ods are only global ones, more grid points were used in
‘?_p —a é’_p —-b (44) comparing our results with those from Malik. Table | shows
ayy=Or Ty y=1 that our numerical results agree very well with Malik’s re-

wherea andb are evaluated at the two boundaries using theSUItS' ; o : .
For the linear stability computations of compressible

normal momentum equations. The approximation by Eq : .
" o Couette flow, the solutions of present methods were vali-
(42) and the boundary conditions lead to a matrix eigenvalue . . . ; X
. dated first by comparing with the viscous solutions of Duck
problem which has the same form as that of E§) except 29 .
et al~® for a case of relatively low Mach number and low

that® contains § -2 elements instead o4 elements o ng14q number and then by comparing with the direct nu-
as in the fourth-order finite-difference scheme. Again, the y y parng

. ; : _“merical simulation results by Zhorig.The numerical accu-
eigenvalue problem is solved numerically by the QR matrix S i .

: . . racy of the stability results was also evaluated by grid refine-
eigenvalue subroutine of the IMSL library.

ment studies and by comparing the solutions from our two
methods.

Figure 2 compares the phase velocity spectra for com-

The two linear stability codes using the fourth-order pressible Couette flow atl.,.=2, Re=2x 10, anda=0.1
finite-difference method and the spectral collocation methodomputed using our 4FD and SC methods. These results are
were first validated by comparing their solutions with thosecompared with those by Duckt al?® Duck et al. did not
of Malik®® for the linear stability of the flat-plate compress- solve thez-momentum equation for their two-dimensional
ible boundary layer. The solution procedures for the linealinear stability computations. Therefore their two-
stability of compressible boundary layer are the same adimensional spectrum contains less modes because the
those for Couette flow except that the basic-flow profiles and-direction modes are not present in their results. The figure
the boundary conditions are different. Mafikested various shows that the eigenvalue spectrum of Dustkal. agrees
numerical schemes for solving the temporal boundary layewell with those from the 4FD and SC methods except that
linear stability problem in five test cases. The comparison of-direction modes are not present in their two-dimensional
the present results with Malik’'s results for these five testresults. In addition, the eigenvalues and eigenfunctions for
cases are similar. Only the comparison of the present resultiompressible Couette flow obtained by our linear stability
with Malik’s results for his test case 3 is shown in Table I. codes were also compared with the DNS simulation con-
The flow conditions for this test case are compressiblelucted by Zhong* Excellent agreement was obtained and
boundary layer over a flat plate with zero pressure gradient atetails can be found in Ref. 31.
M.,= 2.5, Re=3000, T,=60CR, and T,,/T,qo=1. In the The quantitative numerical accuracy of our solutions for
table, the results of three methods used by Malik are comthe linear stability of compressible Couette flow was evalu-
pared with our results. The three methods used by Malik arated by a grid refinement study. Table 1l shows the grid
a fourth-order compact finite-differenc@CD) scheme, a refinement results for the two test cases using the SC
single domain spectral collocatiofEDSP method, and a method. The numerical accuracy of resolving the most im-

C. Results validation and numerical accuracy
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FIG. 2. Phase velocity spectrum of compressible Couette flo at2,

Re=2X 10, ande=0.1 using 100 grid points. Results of the 4FD and SC

methods in the lower figure are compared with those of Deichl. (1994

in the upper figure.
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portant modes, modes | and I, are shown for three sets of
grids. The SC method resolves modes | and Il with an accu-
racy in the order of 10% in relative errors for case 1 of
M.=2, Re=2x10°, anda=0.1. The accuracy is 16 or
better in relative errors for case 2 &t,=5, Re=5x10°,

and a=2.1 with grid pointsN=200.

The phase velocity spectra computed by using three sets
of grids for the case df1,,=5, Re=5x 1P, anda=0.1 are
shown in Fig. 3 to demonstrate the result convergence as the
numbers of grid points increase. The main focus of stability
analysis of the compressible Couette flow is on the least
stable modes, i.e., modes | and Il located near the line of Im
{c}=0. The figure shows that these least stable modes are
resolved very well with 100 grid points. On the other hand,
300 grid points are needed to resolve the highly damped
modes with negative Ific} of large magnitudes. These
highly damped modes are much less important to the insta-
bility of compressible Couette flow and they are not the fo-
cus of the current linear stability studies. Overall, the accu-
racy of the numerical solutions for modes | and Il is adequate
using either the 4FD and SC methods with 100 grid points.
In general, the grid points needed for the same accuracy
increase as Reynolds number or wavenumber increases.

In general, the conditiofi(0)=0 should be used instead
of (dT/dy)(0)=0 for the temperature fluctuation at the
lower wall even when the basic flow is adiabatic. The use of
the temperature fluctuation boundary conditions at the wall
was discussed by Mal® In fact, T(0)=0 is used when
comparing to Malik’s boundary layer linear stability results
in Table I. However, we used thelT/dy) (0)=0 condition
for Couette flow with an adiabatic lower wall in order to
compare with the results by Duckt al,® who used the
(dT/dy) (0)=0 condition for an insulated wall. Therefore,
most of the results presented here are computed using
(dT/dy) (0)=0. Fortunately, the use ofi{T/dy) (0)=0 in-

TABLE Il. The eigenvalue solutions of wave speedor compressible Couette flow using the spectral collo-

cation method with three sets of grid.

Grids [ Ac, Ci Ac;
(a) Test case IM,.=2, Re=2x10°, anda=0.1
(Mode )
100 1.213965119859 0.6510°1° —0.011585118523 0.3510° %0
200 1.213965119817 0.371071° —0.011585118448 1.20107 10
300 1.213965119854 - —0.011585118558 -
(Mode 1)
100 —0.291572925106 0.021071* —0.013821128462 0.0510- %
200 —0.291572925140 0.3210 * —0.013821128536 0.2010 %
300 —0.291572925108 - —0.013821128457 -
(b) Test case 2M,.=5, Re=5%x 1, anda=2.1
(Mode )
100 0.972869314676 0.4210°7 —0.003456356315 0.1410°
200 0.972869272448 0.2010" 11 —0.003456466520 0.2010" 1
300 0.972869272450 - —0.003456466522 -
(Mode 1)
100 0.040730741952 0.7910°° 0.000876050503 0.9510°°
200 0.040722854287 0.5310°8 0.000885530891 0.5810°°
300 0.040722853034 - 0.000885531421 -
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points. The table shows that the differences in the results
obtained by using the two sets of boundary conditions are a

I « SC, N=300 a

ol few percent. In addition, mode Il is affected less by the

boundary conditions than mode I. The overall impact of us-
ing different boundary conditions is not significant. This is

] further shown in Fig. 4 where the eigenfunctions of the un-
stable mode Il obtained using the two different temperature
¥ fluctuation boundary conditions at the lower wall are com-
pared. The only noticeable difference is in temperature dis-
turbanceT(y) at the region close to the lower wall. The
pressure perturbation is almost not affected by the use of
different boundary conditions.

15 Having validated the accuracy of our numerical codes,
viscous stability characteristics of compressible Couette flow
was studied by numerical computations of viscous eigen
modes for a range of Mach numbers and Reynolds numbers.
Spurious modes were discussed by Mlikor the global
spectral collocation method. Since both our methods are glo-
bal methods, spurious modes were also observed in the re-
sults from both the 4FD and the SC methods. Fortunately
spurious modes were easy to identify by comparing the re-
sults from the 4FD and SC methods because different meth-
ods usually give different spurious modes. Furthermore, the
spurious modes are grid dependent. Therefore, in order to
weed out potential spurious numerical modes in the solu-
tions, the eigenvalue spectra presented in this paper are re-
solved using either both the SC and the 4FD methods or the
SC method with two sets of grids.

02

Im{c}

-08
-0.5

02 — . . .

o SC, N=200
1 + 8C,N=300 1
00 g g e

Im{c}

04}

06} : %; '
2§

08 L
05 0.0 0.5 1.0 1.5

FIG. 3. Phase velocity spectra obtained using different number of grid
points for compressible Couette flow it,=5, Re=5x10°, anda=0.1.

IV. RESULTS
stead ofT(0)=0 does not make a significant difference on A. Origin of acoustic wave modes
the results presented in this paper. This is illustrated in Table Duck et al“* studied the inviscid stability of supersonic
[l which gives the comparisons of mode | and Il eigenvaluesCouette flow and found that there are two families of invis-
computed by using the two boundary conditions in a case ofid wave modes. They labeled these two families of modes
M..=5.0, «=3.0, andRe=5x 10> with 101 and 201 grid as the odd modeémodes I, lll, etc. and the even modes

|29

TABLE lIl. The eigenvalue solutions of wave speedit M,.=5, Re=5X 10°, anda=3.0 for plane Couette
flow using the spectral collocation method with different temperature boundary conditions.

Mode Re(c},T'(0)=0  Refc},T(0)=0 Im{c},T'(0)=0 Im{c},T(0)=0

(a) 101 Grid points
Mode I 0.180269087 0.180275543 0.000139605 0.000144231
Difference 0.000006456 0.000004626
Percentage(%) 0.00358 3.21
Mode | 0.795060364 0.793790805 —0.012551839 —0.013756970
Difference 0.001269559 0.001205131
Percentage(%) 0.160 8.76

(b) 201 Grid points
Mode I 0.180269212 0.180275668 0.000139569 0.000144195
Difference 0.000006456 0.000004626
Percentage(%) 0.00358 3.21
Mode | 0.795060364 0.793790805 —0.012551839 —0.013756970
Difference 0.001269559 0.001205131
Percentage(%) 0.160 8.76
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Mr<i 7
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Critical Line

Mr=-1 {
0.006 dT/dy(0)=0 §
"""" T©=0 Mre-1
0.005 |- /
0.004 |- T=Tr .Mr <-1
Odd Modes, I, 1L, V,....(Re{c)<1)
0.003 |-
Pr, FIG. 5. A schematic of the Mach waves and the two families of acoustic
0002 F wave modes in supersonic Couette flow in reference frames moving at the
velocity of the disturbance waves (f2¢ is the wave speed of an acoustic
0.001 |- mOde'
Pi
0.000
i 1 1 1 1
0.0 0z 04 v °° 0.8 10 0<Re{c}<1, both even and odd modes are no longer neu-

trally stable. Under this condition, the odd modes become
FIG. 4. Eigenfunctions of the unstable mode Il using different temperaturestable with finite damping, but the even modes become un-
perturbation boundary conditiori.is shown in the upper figure.is shown stable, where mode Il has the Iargest grovvth rate among the
in the lower figure. unstable even modes.
The two families of inviscid modes in supersonic Cou-

ette flow are similar in origin to the acoustic instability
(modes 11, 1V, etg). For the case of Mach 2, the odd modes modes for supersonic flows with one, two and no boundaries
are defined as the inviscid modes with{Relarger than 1  studied by Mack® and the acoustic instability wave modes
and In{c}=0 (neutrally stablg as wavenumbera ap-  of supersonic mixing layers inside a rectangular channel
proaches zero. Ag increases, the wave speed{Beof the  studied by Tam and Ht? The physical mechanism of such
odd modes decreases. On the other hand, the even modes gi@scid acoustic modes can be explained by considering a
defined as the inviscid modes with f&¢ less than 0 and Im  wave in a moving reference frame traveling at the wave
{c}=0 as @ approaches zero. Aa increases, the wave speed. The necessary condition for the existence of such
speed R} of the even modes increases. Both families ofacoustic modes is that there is a region of locally supersonic
the inviscid modes are neutrally stable whe{&e-1 (for  flow relative to the phase speed of the instability wave.
odd modes or Rec}<0 (for even modes Duck etal®  Acoustic wave modes are formed by substained wave reflec-
showed that, if 6ZRe{c}< 1, the necessary condition for the tions between the walls and the relative sonic line. Compared
existence of neutral stability modes in compressible Couett@iith a single family of acoustic modes for the unbounded
flow is that there is a generalized inflection po(@IP) in  compressible boundary layers, there are two families of
0<y<1. Similar to the case of compressible boundaryacoustic modes for the bounded Couette flow because there

layers; the generalized inflection point is defined as is one family of modes for each of the upper and lower walls.
d _ Figure 5 shows a schematic of the two families of acoustic
@[uy/T]=o. (45) modes in supersonic Couette flow in reference frames mov-

ing with the waves. Specifically, the odd wave modes are
For compressible Couette flow with an adiabatic lower wall,formed by substained acoustic reflections between the lower
there is no GIP inside the flow channel. A GIP occurs only ifwall and the relative sonic line, and the even wave modes are
the basic-flow temperature profile has a local extremumformed by the acoustic reflections between the upper wall
which implies that the lower wall must be cooled below theand the relative sonic line. In general, these two families of
adiabatic condition. For compressible Couette flow with anacoustic modes are not symmetric with respect to the center
adiabatic lower wall, Ducketal. found that, when line y=1/2 because the basic-flow temperature and velocity
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FIG. 6. Eigenvalue spectrum &fl,.=2.0, Re=5x10%, and a=0.1 with
isothermal basic-flow lower wall temperature conditions.
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o1 Pl hoioioi i i (O 4FD oo
profiles are not symmetric as shown in Fig. 1. Dwatkal. b o : 4 sc :
found that, for the case of adiabatic lower wall in the inviscid oF ' ® E
limit, when O<R€{c}<1, the odd modes are in general o E
stable with finite damping and even modes are unstable. 02 |- 7

Im{c}
When the upper and lower wall temperatures are the same 03 i 3
the eigenvalue spectra become symmetric about the PV ISR 3

Re{c}=0.5 line. An eigenvalue spectrum d#.=2.0,
Re=5x10% and a=0.1 with isothermal lower wall is
shown in Fig. 6. The figure shows that the corresponding
even and odd modes are symmetric with respect to the 07
Re{c}=0.5 line. o TS

B. Eigenmode spectra

05 -

06

0.5 1.0 . 1.5
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Using the new global methods, we have obtained un¥IG. 7. Phase velocity spectrum for compressible Couette flo.at 5,
stable modes for supersonic viscous Couette flow at finit&®=5% 10", anda=0.1(upper figurs. A localized region of the spectrum
Reynolds numbers. Among the unstable viscous modegghown in the lower figure. The re_sults obtained by both the 4FD and the

methods are shown for comparison.
mode Il was found to be the dominant instability for com-
pressible Couette flow. On the other hand, mode I, which
was found to be stable in the inviscid solutions by Duck“Y” shaped structure are the wave modes corresponding to
et al,, was also found to be unstable at finite Reynolds humthe compressible extension of viscous modes in the incom-
bers which indicates that viscosity plays a destabilizing rolepressible flow. On the other hand, the acoustic modes are the
Mode | is only slightly unstable for a small range of wave- results of acoustic wave reflections in the supersonic relative
numbers when Mach number is around 3, but mode Il iflow. The mode numbers of the acoustic modes, which are
unstable for a large range of wavenumbers and Mach nunalso located close to the line of {ig} =0, are marked in the
bers. Although very weak higher mode instabilities werefigure. Fora=0.1, the wave velocities of the even modes
found in the inviscid solutions in Ref. 29, they were not (modes II, IV, ..) satisfy Rgc}<0, while those of odd
found in the present viscous computations because of theodes(modes |, lll, ..) satisfy Réc}>1. The inviscid limit
magnitudes of Reynolds numbers used in the viscous conef these modes are neutral modes with{d¢fn=0 as shown
putations were limited by the resolution of the numericalby Ref. 29. Figure 7 shows that all these acoustic modes for
solutions. viscous flow are stable due to the effects of viscosity. The

Figure 7 shows the phase velocity eigenvalue spectrurfigure also shows that the modes are not symmetric with
for the case oRe=5x 10° and Mach 5 at a small wavenum- respect to the line of Re}=0.5 because the basic-flow ve-
ber a=0.1. The results shown in this paper are for the casdocity and temperature are not symmetric about the center
of adiabatic lower wall except indicated otherwise. The redine.
sults of the two methods are plotted in the same figure in  Figures 8 to 10 show the eigenvalue spectra of Couette
order to identify the spurious modes in the numerical soluflow with the same Mach number 5 and Reynolds number
tions. Similar to the Mach 2 case, the eigenvalue spectrum dRe=5x 10° at larger wavenumbers af=2.5, 3.5, and 4.8,
Mach 5 flow consists a “Y” shaped structure located at arespectively. Consistent with the inviscid thedfythe fig-
region of Réc} between 0 and 1, and two families of invis- ures show that, when wavenumber increasegcRef the
cid acoustic modes located at{Rg<0 for the even modes even modes increases while that of the odd modes decreases.
or Rec}>1 for the odd modes. The wave modes of theFigure 8 shows that ata=2.5, mode Il becomes
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FIG. 8. Phase velocity spectrum for compressible Couette floM at5, ) )
Re=5x 1(°, anda=2.5. The results obtained by the SC method using two FIG- 10. Phase velocity spectrum for compressible Couette fldw.a¢5,
sets of grids are shown for comparison. Re=5X10%, anda=4.8.

unstable with Rfc}>0, while mode | is stable with finite
damping and Re}<1. In addition, asa increases, the
original “Y” structure graduately evolves into a “H” like

structure with two separatehear verticgl branches con- enon agrees with the conclusion by Redehal that this

nected by thregnear horizontal bands near the original . . " . )
region of spectra is sensitive to very small errors in the linear

triple point. These two near vertical branches separated fur-" " . .
. - . matrix elements. As a consequence, 300 grid points were
ther asa increases in Figs. 9 and 10. The eigenvalue spec- . . : )
; . SO . _used in the computations in order to resolve the eigenvalues
trum at a high Reynolds number is shown in Fig. 3, which, . :
; _ in that region. On the other hand, the numerical accuracy of

plots the eigenvalue spectrum at Mach &=0.1, and : . ) ; .

- . the acoustic modes, which are above the triple point region,
Re=5x10°. The figure shows that as Reynolds numbers - . . ;
) s ) . L Is sufficiently accurate using 100 or 200 grid points.
increase, the “Y” structure is again split into a two sepa-

rated branches on both sides of thg &e=0.5 line similar to The e|g§nfunct|ons 9f the acoustic modes shown in F'.g'
) a L 8 are examined by plotting the contours of the pressure dis-
the case of higher wavenumberat Re=5x 10°. The invis- . .
. . ... turbances of the acoustic modes given by
cid acoustic modes are closer to the neutral stability line
because o'f'this higher Reynolds qumber. . Re{p’}=Re{p(y)el@ eV} (46)
In addition to converged physical modes, Figs. 8 to 10 )
and Fig. 3 also show scattered modes with{dnaround Figure 11 shows the contours of pressure disturbances of
—0.2 or less. These scattered modes are spurious numeridgPdes Il and IV over one spatial period at
modes, which will disappear if sufficiently more grid points M==5, Re=5X10°, anda=2.5 at a given time. The rela-
are used in the computations. They can be easily identified iive sonic line defined as
the figures because they change with different sets of grid (u—c,)
points. As Reynolds number or wavenumber increases, M= T

o is plotted with the mode Il wave pattern in the figure. The
' ' o SC.N-200 | eigenfunction contours of these even modes show the char-
4 SC,N=300 acteristics of standing wave pattern between upper wall and
e gy - the relative sonic line as described by the schematic shown
in Fig. 5. These acoustic modes are created by acoustic re-
flections between the upper wall and the relative sonic line.
The standing wave patterns are less obvious for higher
modes because the supersonic region covers most of the
range between the two walls. On the other hand, Fig. 12
shows the eigenfunction contours of modes | and lll. This
figure shows the characteristics of standing wave patterns
between the lower wall and the relative sonic line. The wave
patterns and the positions of the relative sonic lines do con-
8 firm the theory that the odd modes are acoustic waves re-
flecting between the relative sonic line and the lower wall,
FIG. 9. Phase velocity spectrum for compressible Couette flom.at5, ~ While the even modes are those reflecting between the rela-
Re=5x1C°, anda=3.5. tive sonic line and the upper wall.

more grid points are needed in the computations in order to
resolve the eigenvalues in the neighborhood of the triple
point of the “Y” or “H"” shaped structures. This phenom-

M,=+1 (47)
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) FIG. 12. The contours of the pressure perturbations for the odd acoustic
FIG. 11. The contours of the pressure perturbation for the even acoustigiodes (upper figure, mode I; lower figure, mode )lllat M. =5,

modes (upper figure, mode II; lower figure, mode }Vat M..=5, Re=5X10°, and a=2.5. Solid and dashed lines represent positive and
Re=5x10%, and a=2.5. Solid and dashed lines represent positive andpegative perturbation levels, respectively.

negative perturbation levels, respectively.

Re{c}<1, but mode Il becomes unstable when{&e>0.
For mode |, the figure shows that Rte=10°, the viscous
The effects of viscosity on the stability of supersonicresults are very stable for the whole rangeaofUnlike the
Couette flow at both Mach 2 and 5 were investigated byinviscid results, there is an additional peak in thg ¢indis-
comparing the viscous stability results with the inviscid re-tribution of the viscous results. As the Reynolds number in-
sults by Ducket al?® The focus was on the acoustic modes | creases, most part of viscous mode | approaches the inviscid
and Il because they are the most unstable modes in viscolimit from below the inviscid result. However, the peak of
supersonic Couette flow. Im{c} in the viscous curves become more unstable than the
Figure 13 shows Re} of modes | and Il as a function of inviscid solution. In fact, mode | becomes unstable in the
o for M,=2 atRe=10 and 16. The results of Duclet al.  case ofRe=5x 1 for « near 3.7 at the peak. This figure
for these two modes at the inviscid limit are plotted in theand later figures in this paper show clearly that viscosity
same figure for comparison. The figure shows that the viseestabilizes the flow at certain combination of the Reynolds
cous wave speeds are almost the same as the inviscid resuttsmbers and wavenumbers. Therefore, viscosity plays both
obtained by Duclet al. and are independent of the Reynolds stablizing and destabilizing roles for compressible Couette
numbers except wher is very small. Viscosity does not flow. As a result, there exists unstable mode | for viscous
have a strong effect on the speeds of the wave modes. ThHeouette flow at finite Reynolds numbers even though mode |
figure also shows that, asg increases, Re} increases for is always stable or neutrally stable at the inviscid limit for
mode Il and decreases for mode |. The two modes cross ththis case. The figure also shows similar effects of viscosity
lines of Rdc}=1 or 0 ata about 3.4. Ata larger than 3.4, on mode Il as Reynolds numbers increase, even though the
inviscid theory predicts that the two modes are no longetrend at large Reynolds numbers is not as clear because the
neutrally stable. Reynolds numbers used are not large enough due to the limit
Figure 14 shows It} of modes | and Il as a function of of numerical resolution. Again, there is a peak for thddin
a for M,,=2 at several Reynolds numbers. In the inviscidcurve of mode Il. In the Reynolds numbers used in the cal-
limit, mode | becomes stable with finite damping whenculations for Mach 2, there is no unstable viscous mode II.

C. Effects of viscosity
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As the Reynolds number increases, the figure shows that the

growth rates corresponding to the second peaks increase for

a fixed Mach number. otp
Similar viscosity effects on the stability of compressible

Couette flow were also found at high Mach numbers. Figure 00 y 2 3 o

0.0000
FIG. 15. Réc} and Im{c} of mode Il as a function ofr at M..=5. The

inviscid results of Duclet al. (1994 are compared with viscous results at

three Reynolds numbers.
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oo < e 15 shows the real part and the imaginary part of the phase
——  Re=tad® velocity of mode 1l as a function of wavenumberat Mach
5 and three Reynolds numbers. Again, the results of Duck
et al® for inviscid mode Il under the same flow condition

are plotted in the figure for comparison. The figure shows

-0.0015
i Mae
‘ L , , that viscosity has little effect on the wave speed dgeEx-
3 ‘o 5 6 cept at very lowa, the wave speed of mode Il is almost
independent of Reynolds humbers and agree very well with
the inviscid results by Ducket al. On the other hand,
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FIG. 14. Im{c} of modes | and Il as a function aef atM.,=2. The inviscid
results of Ducket al. (1994 are compared with viscous results at different FIG. 16. The Reynolds stress< pRe{u’'}Re{v'}) profiles for mode Il at
M.=5 andRe=5x1C°.

Reynolds number&upper figure, mode I; lower figure, mode.ll
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FIG. 17. Réc} of mode | and Il as a function af at M.,,=5. The inviscid
results(solid lineg of Duck et al. (1994 are compared with viscous results
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there are two peaks in the viscous{tth curves for mode |
comparing to one peak in the inviscid solutions. The first
peak appears in a very narrow rangenobetween 2 and 2.5.
The second peak appearssairound 3.3 in the figure, and it
corresponds to the unstable solutions for the inviscid mode
II. As the Reynolds number increases, most part of viscous
mode |l curves approaches the inviscid limit from below.

. Hu and X. Zhong

1.1

Refc)

0.5

0.00
Im{c}

-0.02

11
Ref{c}

0.9

08

0.7

06 |- -

05 ) ' 1 ! !

0.00
Im{c} A
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FIG. 19. Réc} and In{c} of mode | as a function ofxr at M.,.=5. The
inviscid results of Duclet al. (1994 shown in solid lines are compared with
viscous results aRe=10° shown in dashed lines.

However, at the first peaks of the viscous curves, the flow
become much more unstable than the flow in the inviscid
limit. It will be shown in the next section along with the
neutral stability contour results that this result is indeed vis-
cous mode Il instability in this small range of wavenumbers
over a range of Reynolds numbers but the overall trend is
that the viscous results match with the inviscid results as
Reynolds number goes to infinity. In the inviscid limit, Duck
et al?° showed that the upper family modes, such as mode I,
change from neutrally stable to unstable whed dRegoes
from negative to positive. The results of the viscous modes
in Fig. 15 show a similar trend, though the viscosity effects
delay the appearance of the unstable mode II.

The effects of viscosity on the viscous stability of super-
sonic Couette flow are further shown by Fig. 16 which shows
the profile of Reynolds stress defined by

7=pRe{u'}Rev’}, (48)

for mode Il atM.,.=5 andRe=5x10° for two a’s. The

Reynolds stress forr=2.2, which corresponds to the first
peak in the Infc} distribution due to viscosity effects, is
much larger than that for= 3.3, which is close to the sec-
ond peak(see Fig. 1k The figure indicates that viscosity
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FIG. 22. The distribution of growth rates of mode Il as a function of Rey-
nolds numbers at fixed wavenumbers for the case of Mach 5.

results, there are three branches of mode | at Mach 5 and
finite Reynolds numbers. The figures show that the wave
speed of mode | is no longer independent of the Reynolds
numbers. Again, the viscous results approach the inviscid
results as Reynolds number increases.

D. Neutral stability contours

For practical applications, mode Il is the most interesting
mode because it dominates the instability of supersonic Cou-
ette flow. The neutral stability contours have been generated
as functions of Reynolds numbers and wavenumbers. The
contours of temporal amplification rates {la) of mode I,
including the neutral stability curves, at Mach 5 and Mach 10

FIG. 20. The contours of frequency and growth rate for mode Il as a func2l0ONg with the constant frequency curves are shown in Fig.

tion of wavenumbers and Reynolds numbersaatM .=5, (b) M, =10.

increases the Reynolds stress tomear the first peak and
contributes to the destabilizing effects on the flow.
Figures 17 to 19 show Re} and Im{c} of mode | as a
function of @ for M,.,=5 at Re=10° and Re=10°. Duck
et al®
branches namelg,, 1z, andl . Consistent with the inviscid

3.0
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28k 3
27F E
26 F 3
o 3
25k E
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23k ]
22F e
21F - 00150007 e E
: o7 ==0.002 s
20 1 1
00E0  20E6  40E6 6.0E6  BOE6  10E7  12E7  14E7

FIG. 21. The contours of frequency and growth rate of mode Il at an ex-

20. In the figure, the neutral stability curves correspond to
the lines with Ijw}=0. The critical Reynolds numbers are
approximately 90,000 and 260,000 for Mach 5 and Mach 10,
respectively. Figure 20 shows that as Reynolds number in-
creases, the range of the wavenumbers corresponding to the
unstable region expands. Figures 20 and 15 both indicate that
there are two peaks in the {m} curves. For the case of

have shown that, at Mach 5, mode | breaks into threqach 5, the narrow peak is located @t=2.5 and the wide

peak is located ak~3.5. It is found that the narrow peak at
smallera is due to viscous instability while the wide peak at
larger « is due to inviscid instability for acoustic wave
modes. The viscous instability is shown in Fig. 15. The sec-
ond peak with highe approaches the inviscid solutions as
Reynolds number increases, while the first peak is unique to
the viscous solutions. Figure 15 shows that as the Reynolds
number increases, the first peak increases first. However, as
the Reynolds number increases further, the amplification rate
corresponding to the first peak reaches a maximum and de-
creases afterward, which is a result of viscous instability.
The destablizing effect of viscosity on the acoustic mode
Il can be demonstrated further by the frequency and growth
rate contours at higher Reynolds numbers. Figure 21 shows
the frequency and growth rate contours for a small range of
wavenumbers near the first peak and a longer range of Rey-
nolds numbergcomparing with Fig. 20 It is clear that at the

tended Reynolds number range and a small wavenumber range near the fif§ist peak, the Ifiw}=0.002 and Injw}=0.0015 contour

peak for the case d1,,=5.0.

lines form closed curves at finite Reynolds numbers. This is
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FIG. 23. The amplitude op andu eigenfunctions corresponding to tRe=10° curve in Fig. 15 at different wavenumbers fidr,,=5.0.

an indication of viscous instability. Figure 22 shows the dis-two peaks indeed correspond to the same mode I, the am-
tribution of growth rates as a function of Reynolds numbersp”tude of the eigenfunctions andu of the mode at various

|°f fixed Wavenumberi at I\/llach 5. r': also indicatc;s rt]ha_t th&yavenumbers are plotted in Fig. 23 corresponding to the
ow wavenumber peak would vanis , and approac ,t € INVISR &= 10P and Mach 5 curve in Fig. 15. It can be seen that the
cid results as the Reynolds number increases. Again, the nar- . ) , . .
: : : - : eigenfunctions at different’s are consistent, especially for
row peak at smallew is due to viscous instability while the . )
wide peak at largew is due to inviscid instability for acous- P- Algng W'th the fact.that 'the. Re} curves are smooth,.the
tic wave modes. Similar results exist for the case of highefonsistent eigenfunctions indicate that the two peaks indeed
Mach number aM., = 10. correspond to the same mode Il. Figures 8, 9, and 10 show
The viscous instability for the acoustic mode Il for su- the mode Il in the phase velocity spectra for the case of

personic Couette flow is unexpected. In order to see if thiv,=5 andRe=5x 10" for three wavenumbers in Fig. 15.
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o FIG. 25. Mode Il phase velocitgupper figurg and amplification ratéower

. figure) as a function ofa at different Mach numbers for the case of
FIG. 24. The contours of complex frequency for mode Il as a functiom of Re=5X 10

andM., (upper figureRe=5x 10°; lower figure,Re=1CFf).

Three wavenumbers correspond to three cases of different due to viscous instability while the wide peaks at largeare
in the mode 1l curve in the first peak, the second peak, andue to inviscid instability for acoustic wave modes. The fig-
outside of the second peak respectively. The figures showres show that the viscous instability is stronger than its
that at these three wavenumbers, mode Il is clearly distincinviscid counterpart.
tive from other modes, which also confirms that they belong  Figure 25 shows mode Il phase velocity and amplifica-
the same mode. tion rate atRe=5x 10° as a function ofx for various Mach
numbers. The figure shows that{Re of mode Il reaches a
finite limit as Mach number increases. For a fixed Reynolds
number atRe=5x10°, as Mach number increases, the
For the effects of Mach number on mode Il instability, maximum Ir{} first increases, reaches a maximum at cer-
Fig. 24 shows the contours of Re} and I{w} for the most  tain Mach number, and then decreases. The Mach number
unstable mode 1l for a range of Mach numbers and waveeorresponding to the maximum {@} at Re=5x10° is
numbers while fixing Reynolds number ak30° and 16. about 8. For thdRe=10° case, the Mach number is close to
In both cases, the unstable range doexpands first and then 10. Notice that this Mach number is around 40 in the inviscid
shrinks as Mach number increases. The figure shows that, fdimit as shown in Fig. 12 of Ref. 29. Therefore, as Reynolds
a fixed Reynolds number, there is a Mach number whiclmumber increases, the most unstable Mach number for the
corresponds to the maximum amplification rate for mode Il.second mode instability also increases, but has a finite limit.
For Reynolds number at»610° and 16, the most unstable Comparing Fig. 13 with Fig. 17, it is observed that mode
Mach number is around 8, 10, respectively. Therefore, for & has three branches M..=5, but not atM.,=2. In addi-
fixed Reynolds number, as the Mach number increases, then, there is a prominent low peak in Ir{c} at Mach 2
flow will become more unstable first and become less un{Fig. 14 but not Mach 5Fig. 18. Both the present viscous
stable. The Mach number corresponding to the maximunmesults and the inviscid results of Duek al. show similar
amplification rate increases as the Reynolds number intends. The reason for having three branches of mode | at
creases. Again, there are two peaks in the amplification rat®lach 5 is currently not known. One possible reason is that
contours of mode Il. The long narrow peaks at smalleare  the three eigenmodek,, |z, c whose Réc} are close to 1,

E. Effects of Mach number
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FIG. 27. Amplification rate and phase velocity of mode Il at different ob-
FIG. 26. Contours of frequency and amplification rate for mode Il atlique wave angles foRe=10° andM,,=5.
Re=10° as a function of oblique wave angle and « for (&) M..=5, (b)
M. =10.

dimensional. The effects of three dimensionality on the in-

] . stability of mode Il are similar to that of second mode in
start to interact when their Re}’s get close to each other. supersonic boundary layets.

As one can see from the inviscid and viscous results shown Figures 27 and 28 show the phase velocity and amplifi-
in the lower part of Fig. 16, the low rangel , and the high  ¢ation rate of mode Il as a function of wavenumberfor

a rangel g still resemble the mode | curve at Mach 2 exceptjifferent wave anglesy at Mach 5 and Mach 10, respec-
that the curve is “broken” in the middle due to the mode tyely. Again, three-dimensional waves are generally more
interactions. The interactions among eigenmodes are not oRtaple then two-dimensional waves with an exception shown
served at Mach 2. Furthermore, the narrow peak dtinfor i Fig. 27 where there is a small range @fin which three-
mode | is consistent with the narrow unstable region ob4imensional waves with wave angles around 30° are more
served aM., from 2.2 to 2.9 aRe=10° as shown in Fig. 29. nstable than the two-dimensional waves. This phenomenon,

however, is not observed in the case of Mach 10.

F. Three-dimensional wave modes
G. Instability of mode |

The effects of oblique wave angle on the stability of the i
I

most unstable mode Il were next investigated by considering Duck et al=® showed that the lower family of modes,
three-dimensional oblique disturbance waves with wavesuch as mode |, are neutrally stable when{de=1 and
angle ¢ defined by become stable with finite damping when{Re<1. For vis-
_ cous stability at finite Reynolds numbers, mode | was found

y=tan '(Bla). 49 {5 be unstable for a small range of Mach numbers Ra&t
Figure 26 shows the complex frequency contours as a func=10°, mode | instability is found to exist for a range of
tion of wavenumbere and wave angley at Mach 5 and Mach numbers as shown in Fig. 29. The{la} contours in
Mach 10, respectively. The Reynolds number i€.10he  the figure indicate that there is a narrow range Mach numbers
figure shows that as wave anglencreases for a fixed wave- and wavenumbers where mode | is unstable at this Reynolds
number a, both IMw} and R§w} decreases in general. number. As discussed earlier in the paper, this instability is
Therefore, mode Il is most unstable when it is two-caused by the effects of viscosity. In order to compare modes
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FIG. 29. Amplification rate contours for mode |Re=1C° as a function of
a andM., .

04 T T T T T T

03 to a range of wavenumbersf the two-dimensional mode |

for M.=2.5 andRe=1C° as a function of the ratio of the
lower wall temperature and the lower wall recovery tempera-

02 -
Rl ture given by Eq(9). As the temperature of the lower wall
ot ] decreases, mode | is first destabilized, then stabilized as the
" lower wall is further cooled. The effects of wall cooling on

ool ] mode Il are shown in Fig. 34 foM,,=5 andRe=5x10°.

Similarly, mode Il is first destabilized and then strongly sta-

1 bilized asT,, decreases. The effects of wall cooling on the

: L ! L ) stability of modes | and Il are different from those of the

200288088 M0 s 80 supersonic boundary layers, where Maskowed that the

second modes in the boundary layers are destabilized by wall

FIG. 28. Amplification rate and phase velocity of mode Il at different ob- COOI!ng'_Th,e response of Couette flow mF’des I'and 11 to wall

lique wave angles foRe=10° andM., = 10. cooling is different from that of compressible boundary layer
because of the effects of additional upper wall in the
bounded Couette flow.

I and Il instability, Fig. 30 shows the maximum amplification

rates over a range of wavenumbers for a range of Mac

numbers corresponding to mode | and mode IRa&=10°.

The symbols are the numerical data while the smooth curves The characteristics of linear viscous stability of super-

are the polynomial fit results. The figure shows that mode konic plane Couette flow have been investigated numerically.

instability is much weaker than mode |l instability. It only The effects of viscosity on the stability of modes | and Il

occurs in a very small range of Mach numbers. The nonwere studied by comparing the viscous results at finite Rey-

smoothness of the curves indicate that when Reynolds num-

ber is fixed, the maximum amplification rates for mode | and

Il are determined by combined effects of Mach number and 000i0 T T J ]

wavenumber. The effects of Reynolds number on the mode | ‘ o Model

instability are illustrated in Fig. 31 favl.,=2.9 anda=2.5.

The results show that viscosity enhances the instability of 00030

mode | in certain range of Reynolds numbers. Figure 32  waxmo

shows the effects of wave angle for mode IMy,=2.9 and

Re=10° as a function ofa. When the wavenumbedw is 0.0020

fixed, both I{w} and Réw} in general increase as wave

angle s increases.

01t

Q/. CONCLUSIONS

———Mode ||

0.0010

H. Effects of lower-wall cooling

The results presented so far are for the case of adiabatic 0.0000 s 1 s
condition at the lower wall and isothermal condition at the M,
upper wall. The effects of lower-wall cooling on modes | andFIG. 30. Maximum Ijw} of modes | and Il for different Mach numbers at

I inStab?”ty for supersonic Cou_ette flow are also in\_/eSti' Re=10P. The symbols are the numerical data. The smooth curves are poly-
gated. Figure 33 shows the maximum{la} (corresponding nomial fit results.
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FIG. 31. The effects of Reynolds number on mode | instabilitiMat=2.9 FIG. 33. The effects of wall-cooling on §w} for mode | atM.,.=2.5 and
anda=2.5. Re=10°.

nolds numbers with the inviscid results of Duektal. In  Viscosity stablizes the wave modes in most regions, but it
addition, the effects of compressibility, three-dimensionality,destabilizes the wave modes in a narrow region of the Rey-
and wall cooling on the two wave families were also studiednolds numbers and wavenumbers. Unlike the results at the
It was shown that viscosity plays a destabilizing role in bothinviscid limit that mode | is either stable with finite damping
mode | and mode Il stability for supersonic Couette flow in aor neutrally stable, mode | is found to be unstable at finite
range of Reynolds numbers and wavenumbers. Both of thedReynolds numbers due to the destabilizing effects of viscos-
modes are acoustic modes originated from the wave refledty. The viscous results for mode Il, on the other hand, are
tions in a supersonic region near the upper or lower wallthe dominant instability and unstable for a large range of
Mach numbers and wavenumbers. The results show that as
Reynolds number increases, the wave speeds and amplifica-
0000 ' - N VA tion rates of modes | and Il approach the inviscid limit re-
sults. The characteristics of mode Il instability have been
investigated in more details by generating their neutral sta-
0008 | ] bility contours. The critical Reynolds numbers for Mach 5
(m{w) and Mach 10 plane Couette flow were found to be around
0012 90,000 and 260,000, respectively. Mode | and Il, in general,
are most unstable when they are two-dimensional. As for the
Mach number effects, mode Il is destabilized first and then
stabilized as Mach number increases. The range of Mach
numbers which has mode Il instability expands with Rey-
0024 [ ] nolds number but remains finite. When the lower wall tem-
. . . . ‘ . perature decreases, both mode | and mode Il are destabilized
e ‘ ‘ first, but they are stabilized aw decreases further. In gen-
eral, the stability of the bounded Couette flow is different
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FIG. 32. Complex frequency of mode | as a function of wave aggbnd T,

wavenumbere at M.,=2.9 andRe=1CP: (a) upper figure, Iflw} vs o at
different oblique wave anglegh) lower figure: contours of Ifw} and FIG. 34. The effects of wall-cooling on §w} for mode Il atM.,.=5 and
Re{w}. Re=5Xx10C°.
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