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Linear stability of viscous supersonic plane Couette flow
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~Received 30 April 1997; accepted 5 November 1997!

The linear stability of viscous compressible plane Couette flow is not well understood even though
the stability of incompressible Couette flow has been studied extensively and has been shown to be
stable to linear disturbances. In this paper, the viscous linear stability of supersonic Couette flow for
a perfect gas governed by Sutherland viscosity law was studied using two global methods to solve
the linear stability equations. The two methods are a fourth-order finite-difference method and a
spectral collocation method. Two families of wave modes, modes I and II, were found to be unstable
at finite Reynolds numbers, where mode II is the dominant instability among the unstable modes.
These two families of wave modes are acoustic modes created by sustained acoustic reflections
between a wall and a relative sonic line when the mean flow in the local region is supersonic with
respect to the wave velocities. The effects of viscosity on the stability of the two families of acoustic
modes were studied by comparing the viscous results at finite Reynolds numbers with the inviscid
results published by Duck, Erlebacher, and Hussaini@J. Fluid Mech.258~1994!#. It was shown that
viscosity plays a destabilizing role in both mode I and mode II stability for supersonic Couette flow
in a range of Reynolds numbers and wavenumbers. The effects of compressibility,
three-dimensionality, and wall cooling on the two wave families were also studied. The stability of
supersonic Couette flow was found to be different from that of the unbounded boundary layers in
many aspects because of the effects of additional boundary conditions at the upper wall. ©1998
American Institute of Physics.@S1070-6631~98!01203-3#
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I. INTRODUCTION

The prediction of stability and transition of hyperson
flows is critical to the accurate calculations of aerodynam
forces and heating rates for hypersonic vehicles. Much of
current understanding of the stability properties of hyp
sonic boundary layers comes from the linear stability the
~LST!.1–5 Mack2,6,4,7 did extensive studies on the linear st
bility of compressible boundary layers and shear flows.
found that there is a new family of multiple higher instabili
wave modes in supersonic boundary layers. The hig
modes exist when the relative flow Mach numbers at the w
are supersonic while those in the free stream are subso
The relative, or convective, Mach number is defined a
flow Mach number in a reference frame moving at the
locity of an instability wave. These higher modes are aco
tic waves created by a substained reflection of acou
waves in a relative supersonic region between the wall
the relative sonic line.8 The first of the higher modes, whic
was labeled as the second mode by Mack, has been foun
be the dominant unstable mode for a zero-pressure-grad
boundary layer over a flat plate at high Mach numbers.

Acoustic instability wave modes similar to the high
modes in compressible boundary layers have also been fo
in supersonic jets and mixing layers.8–12 The effects of walls
on acoustic instability modes in bounded compressible sh
layers were studied in Refs. 8, 12–15. Tam and Hu13 showed
that, in contrast with the unbounded flow of superso
boundary layers, there are two families of unstable acou
modes when the relative Mach numbers of the flow at
walls on both sides of the shear layers are supersonic.
7091070-6631/98/10(3)/709/21/$15.00
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results indicated that the existence of the walls has a str
effect on the acoustic instability waves in the bounded co
pressible shear layers. These results are in agreement
Mack’s conclusion on the existence of acoustic mode8

Therefore, for hypersonic bounded flows, such as plane C
ette flow, it is expected that the stability properties will b
different from those of the unbounded compressible bou
ary layers because of the combined effects of the upper
lower walls.

This paper is concerned with the linear stability of vi
cous compressible Couette flow at finite Reynolds numb
The stability of plane Couette flow is a standard problem
fluid mechanics. Extensive studies have been done with
gard to incompressible Couette flow because the exact s
tions to the Navier-Stokes equations for the basic flow
available. A summary of the stability properties of incom
pressible Couette flow can be found in Drazin and Reid16

Theoretical analysis17 and numerical solutions18–22 have
shown that the flow is always stable to infinitesimal distu
bances. The first general proof of stability was given
Romanov23 that the normal modes of the linear problem a
stable for all wavenumbersa>0 and all Reynolds number
Re.0. However, instabilities were observed
experiments.24,25A number of investigations have been ma
to resolve the dichotomy. The evidence seems to point to
finite-amplitude effects.

The compressible stability of Couette flow, on the oth
hand, is much less well understood. Glatzel26,27 studied the
inviscid and viscous stability properties and normal mo
structures of plane compressible Couette flow using a s
© 1998 American Institute of Physics
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plified flow model of constant viscosity coefficients and
constant density profile for the basic-flow solutions. Suc
model leads to a constant temperature distribution and a
ear velocity profile for the basic flow. Girard28 considered
the same problem allowing for variations in density and te
perature, but with a constant viscosity assumption. For p
tical compressible Couette flow, however, the mean temp
ture and density are not constant. The viscosity and h
conductivity coefficients are functions of local temperatur

Duck et al.29 studied the linear inviscid and viscous st
bility of compressible Couette flow using realistic compre
ible flow models. The viscosity coefficients were comput
by the Sutherland’s law with a constant Prandtl number
0.72. Though closed-form solutions for the mean flow
not available for such viscosity law, it is straight forward
generate highly accurate numerical solutions of compress
Couette flow with little computational cost. Using nume
cally generated solutions for the basic flow, Ducket al. cal-
culated the inviscid stability modes of compressible Coue
flow. The inviscid stability characteristics of the bound
Couette flow was found to be quite different from that of t
unbounded boundary layers. For supersonic Couette fl
they found two families of inviscid wave modes. For th
viscous instability of compressible Couette flow, Ducket al.
analyzed the effects of viscosity on the stability
asymptotic analysis. Viscosity was found to play a stabi
ing role for the unstable modes. Ducket al.also obtained the
spectra of viscous eigen modes numerically from the line
ized full Navier-Stokes equations for the viscous stability
finite Reynolds numbers. Although the viscous unsta
modes were expected to exist at high Reynolds numbers
evidence of unstable modes was found in their numer
solutions. One of the possible reasons is the inadequate
merical resolutions in their computations for the cases
Mach 2 at high Reynolds numbers and for the cases of M
5. Currently, the characteristics of the instability for visco
compressible Couette flow with realistic flow model are s
not clear.

The purpose of this paper is to investigate the visc
stability of compressible Couette flow at finite Reynol
numbers. To ensure numerical accuracy of the solutions,
global stability computer codes for general parallel sh
flows were developed using a fourth-order finite-differen
method and a Chebyshev spectral collocation method.30 The
accuracy of these two linear stability codes was first v
dated by comparing their stability solutions with the pu
lished solutions by Malik30 for compressible boundary lay
ers. The accuracy of stability solutions for compressi
Couette flow was also checked by grid refinement and
comparing the solutions obtained by our two different me
ods. The linear stability results for compressible Coue
flow were further checked by comparing with direct nume
cal simulations by Zhong.31 Good agreement was observe
in these comparisons. Our viscous stability results also c
pared well with those obtained by Ducket al.29 for the case
of Mach 2 Couette flow. After the validation of numeric
accuracy, the viscous stability of compressible Couette fl
was computed for a range of Mach numbers, wavenumb
and Reynolds numbers. Unstable eigenmodes I and II, w
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correspond to the two families of inviscid acoustic mod
studied by Ducket al., were obtained for supersonic viscou
Couette flow at finite Reynolds numbers. The characteris
of the viscous modes were investigated in details and
effects of compressibility, three-dimensionality, and w
cooling were studied. In addition, the effects of viscosity
the stability of compressible Couette flow were examined
comparing the viscous results with the inviscid stability r
sults obtained by Ducket al.29

II. FORMULATION

A. Equations

The linear stability is considered for compressible v
cous plane Couette flow confined between two infinite p
allel walls located aty* 50 ~lower wall! andy* 5L* ~upper
wall!, where the superscript ‘‘*’’ represents dimension
quantities. In the Cartesian coordinates, thex* , y* , z* coor-
dinates are those in the stream wise, wall-normal, and sp
wise directions, respectively. The gas is assumed to b
perfect Newtonian gas. The upper wall is held at a cons
temperatureT*̀ and a constant velocityU *̀ in the x* direc-
tion, where the flow variables at the upper wall are deno
by a subscript ‘‘̀ .’’ The lower wall is stationary with either
adiabatic or isothermal conditions with a wall temperatu
Tw* . The three-dimensional Navier-Stokes equations are:

r* F ]u*

]t*
1u* •“u* G52“p* 1“•@l* ~“•u* !I

1m* ~“u* 1“u* tr !#, ~1!

]r*

]t*
1“•~r* u* !50, ~2!

r* cp* F]T*

]t*
1u* •“T* G5“•~k* “T* !1

]p*

]t*
1u*

•“u* 1F* , ~3!

p* 5r* R* T* , ~4!

whereu* is the velocity vector,r* is the density,p* is the
pressure,T* is the temperature,R* is the gas constant,cp* is
the specific heat at constant pressure,k* is the thermal con-
ductivity, m* is the first coefficient of viscosity, andl* is
the second coefficient of viscosity. The viscous dissipat
function,F* , is given as

F* 5l* ~“•u* !21
m*

2
@“u* 1“u* tr #2. ~5!

The flow variables and equations are no
dimensionalized as follows: velocities byU *̀ , length scales
by L* , density by r *̀ , temperature byT*̀ , pressure by
r *̀ U *̀ 2 , and time scale byL* /U *̀ . All other variables are
nondimensionalized by their corresponding values on the
per wall. The dimensionless variables are represented by
same symbols as those used for the dimensional variable
without the superscript ‘‘*.’’ The Reynolds number is de
fined as
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Re5
U *̀ r *̀ L*

m *̀
, ~6!

and the Mach number is

M`5
U *̀

~gR* T*̀ !1/2, ~7!

whereR* 5cp* 2cv* , cv* is the specific heat at constant vo
ume, andg is the ratio of specific heats. The Prandtl numb
is defined asPr5m* cp* /k* . The viscosity coefficient is de
termined by Sutherland’s law,

m5T1.5S 11C

T1CD , ~8!

where C is a constant. In this paper, it is assumed t
C50.5, l522/3m, g51.4, andPr50.72.

B. Basic-flow solutions

For compressible Couette flow, the steady basic-flow
lutions are functions ofy only, i.e.,Ū5Ū(y) and T̄5 T̄(y).
Although there is no closed-form solutions for a general v
cosity model, the basic-flow solution forŪ can be accurately
and efficiently integrated by a numerical method.32 The con-
stant shear of Couette flow allows the temperature solutio
be obtained by a quadratic algebraic relation with veloc
For the case of adiabatic lower wall, the recovery tempe
ture at the wall is

Tr511 1
2 ~g21!PrM`

2 . ~9!

Figure 1 shows the numerically obtained basic-flow veloc
and temperature distributions for Couette flow at three su
sonic Mach numbers with adiabatic lower wall conditions

C. Linear stability equations

The linear stability analysis is based on a normal mo
analysis of the linearized perturbation equations of the th
dimensional Navier-Stokes equations. The LST formu
presented in this paper for Couette flow can be easily
tended to the normal mode analysis for general compress
flows with parallel steady flow fields. The perturbation equ
tions are derived by representing the instantaneous flow v
ables as a sum of a basic-flow solution and a small fluc
tion quantity, i.e.,

u5Ū~y!1u8~x,y,z,t !,

v5v8~x,y,z,t !,

w5w8~x,y,z,t !,

p5 p̄1p8~x,y,z,t !,

T5 T̄~y!1T8~x,y,z,t !.

~10!

Substituting Eq.~10! into the nondimensional form of th
governing Eqs.~1!–~5!, and dropping the nonlinear an
high-order terms yield a set of linear differential equatio
for the perturbation variables. Details of the linear pertur
tion equations and other formulations can be found
Downloaded 13 Jun 2005 to 164.67.192.121. Redistribution subject to AI
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Malik.30 The perturbation velocity and temperature satis
homogeneous boundary conditions at the upper and lo
walls. In the normal mode analysis for the linear distu
bances, the fluctuations of flow quantities are assumed t
represented by harmonic waves of the following form:

@u8,v8,p8,T8,w8# tr5@ û~y!,v̂~y!,p̂~y!,T̂~y!,ŵ~y!# tr

3ei ~ax1bz2vt !, ~11!

wherea andb are the wavenumbers inx andz directions,
respectively, andv is the frequency of the disturbanc
waves. These parameters are in general complex num
The complex amplitude~eigen! function of a typical flow
variable, say u, isû(y). Substituting Eq.~11! into the linear-
ized perturbation equations leads to a homogeneous sy
of ordinary differential equations:

~AD21BD1C!F50, ~12!

where D is the derivative operator iny direction, i.e.,
D5d/dy and D25d2/dy2. In the equation above,F is a
vector defined as

FIG. 1. Basic-flow temperature (T̄) and velocity (Ū) profiles at Mach 2, 5,
and 10 with adiabatic lower wall.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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F5F û~y!

v̂~y!

p̂~y!

T̂~y!

ŵ~y!

G , ~13!

andA, B andC, which are 535 matrices, are functions ofa,
b, v, Re, M` , and the basic-flow solutions. The detaile
expressions of matricesA, B andC can be found in Ref. 30
and they are not repeated here. The boundary condition
Eq. ~12! are no-slip conditions for velocities at both wall
isothermal temperature condition at the upper wall, and a
batic condition for the lower wall, i.e.,

û~1!5 v̂~1!5ŵ~1!5û~0!5 v̂~0!5ŵ~0!,

T̂~1!5
]T̂

]y
~0!50. ~14!

In the case of isothermal condition for the lower wall, t
temperature condition aty50 is replaced byT̂(0)50. The
above temperature perturbation boundary conditions are
to be in accordance with Ducket al.29 In fact, T̂(0)50 is a
more physical condition to use regardless of the basic fl
boundary conditions. Nonetheless, it is found that t
boundary condition does not affect the main stability char
teristics of the flow.

The homogeneous equation system~12! and homoge-
neous boundary conditions~14! form an eigenvalue problem
For plane compressible Couette flow, the temporal linear
bility is considered, i.e., for a given set of real-valuea and
b, v is solved as an eigenvalue of the homogeneous bou
ary value problem given by Eqs.~12! and ~14!:

v5v~a,b,Re,M`!. ~15!

Meanwhile, The amplitude of the disturbance mod

@ û(y),v̂(y),p̂(y),T̂(y),ŵ(y)# tr , is solved as an eigenfunc
tion of the boundary value problem. The real part ofv,
Re$v%, represents the frequency of the disturbance mo
while the imaginary part, Im$v%, represents the tempora
amplification rate of the disturbances. When Im$v% is
greater, equal to, or smaller than 0, a disturbance mod
unstable with finite amplification, neutrally stable, or stab
with finite damping, respectively. We also define a comp
wave~phase! velocity c of the disturbance waves asc5v/a.
The disturbance waves are three dimensional in gene
Two-dimensional disturbance modes correspond to a spe
case ofb50.

III. NUMERICAL METHODS AND VALIDATION

For a given set of real-valuea andb, the temporal sta-
bility analysis solvesv andF as eigenvalues and eigenfun
tions of the homogeneous boundary value problem given
Eqs. ~12! and ~14!. Various numerical methods for solvin
the eigenvalue problem of the linear stability equations
hypersonic boundary layers were discussed and evaluate
Malik.30 The eigenvalue problem can be solved by eith
Downloaded 13 Jun 2005 to 164.67.192.121. Redistribution subject to AI
for

a-

ed

w
s
-

a-

d-

,

s,

is

x

al.
ial

y

r
by
r

global or local methods. A global method computes all t
eigenvalues of the discretized system, while a local met
only solves for a single eigenvalue and its eigenfunctio
The global methods are usually computationally more exp
sive, but they have the advantage of obtaining the whole
of eigenvalues and eigenfunctions at the same time. On
other hand, the local methods are limited to solving a sin
set of eigenvalue and eigenfunction only, but they are u
ally more computationally efficient than global methods.
this paper, the eigen spectra of the eigenvalue problem
computed by global methods using two different discreti
tion methods. The first method is a fourth-order finit
difference method~4FD!, and the second method is a Cheb
shev spectral collocation method~SC! described by Malik.30

The comparisons of the results from the two different d
cretization methods are useful in determining the numer
resolution of the results and in separating spurious numer
eigen modes from the physical ones in the solutions.

A. Fourth-order finite-difference global „4FD… method

In the finite-difference method, Eq.~12! is discretized by
fourth-order finite-difference approximations toD and D2

derivative operators. In implementing the fourth-order fini
difference method, we use a non-staggered grid. One-s
difference formulas are used to approximate the first-or
derivatives ofp̂ on the walls. The following formulas are
derived based on uniformly distributed grid points, who
index j is from 1 to N11. The lower wall (y50) corre-
sponds toj 51, while the upper wall (y51) corresponds to
j 5N11. The fourth-order finite-difference formulas at
grid point j are listed below.
For 3< j <N21:

D2F j5
1

12Dy2 ~2F j 12116F j 11230F j116F j 21

2F j 22!, ~16!

DF j5
1

12Dy
~2F j 1218F j 1128F j 211F j 22!. ~17!

For j 52:

D2F j5
1

12Dy2
~10F j 21215F j24F j 11114F j 12

26F j 131F j 14!, ~18!

DF j5
1

12Dy
~23F j 21210F j118F j 1126F j 12

1F j 13!. ~19!

For j 5N:

D2F j5
1

12Dy2
~F j 2426F j 23114F j 2224F j 21

215F j110F j 11!, ~20!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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DF j5
1

12Dy
~2F j 2316F j 21218F j 21110F j

13F j 11!. ~21!

The first derivatives ofp̂ near the wall are given below.
For j 52:

DF j5
1

12Dy
~225F j148F j 11236F j 12116F j 13

23F j 14!. ~22!

For j 53:

DF j5
1

12Dy
~23F j 21210F j118F j 1126F j 12

1F j 13!. ~23!

For j 5N:

DF j5
1

12Dy
~3F j 24216F j 23136F j 22248F j 21

125F j !. ~24!

For j 5N21:

DF j5
1

12Dy
~2F j 2316F j 22218F j 21110F j

13F j 11!. ~25!

In the above equations, a uniform grid sizeDy is assumed.
Discretized Eq. ~12! using the fourth-order finite-

difference formulas given above, along with the homog
neous boundary conditions at the walls given by Eq.~14!,
leads to a matrix eigenvalue problem:

A8F5vB8F, ~26!

where v is the eigenvalue, A8 and B8 are
5(N21)35(N21) matrices for the case of isotherm
lower wall and (5N24)3(5N24) matrices for the case o
adiabatic lower wall, andF is the discrete representation
the eigenfunction at the grid points, i.e.,

F5@F2 ,...,FN# tr ~Isothermal!, ~27!

F5@F1 ,...,FN# tr ~Adiabatic!. ~28!

The whole eigenvalue spectrum and eigenfunctions can
obtained numerically by solving Eq.~26! using the QZ ei-
genvalue algorithm of the IMSL computer subroutine
brary.

In the actual calculations, a stretched grid is used
distribute more grid points near the walls. A coordina
transformation is used to transform the equation in the n
uniform coordinates into uniform computational ones.
natural choice for the stretching function in the coordin
transformation for solving Couette flow is

y5
12cosph

2
, ~29!
Downloaded 13 Jun 2005 to 164.67.192.121. Redistribution subject to AI
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where hP@0,1# is the computational coordinate andy
P@0,1# is the physical coordinate. However, this transform
tion has a singularity in]h/]y at the walls. Therefore, a
modified transformation is used,

y5
cosph2cospD

cos@p~12D!#2cospD
, ~30!

where D is chosen to be 0.001,hP@D,12D#, and y
P@0,1#.

B. Chebyshev spectral collocation global „SC…

method

The solution procedure for the spectral collocation g
bal method is the same as that for the finite-differen
method except that a Chebyshev polynomial is used in
discretization of Eq.~12!. The Chebyshev spectral colloca
tion discretization method used in this paper follows th
given by Malik30 for his single domain spectral collocatio
method~SDSP!. The Nth-order Chebyshev polynomialsTN

are defined on the intervalj jP@21,1#. The collocation
pointsj j , which are the extrema ofTN , are

j j5cos
p j

N
, j 50,1, . . . ,N. ~31!

In order to apply the spectral collocation method, an inter
lant polynomial is constructed for the dependent variables
terms of their values at the collocation points. ANth-order
polynomial is

F~j!5 (
k50

N

lk~j!F~jk!, ~32!

where the interpolantlk(j) for the Chebyshev scheme is

lk~j!5~21!~k11!S 12jk
2

j2jk
DTN8 ~j!

N2ck

, ~33!

wherec05cN52, andck51 for 0,k,N. From Eq.~32!,
the first derivative ofF(j) can be written as

dF

dj U
j

5 (
k50

N

EjkFk , ~34!

whereEjk are the elements of the derivative matrix defin
as:

Ejk5
cj

ck

~21!k1 j

j j2jk
, for j Þk, ~35!

Ej j 52
j j

2~12j j
2!

, ~36!

E0052ENN5
2N211

6
. ~37!

The transformation between physical and computational
mains is

j j52yj21, where yP@0,1#. ~38!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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The scaling factor for the transformation between phys
domainy and computational domainj is thus given as

Sj5
]j

]yU
j

52, j 50,1, . . . ,N, ~39!

then the first derivative matrixF in the physical domain may
be written as

F jk5SjEjk , ~40!

and the second derivative matrixGjk is

Gjk5F jmFmk . ~41!

Now the governing equation~12! can be written at the col
location points as

Aj (
k50

N

GjkFk1Bj (
k50

N

F jkFk1CjF j50. ~42!

The Neumann boundary condition for temperature eig
function at the lower wall is enforced using:

dT̂

dy
U

y50

5 (
k50

N

FNkTk50. ~43!

The Neumann conditions for pressure eigenfunction are
forced as

] p̂

]y
Uy505a,

] p̂

]y
U

y51

5b, ~44!

wherea andb are evaluated at the two boundaries using
normal momentum equations. The approximation by
~42! and the boundary conditions lead to a matrix eigenva
problem which has the same form as that of Eq.~26! except
that F contains 5N22 elements instead of 5N24 elements
as in the fourth-order finite-difference scheme. Again,
eigenvalue problem is solved numerically by the QR ma
eigenvalue subroutine of the IMSL library.

C. Results validation and numerical accuracy

The two linear stability codes using the fourth-ord
finite-difference method and the spectral collocation meth
were first validated by comparing their solutions with tho
of Malik30 for the linear stability of the flat-plate compres
ible boundary layer. The solution procedures for the lin
stability of compressible boundary layer are the same
those for Couette flow except that the basic-flow profiles a
the boundary conditions are different. Malik30 tested various
numerical schemes for solving the temporal boundary la
linear stability problem in five test cases. The comparison
the present results with Malik’s results for these five t
cases are similar. Only the comparison of the present res
with Malik’s results for his test case 3 is shown in Table
The flow conditions for this test case are compress
boundary layer over a flat plate with zero pressure gradien
M`52.5, Re53000, T056000R, and Tw /Tadb51. In the
table, the results of three methods used by Malik are co
pared with our results. The three methods used by Malik
a fourth-order compact finite-difference~4CD! scheme, a
single domain spectral collocation~SDSP! method, and a
Downloaded 13 Jun 2005 to 164.67.192.121. Redistribution subject to AI
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multi-domain spectral collocation~MDSP! method. In our
calculations, an exponential grid stretching function w
used for the boundary layer in the fourth-order finit
difference global~4FD! method, while the stretching func
tion for our spectral collocation global~SC! method followed
the stretching function described in Malik30 for his SDSP
scheme. For each scheme, Malik30 first used a global method
to compute all the eigenvalues of the discretized system,
then used a local method to purify the eigenvalues obtai
by the global method and the associated eigenfunctions.
ter accuracy may be achieved when both the global and l
methods are used than that obtained by the global me
only using the same grid points. Since our numerical me
ods are only global ones, more grid points were used
comparing our results with those from Malik. Table I show
that our numerical results agree very well with Malik’s r
sults.

For the linear stability computations of compressib
Couette flow, the solutions of present methods were v
dated first by comparing with the viscous solutions of Du
et al.29 for a case of relatively low Mach number and lo
Reynolds number and then by comparing with the direct
merical simulation results by Zhong.31 The numerical accu-
racy of the stability results was also evaluated by grid refi
ment studies and by comparing the solutions from our t
methods.

Figure 2 compares the phase velocity spectra for co
pressible Couette flow atM`52, Re523105, anda50.1
computed using our 4FD and SC methods. These results
compared with those by Ducket al.29 Duck et al. did not
solve thez-momentum equation for their two-dimension
linear stability computations. Therefore their two
dimensional spectrum contains less modes because
z-direction modes are not present in their results. The fig
shows that the eigenvalue spectrum of Ducket al. agrees
well with those from the 4FD and SC methods except t
z-direction modes are not present in their two-dimensio
results. In addition, the eigenvalues and eigenfunctions
compressible Couette flow obtained by our linear stabi
codes were also compared with the DNS simulation c
ducted by Zhong.31 Excellent agreement was obtained a
details can be found in Ref. 31.

The quantitative numerical accuracy of our solutions
the linear stability of compressible Couette flow was eva
ated by a grid refinement study. Table II shows the g
refinement results for the two test cases using the
method. The numerical accuracy of resolving the most

TABLE I. The eigenvalue solutions of complex frequencyv for the tem-
poral linear stability of a compressible boundary layer (M`52.5,
Re53000,T056000R, Tw /Tadb51, a50.06, andb50.1).

Methods Grids Re$v% Im$v%

4CD ~Malik! 61 0.0367321 0.0005847
SDSP~Malik! 61 0.0367339 0.0005840
MDSP ~Malik! 61 0.0367340 0.0005840
SC ~Hu and Zhong! 100 0.0367337 0.0005845
4FD ~Hu and Zhong! 100 0.0367338 0.0005840
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Phase velocity spectrum of compressible Couette flow atM`52,
Re523105, anda50.1 using 100 grid points. Results of the 4FD and S
methods in the lower figure are compared with those of Ducket al. ~1994!
in the upper figure.
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portant modes, modes I and II, are shown for three set
grids. The SC method resolves modes I and II with an ac
racy in the order of 10210 in relative errors for case 1 o
M`52, Re523105, anda50.1. The accuracy is 1028 or
better in relative errors for case 2 atM`55, Re553106,
anda52.1 with grid pointsN5200.

The phase velocity spectra computed by using three
of grids for the case ofM`55, Re553106, anda50.1 are
shown in Fig. 3 to demonstrate the result convergence as
numbers of grid points increase. The main focus of stabi
analysis of the compressible Couette flow is on the le
stable modes, i.e., modes I and II located near the line of
$c%50. The figure shows that these least stable modes
resolved very well with 100 grid points. On the other han
300 grid points are needed to resolve the highly dam
modes with negative Im$c% of large magnitudes. Thes
highly damped modes are much less important to the in
bility of compressible Couette flow and they are not the
cus of the current linear stability studies. Overall, the ac
racy of the numerical solutions for modes I and II is adequ
using either the 4FD and SC methods with 100 grid poin
In general, the grid points needed for the same accur
increase as Reynolds number or wavenumber increases

In general, the conditionT̂(0)50 should be used instea
of (dT̂/dy)(0)50 for the temperature fluctuation at th
lower wall even when the basic flow is adiabatic. The use
the temperature fluctuation boundary conditions at the w
was discussed by Malik.30 In fact, T̂(0)50 is used when
comparing to Malik’s boundary layer linear stability resu
in Table I. However, we used the (dT̂/dy) (0)50 condition
for Couette flow with an adiabatic lower wall in order t
compare with the results by Ducket al.,29 who used the
(dT̂/dy) (0)50 condition for an insulated wall. Therefore
most of the results presented here are computed u
(dT̂/dy) (0)50. Fortunately, the use of (dT̂/dy) (0)50 in-
lo-
TABLE II. The eigenvalue solutions of wave speedc for compressible Couette flow using the spectral col
cation method with three sets of grid.

Grids cr Dcr ci Dci

~a! Test case 1.M`52, Re523105, anda50.1
~Mode I!

100 1.213965119859 0.05310210 20.011585118523 0.35310210

200 1.213965119817 0.37310210 20.011585118448 1.10310210

300 1.213965119854 – 20.011585118558 –

~Mode II!
100 20.291572925106 0.02310211 20.013821128462 0.053102 11

200 20.291572925140 0.32310211 20.013821128536 0.79310211

300 20.291572925108 – 20.013821128457 –

~b! Test case 2.M`55, Re553106, anda52.1
~Mode I!

100 0.972869314676 0.4231027 20.003456356315 0.1131026

200 0.972869272448 0.20310211 20.003456466520 0.20310211

300 0.972869272450 – 20.003456466522 –
~Mode II!

100 0.040730741952 0.7931025 0.000876050503 0.9531025

200 0.040722854287 0.1331028 0.000885530891 0.5331029

300 0.040722853034 – 0.000885531421 –
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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716 Phys. Fluids, Vol. 10, No. 3, March 1998 S. Hu and X. Zhong
stead ofT̂(0)50 does not make a significant difference
the results presented in this paper. This is illustrated in Ta
III which gives the comparisons of mode I and II eigenvalu
computed by using the two boundary conditions in a case
M`55.0, a53.0, andRe553105 with 101 and 201 grid

FIG. 3. Phase velocity spectra obtained using different number of
points for compressible Couette flow atM`55, Re553106, anda50.1.
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s
of

points. The table shows that the differences in the res
obtained by using the two sets of boundary conditions ar
few percent. In addition, mode II is affected less by t
boundary conditions than mode I. The overall impact of u
ing different boundary conditions is not significant. This
further shown in Fig. 4 where the eigenfunctions of the u
stable mode II obtained using the two different temperat
fluctuation boundary conditions at the lower wall are co
pared. The only noticeable difference is in temperature d

turbanceT̂(y) at the region close to the lower wall. Th
pressure perturbation is almost not affected by the use
different boundary conditions.

Having validated the accuracy of our numerical cod
viscous stability characteristics of compressible Couette fl
was studied by numerical computations of viscous eig
modes for a range of Mach numbers and Reynolds numb
Spurious modes were discussed by Malik30 for the global
spectral collocation method. Since both our methods are
bal methods, spurious modes were also observed in the
sults from both the 4FD and the SC methods. Fortuna
spurious modes were easy to identify by comparing the
sults from the 4FD and SC methods because different m
ods usually give different spurious modes. Furthermore,
spurious modes are grid dependent. Therefore, in orde
weed out potential spurious numerical modes in the so
tions, the eigenvalue spectra presented in this paper ar
solved using either both the SC and the 4FD methods or
SC method with two sets of grids.

IV. RESULTS

A. Origin of acoustic wave modes

Duck et al.29 studied the inviscid stability of superson
Couette flow and found that there are two families of inv
cid wave modes. They labeled these two families of mo
as the odd modes~modes I, III, etc.! and the even mode

id
TABLE III. The eigenvalue solutions of wave speedc at M`55, Re553105, anda53.0 for plane Couette
flow using the spectral collocation method with different temperature boundary conditions.

Mode Re$c%,T̂8(0)50 Re$c%,T̂(0)50 Im$c%,T̂8(0)50 Im$c%,T̂(0)50

~a! 101 Grid points
Mode II 0.180269087 0.180275543 0.000139605 0.000144231
Difference 0.000006456 0.000004626
Percentage(%) 0.00358 3.21
Mode I 0.795060364 0.793790805 20.012551839 20.013756970
Difference 0.001269559 0.001205131
Percentage(%) 0.160 8.76

~b! 201 Grid points
Mode II 0.180269212 0.180275668 0.000139569 0.000144195
Difference 0.000006456 0.000004626
Percentage(%) 0.00358 3.21
Mode I 0.795060364 0.793790805 20.012551839 20.013756970
Difference 0.001269559 0.001205131
Percentage(%) 0.160 8.76
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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~modes II, IV, etc.!. For the case of Mach 2, the odd mod
are defined as the inviscid modes with Re$c% larger than 1
and Im$c%50 ~neutrally stable! as wavenumbera ap-
proaches zero. Asa increases, the wave speed Re$c% of the
odd modes decreases. On the other hand, the even mode
defined as the inviscid modes with Re$c% less than 0 and Im
$c%50 as a approaches zero. Asa increases, the wave
speed Re$c% of the even modes increases. Both families
the inviscid modes are neutrally stable when Re$c%.1 ~for
odd modes! or Re$c%,0 ~for even modes!. Duck et al.29

showed that, if 0,Re$c%,1, the necessary condition for th
existence of neutral stability modes in compressible Cou
flow is that there is a generalized inflection point~GIP! in
0,y,1. Similar to the case of compressible bounda
layers,1 the generalized inflection point is defined as

d

dy
@Ūy / T̄#50. ~45!

For compressible Couette flow with an adiabatic lower w
there is no GIP inside the flow channel. A GIP occurs only
the basic-flow temperature profile has a local extremu
which implies that the lower wall must be cooled below t
adiabatic condition. For compressible Couette flow with
adiabatic lower wall, Duck et al. found that, when

FIG. 4. Eigenfunctions of the unstable mode II using different tempera

perturbation boundary conditions.T̂ is shown in the upper figure.p̂ is shown
in the lower figure.
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0,Re$c%,1, both even and odd modes are no longer n
trally stable. Under this condition, the odd modes beco
stable with finite damping, but the even modes become
stable, where mode II has the largest growth rate among
unstable even modes.

The two families of inviscid modes in supersonic Co
ette flow are similar in origin to the acoustic instabili
modes for supersonic flows with one, two and no bounda
studied by Mack4,8 and the acoustic instability wave mode
of supersonic mixing layers inside a rectangular chan
studied by Tam and Hu.13 The physical mechanism of suc
inviscid acoustic modes can be explained by considerin
wave in a moving reference frame traveling at the wa
speed. The necessary condition for the existence of s
acoustic modes is that there is a region of locally superso
flow relative to the phase speed of the instability wav
Acoustic wave modes are formed by substained wave refl
tions between the walls and the relative sonic line. Compa
with a single family of acoustic modes for the unbound
compressible boundary layers, there are two families
acoustic modes for the bounded Couette flow because t
is one family of modes for each of the upper and lower wa
Figure 5 shows a schematic of the two families of acous
modes in supersonic Couette flow in reference frames m
ing with the waves. Specifically, the odd wave modes
formed by substained acoustic reflections between the lo
wall and the relative sonic line, and the even wave modes
formed by the acoustic reflections between the upper w
and the relative sonic line. In general, these two families
acoustic modes are not symmetric with respect to the ce
line y51/2 because the basic-flow temperature and velo

e

FIG. 5. A schematic of the Mach waves and the two families of acou
wave modes in supersonic Couette flow in reference frames moving a
velocity of the disturbance waves (Re$c% is the wave speed of an acoust
mode!.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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profiles are not symmetric as shown in Fig. 1. Ducket al.
found that, for the case of adiabatic lower wall in the invisc
limit, when 0,Re$c%,1, the odd modes are in gener
stable with finite damping and even modes are unsta
When the upper and lower wall temperatures are the sa
the eigenvalue spectra become symmetric about
Re$c%50.5 line. An eigenvalue spectrum atM`52.0,
Re553104, and a50.1 with isothermal lower wall is
shown in Fig. 6. The figure shows that the correspond
even and odd modes are symmetric with respect to
Re$c%50.5 line.

B. Eigenmode spectra

Using the new global methods, we have obtained
stable modes for supersonic viscous Couette flow at fi
Reynolds numbers. Among the unstable viscous mo
mode II was found to be the dominant instability for com
pressible Couette flow. On the other hand, mode I, wh
was found to be stable in the inviscid solutions by Du
et al., was also found to be unstable at finite Reynolds nu
bers which indicates that viscosity plays a destabilizing ro
Mode I is only slightly unstable for a small range of wav
numbers when Mach number is around 3, but mode I
unstable for a large range of wavenumbers and Mach n
bers. Although very weak higher mode instabilities we
found in the inviscid solutions in Ref. 29, they were n
found in the present viscous computations because of
magnitudes of Reynolds numbers used in the viscous c
putations were limited by the resolution of the numeric
solutions.

Figure 7 shows the phase velocity eigenvalue spect
for the case ofRe553105 and Mach 5 at a small wavenum
ber a50.1. The results shown in this paper are for the c
of adiabatic lower wall except indicated otherwise. The
sults of the two methods are plotted in the same figure
order to identify the spurious modes in the numerical so
tions. Similar to the Mach 2 case, the eigenvalue spectrum
Mach 5 flow consists a ‘‘Y’’ shaped structure located a
region of Re$c% between 0 and 1, and two families of invis
cid acoustic modes located at Re$c%,0 for the even modes
or Re$c%.1 for the odd modes. The wave modes of t

FIG. 6. Eigenvalue spectrum atM`52.0, Re553104, and a50.1 with
isothermal basic-flow lower wall temperature conditions.
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‘‘Y’’ shaped structure are the wave modes corresponding
the compressible extension of viscous modes in the inc
pressible flow. On the other hand, the acoustic modes are
results of acoustic wave reflections in the supersonic rela
flow. The mode numbers of the acoustic modes, which
also located close to the line of Im$c%50, are marked in the
figure. Fora50.1, the wave velocities of the even mod
~modes II, IV, ...! satisfy Re$c%,0, while those of odd
modes~modes I, III, ...! satisfy Re$c%.1. The inviscid limit
of these modes are neutral modes with Im$c%50 as shown
by Ref. 29. Figure 7 shows that all these acoustic modes
viscous flow are stable due to the effects of viscosity. T
figure also shows that the modes are not symmetric w
respect to the line of Re$c%50.5 because the basic-flow ve
locity and temperature are not symmetric about the ce
line.

Figures 8 to 10 show the eigenvalue spectra of Cou
flow with the same Mach number 5 and Reynolds num
Re553105 at larger wavenumbers ofa52.5, 3.5, and 4.8,
respectively. Consistent with the inviscid theory,29 the fig-
ures show that, when wavenumber increases, Re$c% of the
even modes increases while that of the odd modes decre
Figure 8 shows that ata52.5, mode II becomes

FIG. 7. Phase velocity spectrum for compressible Couette flow atM`55,
Re553105, anda50.1 ~upper figure!. A localized region of the spectrum
is shown in the lower figure. The results obtained by both the 4FD and
SC methods are shown for comparison.
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unstable with Re$c%.0, while mode I is stable with finite
damping and Re$c%,1. In addition, asa increases, the
original ‘‘Y’’ structure graduately evolves into a ‘‘H’’ like
structure with two separated~near vertical! branches con-
nected by three~near horizontal! bands near the origina
triple point. These two near vertical branches separated
ther asa increases in Figs. 9 and 10. The eigenvalue sp
trum at a high Reynolds number is shown in Fig. 3, wh
plots the eigenvalue spectrum at Mach 5,a50.1, and
Re553106. The figure shows that as Reynolds numb
increase, the ‘‘Y’’ structure is again split into a two sep
rated branches on both sides of the Re$c%50.5 line similar to
the case of higher wavenumbera at Re553105. The invis-
cid acoustic modes are closer to the neutral stability l
because of this higher Reynolds number.

In addition to converged physical modes, Figs. 8 to
and Fig. 3 also show scattered modes with Im$c% around
20.2 or less. These scattered modes are spurious nume
modes, which will disappear if sufficiently more grid poin
are used in the computations. They can be easily identifie
the figures because they change with different sets of
points. As Reynolds number or wavenumber increas

FIG. 8. Phase velocity spectrum for compressible Couette flow atM`55,
Re553105, anda52.5. The results obtained by the SC method using t
sets of grids are shown for comparison.

FIG. 9. Phase velocity spectrum for compressible Couette flow atM`55,
Re553105, anda53.5.
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more grid points are needed in the computations in orde
resolve the eigenvalues in the neighborhood of the tri
point of the ‘‘Y’’ or ‘‘H’’ shaped structures. This phenom
enon agrees with the conclusion by Reddyet al.33 that this
region of spectra is sensitive to very small errors in the lin
matrix elements. As a consequence, 300 grid points w
used in the computations in order to resolve the eigenva
in that region. On the other hand, the numerical accuracy
the acoustic modes, which are above the triple point reg
is sufficiently accurate using 100 or 200 grid points.

The eigenfunctions of the acoustic modes shown in F
8 are examined by plotting the contours of the pressure
turbances of the acoustic modes given by

Re$p8%5Re$ p̂~y!e~ax2vt !%. ~46!

Figure 11 shows the contours of pressure disturbance
modes II and IV over one spatial period
M`55, Re553105, anda52.5 at a given time. The rela
tive sonic line defined as

M̂5
~u2cr !

AT
M`561 ~47!

is plotted with the mode II wave pattern in the figure. T
eigenfunction contours of these even modes show the c
acteristics of standing wave pattern between upper wall
the relative sonic line as described by the schematic sh
in Fig. 5. These acoustic modes are created by acoustic
flections between the upper wall and the relative sonic li
The standing wave patterns are less obvious for hig
modes because the supersonic region covers most of
range between the two walls. On the other hand, Fig.
shows the eigenfunction contours of modes I and III. T
figure shows the characteristics of standing wave patte
between the lower wall and the relative sonic line. The wa
patterns and the positions of the relative sonic lines do c
firm the theory that the odd modes are acoustic waves
flecting between the relative sonic line and the lower wa
while the even modes are those reflecting between the r
tive sonic line and the upper wall.

FIG. 10. Phase velocity spectrum for compressible Couette flow atM`55,
Re553105, anda54.8.
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C. Effects of viscosity

The effects of viscosity on the stability of superson
Couette flow at both Mach 2 and 5 were investigated
comparing the viscous stability results with the inviscid
sults by Ducket al.29 The focus was on the acoustic mode
and II because they are the most unstable modes in vis
supersonic Couette flow.

Figure 13 shows Re$c% of modes I and II as a function o
a for M`52 atRe5105 and 106. The results of Ducket al.
for these two modes at the inviscid limit are plotted in t
same figure for comparison. The figure shows that the
cous wave speeds are almost the same as the inviscid re
obtained by Ducket al. and are independent of the Reynol
numbers except whena is very small. Viscosity does no
have a strong effect on the speeds of the wave modes.
figure also shows that, asa increases, Re$c% increases for
mode II and decreases for mode I. The two modes cross
lines of Re$c%51 or 0 ata about 3.4. Ata larger than 3.4,
inviscid theory predicts that the two modes are no lon
neutrally stable.

Figure 14 shows Im$c% of modes I and II as a function o
a for M`52 at several Reynolds numbers. In the invisc
limit, mode I becomes stable with finite damping wh

FIG. 11. The contours of the pressure perturbation for the even aco
modes ~upper figure, mode II; lower figure, mode IV! at M`55,
Re553105, and a52.5. Solid and dashed lines represent positive a
negative perturbation levels, respectively.
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Re$c%,1, but mode II becomes unstable when Re$c%.0.
For mode I, the figure shows that atRe5105, the viscous
results are very stable for the whole range ofa. Unlike the
inviscid results, there is an additional peak in the Im$c% dis-
tribution of the viscous results. As the Reynolds number
creases, most part of viscous mode I approaches the inv
limit from below the inviscid result. However, the peak
Im$c% in the viscous curves become more unstable than
inviscid solution. In fact, mode I becomes unstable in t
case ofRe553106 for a near 3.7 at the peak. This figur
and later figures in this paper show clearly that viscos
destabilizes the flow at certain combination of the Reyno
numbers and wavenumbers. Therefore, viscosity plays b
stablizing and destabilizing roles for compressible Coue
flow. As a result, there exists unstable mode I for visco
Couette flow at finite Reynolds numbers even though mod
is always stable or neutrally stable at the inviscid limit f
this case. The figure also shows similar effects of viscos
on mode II as Reynolds numbers increase, even though
trend at large Reynolds numbers is not as clear because
Reynolds numbers used are not large enough due to the
of numerical resolution. Again, there is a peak for the Im$c%
curve of mode II. In the Reynolds numbers used in the c
culations for Mach 2, there is no unstable viscous mode

tic

d

FIG. 12. The contours of the pressure perturbations for the odd aco
modes ~upper figure, mode I; lower figure, mode III! at M`55,
Re553105, and a52.5. Solid and dashed lines represent positive a
negative perturbation levels, respectively.
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As the Reynolds number increases, the figure shows tha
growth rates corresponding to the second peaks increas
a fixed Mach number.

Similar viscosity effects on the stability of compressib
Couette flow were also found at high Mach numbers. Fig

FIG. 13. Re$c% of modes I and II as a function ofa for M`52. The
inviscid results of Ducket al. ~1994! are compared with viscous results
Re5105 andRe5106.

FIG. 14. Im$c% of modes I and II as a function ofa at M`52. The inviscid
results of Ducket al. ~1994! are compared with viscous results at differe
Reynolds numbers~upper figure, mode I; lower figure, mode II!.
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15 shows the real part and the imaginary part of the ph
velocity of mode II as a function of wavenumbera at Mach
5 and three Reynolds numbers. Again, the results of D
et al.29 for inviscid mode II under the same flow conditio
are plotted in the figure for comparison. The figure sho
that viscosity has little effect on the wave speed Re$c%. Ex-
cept at very lowa, the wave speed of mode II is almo
independent of Reynolds numbers and agree very well w
the inviscid results by Ducket al. On the other hand,

FIG. 15. Re$c% and Im$c% of mode II as a function ofa at M`55. The
inviscid results of Ducket al. ~1994! are compared with viscous results a
three Reynolds numbers.

FIG. 16. The Reynolds stress (t5rRe$u8%Re$v8%) profiles for mode II at
M`55 andRe553106.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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there are two peaks in the viscous Im$c% curves for mode II
comparing to one peak in the inviscid solutions. The fi
peak appears in a very narrow range ofa between 2 and 2.5
The second peak appears ata around 3.3 in the figure, and
corresponds to the unstable solutions for the inviscid m
II. As the Reynolds number increases, most part of visc
mode II curves approaches the inviscid limit from belo

FIG. 17. Re$c% of mode I and II as a function ofa at M`55. The inviscid
results~solid lines! of Duck et al. ~1994! are compared with viscous result
~dashed lines! at Re5106.

FIG. 18. Re$c% and Im$c% of mode I as a function ofa at M`55. The
inviscid results of Ducket al. ~1994! shown in solid lines are compared wit
viscous results atRe5105 shown in dashed lines.
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However, at the first peaks of the viscous curves, the fl
become much more unstable than the flow in the invis
limit. It will be shown in the next section along with th
neutral stability contour results that this result is indeed v
cous mode II instability in this small range of wavenumbe
over a range of Reynolds numbers but the overall trend
that the viscous results match with the inviscid results
Reynolds number goes to infinity. In the inviscid limit, Duc
et al.29 showed that the upper family modes, such as mode
change from neutrally stable to unstable when Re$c% goes
from negative to positive. The results of the viscous mod
in Fig. 15 show a similar trend, though the viscosity effe
delay the appearance of the unstable mode II.

The effects of viscosity on the viscous stability of supe
sonic Couette flow are further shown by Fig. 16 which sho
the profile of Reynolds stress defined by

t5rRe$u8%Re$v8%, ~48!

for mode II at M`55 and Re553106 for two a ’s. The
Reynolds stress fora52.2, which corresponds to the firs
peak in the Im$c% distribution due to viscosity effects, i
much larger than that fora53.3, which is close to the sec
ond peak~see Fig. 15!. The figure indicates that viscosit

FIG. 19. Re$c% and Im$c% of mode I as a function ofa at M`55. The
inviscid results of Ducket al. ~1994! shown in solid lines are compared wit
viscous results atRe5106 shown in dashed lines.
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increases the Reynolds stress fora near the first peak and
contributes to the destabilizing effects on the flow.

Figures 17 to 19 show Re$c% and Im$c% of mode I as a
function of a for M`55 at Re5105 and Re5106. Duck
et al.29 have shown that, at Mach 5, mode I breaks into th
branches namedI A , I B , andI C . Consistent with the inviscid

FIG. 20. The contours of frequency and growth rate for mode II as a fu
tion of wavenumbers and Reynolds numbers at~a! M`55, ~b! M`510.

FIG. 21. The contours of frequency and growth rate of mode II at an
tended Reynolds number range and a small wavenumber range near th
peak for the case ofM`55.0.
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results, there are three branches of mode I at Mach 5
finite Reynolds numbers. The figures show that the wa
speed of mode I is no longer independent of the Reyno
numbers. Again, the viscous results approach the invis
results as Reynolds number increases.

D. Neutral stability contours

For practical applications, mode II is the most interesti
mode because it dominates the instability of supersonic C
ette flow. The neutral stability contours have been genera
as functions of Reynolds numbers and wavenumbers.
contours of temporal amplification rates (Im$v%) of mode II,
including the neutral stability curves, at Mach 5 and Mach
along with the constant frequency curves are shown in F
20. In the figure, the neutral stability curves correspond
the lines with Im$v%50. The critical Reynolds numbers ar
approximately 90,000 and 260,000 for Mach 5 and Mach
respectively. Figure 20 shows that as Reynolds number
creases, the range of the wavenumbers corresponding to
unstable region expands. Figures 20 and 15 both indicate
there are two peaks in the Im$v% curves. For the case o
Mach 5, the narrow peak is located ata'2.5 and the wide
peak is located ata'3.5. It is found that the narrow peak a
smallera is due to viscous instability while the wide peak
larger a is due to inviscid instability for acoustic wav
modes. The viscous instability is shown in Fig. 15. The s
ond peak with higha approaches the inviscid solutions a
Reynolds number increases, while the first peak is uniqu
the viscous solutions. Figure 15 shows that as the Reyn
number increases, the first peak increases first. Howeve
the Reynolds number increases further, the amplification
corresponding to the first peak reaches a maximum and
creases afterward, which is a result of viscous instability

The destablizing effect of viscosity on the acoustic mo
II can be demonstrated further by the frequency and gro
rate contours at higher Reynolds numbers. Figure 21 sh
the frequency and growth rate contours for a small range
wavenumbers near the first peak and a longer range of R
nolds numbers~comparing with Fig. 20!. It is clear that at the
first peak, the Im$v%50.002 and Im$v%50.0015 contour
lines form closed curves at finite Reynolds numbers. This

-

-
first

FIG. 22. The distribution of growth rates of mode II as a function of Re
nolds numbers at fixed wavenumbers for the case of Mach 5.
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FIG. 23. The amplitude ofp̂ and û eigenfunctions corresponding to theRe5106 curve in Fig. 15 at different wavenumbers forM`55.0.
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an indication of viscous instability. Figure 22 shows the d
tribution of growth rates as a function of Reynolds numb
of fixed wavenumbers at Mach 5. It also indicates that
low wavenumber peak would vanish and approach the in
cid results as the Reynolds number increases. Again, the
row peak at smallera is due to viscous instability while the
wide peak at largera is due to inviscid instability for acous
tic wave modes. Similar results exist for the case of hig
Mach number atM`510.

The viscous instability for the acoustic mode II for s
personic Couette flow is unexpected. In order to see if
Downloaded 13 Jun 2005 to 164.67.192.121. Redistribution subject to AI
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two peaks indeed correspond to the same mode II, the

plitude of the eigenfunctionsp̂ andû of the mode at various
wavenumbers are plotted in Fig. 23 corresponding to
Re5106 and Mach 5 curve in Fig. 15. It can be seen that
eigenfunctions at differenta ’s are consistent, especially fo

p̂. Along with the fact that the Re$c% curves are smooth, the
consistent eigenfunctions indicate that the two peaks ind
correspond to the same mode II. Figures 8, 9, and 10 s
the mode II in the phase velocity spectra for the case
M`55 andRe553105 for three wavenumbers in Fig. 15
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Three wavenumbers correspond to three cases of differea
in the mode II curve in the first peak, the second peak,
outside of the second peak respectively. The figures s
that at these three wavenumbers, mode II is clearly dist
tive from other modes, which also confirms that they belo
the same mode.

E. Effects of Mach number

For the effects of Mach number on mode II instabilit
Fig. 24 shows the contours of Re$v% and Im$v% for the most
unstable mode II for a range of Mach numbers and wa
numbers while fixing Reynolds number at 53105 and 106.
In both cases, the unstable range fora expands first and then
shrinks as Mach number increases. The figure shows tha
a fixed Reynolds number, there is a Mach number wh
corresponds to the maximum amplification rate for mode
For Reynolds number at 53105 and 106, the most unstable
Mach number is around 8, 10, respectively. Therefore, fo
fixed Reynolds number, as the Mach number increases
flow will become more unstable first and become less
stable. The Mach number corresponding to the maxim
amplification rate increases as the Reynolds number
creases. Again, there are two peaks in the amplification
contours of mode II. The long narrow peaks at smallera are

FIG. 24. The contours of complex frequency for mode II as a function oa
andM` ~upper figure,Re553105; lower figure,Re5106).
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due to viscous instability while the wide peaks at largera are
due to inviscid instability for acoustic wave modes. The fi
ures show that the viscous instability is stronger than
inviscid counterpart.

Figure 25 shows mode II phase velocity and amplific
tion rate atRe553105 as a function ofa for various Mach
numbers. The figure shows that Re$c% of mode II reaches a
finite limit as Mach number increases. For a fixed Reyno
number at Re553105, as Mach number increases, th
maximum Im$v% first increases, reaches a maximum at c
tain Mach number, and then decreases. The Mach num
corresponding to the maximum Im$v% at Re553105 is
about 8. For theRe5106 case, the Mach number is close
10. Notice that this Mach number is around 40 in the invis
limit as shown in Fig. 12 of Ref. 29. Therefore, as Reyno
number increases, the most unstable Mach number for
second mode instability also increases, but has a finite li

Comparing Fig. 13 with Fig. 17, it is observed that mo
I has three branches atM`55, but not atM`52. In addi-
tion, there is a prominent lowa peak in Im$c% at Mach 2
~Fig. 14! but not Mach 5~Fig. 18!. Both the present viscou
results and the inviscid results of Ducket al. show similar
trends. The reason for having three branches of mode
Mach 5 is currently not known. One possible reason is t
the three eigenmodes,I A ,I B ,I C whose Re$c% are close to 1,

FIG. 25. Mode II phase velocity~upper figure! and amplification rate~lower
figure! as a function ofa at different Mach numbers for the case o
Re553105.
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start to interact when their Re$c% ’s get close to each other
As one can see from the inviscid and viscous results sh
in the lower part of Fig. 16, the lowa rangeI A and the high
a rangeI B still resemble the mode I curve at Mach 2 exce
that the curve is ‘‘broken’’ in the middle due to the mod
interactions. The interactions among eigenmodes are no
served at Mach 2. Furthermore, the narrow peak of Im$c% for
mode I is consistent with the narrow unstable region
served atM` from 2.2 to 2.9 atRe5106 as shown in Fig. 29.

F. Three-dimensional wave modes

The effects of oblique wave angle on the stability of t
most unstable mode II were next investigated by conside
three-dimensional oblique disturbance waves with wa
anglec defined by

c5tan21~b/a!. ~49!

Figure 26 shows the complex frequency contours as a fu
tion of wavenumbera and wave anglec at Mach 5 and
Mach 10, respectively. The Reynolds number is 106. The
figure shows that as wave anglec increases for a fixed wave
number a, both Im$v% and Re$v% decreases in genera
Therefore, mode II is most unstable when it is tw

FIG. 26. Contours of frequency and amplification rate for mode II
Re5106 as a function of oblique wave anglec anda for ~a! M`55, ~b!
M`510.
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dimensional. The effects of three dimensionality on the
stability of mode II are similar to that of second mode
supersonic boundary layers.4

Figures 27 and 28 show the phase velocity and amp
cation rate of mode II as a function of wavenumbera for
different wave anglesc at Mach 5 and Mach 10, respec
tively. Again, three-dimensional waves are generally m
stable then two-dimensional waves with an exception sho
in Fig. 27 where there is a small range ofa in which three-
dimensional waves with wave angles around 30° are m
unstable than the two-dimensional waves. This phenome
however, is not observed in the case of Mach 10.

G. Instability of mode I

Duck et al.29 showed that the lower family of modes
such as mode I, are neutrally stable when Re$c%>1 and
become stable with finite damping when Re$c%,1. For vis-
cous stability at finite Reynolds numbers, mode I was fou
to be unstable for a small range of Mach numbers. AtRe
5106, mode I instability is found to exist for a range o
Mach numbers as shown in Fig. 29. The Im$v% contours in
the figure indicate that there is a narrow range Mach numb
and wavenumbers where mode I is unstable at this Reyn
number. As discussed earlier in the paper, this instability
caused by the effects of viscosity. In order to compare mo

t
FIG. 27. Amplification rate and phase velocity of mode II at different o
lique wave angles forRe5106 andM`55.
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I and II instability, Fig. 30 shows the maximum amplificatio
rates over a range of wavenumbers for a range of M
numbers corresponding to mode I and mode II atRe5106.
The symbols are the numerical data while the smooth cu
are the polynomial fit results. The figure shows that mod
instability is much weaker than mode II instability. It on
occurs in a very small range of Mach numbers. The n
smoothness of the curves indicate that when Reynolds n
ber is fixed, the maximum amplification rates for mode I a
II are determined by combined effects of Mach number a
wavenumber. The effects of Reynolds number on the mo
instability are illustrated in Fig. 31 forM`52.9 anda52.5.
The results show that viscosity enhances the instability
mode I in certain range of Reynolds numbers. Figure
shows the effects of wave angle for mode I atM`52.9 and
Re5106 as a function ofa. When the wavenumbera is
fixed, both Im$v% and Re$v% in general increase as wav
anglec increases.

H. Effects of lower-wall cooling

The results presented so far are for the case of adiab
condition at the lower wall and isothermal condition at t
upper wall. The effects of lower-wall cooling on modes I a
II instability for supersonic Couette flow are also inves
gated. Figure 33 shows the maximum Im$v% ~corresponding

FIG. 28. Amplification rate and phase velocity of mode II at different o
lique wave angles forRe5106 andM`510.
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to a range of wavenumbers! of the two-dimensional mode
for M`52.5 andRe5106 as a function of the ratio of the
lower wall temperature and the lower wall recovery tempe
ture given by Eq.~9!. As the temperature of the lower wa
decreases, mode I is first destabilized, then stabilized as
lower wall is further cooled. The effects of wall cooling o
mode II are shown in Fig. 34 forM`55 andRe553105.
Similarly, mode II is first destabilized and then strongly s
bilized asTw decreases. The effects of wall cooling on t
stability of modes I and II are different from those of th
supersonic boundary layers, where Mack4 showed that the
second modes in the boundary layers are destabilized by
cooling. The response of Couette flow modes I and II to w
cooling is different from that of compressible boundary lay
because of the effects of additional upper wall in t
bounded Couette flow.

V. CONCLUSIONS

The characteristics of linear viscous stability of sup
sonic plane Couette flow have been investigated numerica
The effects of viscosity on the stability of modes I and
were studied by comparing the viscous results at finite R

FIG. 29. Amplification rate contours for mode I atRe5106 as a function of
a andM` .

FIG. 30. Maximum Im$v% of modes I and II for different Mach numbers a
Re5106. The symbols are the numerical data. The smooth curves are p
nomial fit results.
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nolds numbers with the inviscid results of Ducket al. In
addition, the effects of compressibility, three-dimensional
and wall cooling on the two wave families were also studi
It was shown that viscosity plays a destabilizing role in bo
mode I and mode II stability for supersonic Couette flow in
range of Reynolds numbers and wavenumbers. Both of th
modes are acoustic modes originated from the wave re
tions in a supersonic region near the upper or lower w

FIG. 31. The effects of Reynolds number on mode I instability atM`52.9
anda52.5.

FIG. 32. Complex frequency of mode I as a function of wave anglec and
wavenumbera at M`52.9 andRe5106: ~a! upper figure, Im$v% vs a at
different oblique wave angles,~b! lower figure: contours of Im$v% and
Re$v%.
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Viscosity stablizes the wave modes in most regions, bu
destabilizes the wave modes in a narrow region of the R
nolds numbers and wavenumbers. Unlike the results at
inviscid limit that mode I is either stable with finite dampin
or neutrally stable, mode I is found to be unstable at fin
Reynolds numbers due to the destabilizing effects of visc
ity. The viscous results for mode II, on the other hand,
the dominant instability and unstable for a large range
Mach numbers and wavenumbers. The results show tha
Reynolds number increases, the wave speeds and ampl
tion rates of modes I and II approach the inviscid limit r
sults. The characteristics of mode II instability have be
investigated in more details by generating their neutral s
bility contours. The critical Reynolds numbers for Mach
and Mach 10 plane Couette flow were found to be arou
90,000 and 260,000, respectively. Mode I and II, in gene
are most unstable when they are two-dimensional. As for
Mach number effects, mode II is destabilized first and th
stabilized as Mach number increases. The range of M
numbers which has mode II instability expands with Re
nolds number but remains finite. When the lower wall te
perature decreases, both mode I and mode II are destabi
first, but they are stabilized asTw decreases further. In gen
eral, the stability of the bounded Couette flow is differe

FIG. 33. The effects of wall-cooling on Im$v% for mode I atM`52.5 and
Re5106.

FIG. 34. The effects of wall-cooling on Im$v% for mode II atM`55 and
Re553105.
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from that of the unbounded supersonic boundary layers
many aspects due to the presence of the upper wall.
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