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A Numerical Study of Low-Reynolds-Number Separation Bubbles 

The present stud;y uses two dimensional numerical 
simulations to study unsteady low-Reynolds-number 
separation bubbles. The numerical study is in two 
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Abstract 

parts: 1) a two dimensional time-accurate Navier- 
Stokes solver is used to simulate flows over the APEX 
airfoil, and 2) a numerical procedure is developed for 
localized simulations of transitional separation bubbles. 
The 2-D computations of flow over the APEX airfoil 
show that the flow is unsteady with periodic vortex 
shedding. A linear stability analysis of the separated 
flow shows that the vortex shedding is caused due to 
the instability of the separated flow. For transonic flows 
over the APEX airfoil the vortex shedding is addition- 
ally influenced by the presence of shocks. The flow-held 
has two characteristic time scales, one corresponding to 
the vortex shedding and another corresponding to the 
movement of the sholcks. The two dimensional (2-D) air- 
foil simulations also showed the presence of nonlinear ef- 
fects in the separated region. To better understand the 
characteristics of separation bubbles a numerical proce- 
dure has been developed for localized separation bubble 
calculations. This procedure is used to perform compu- 
tations for a flat plate separation bubble test case. The 
separation bubble is induced by specifying a velocity 
gradient in the freestream. The growth of disturbances 
in the separation bubble is anal,yzed by introducing dis- 
turbances upstream of the separation bubble. 

IN’FRODUCTION 

Transitional separation bubbles are a characteristic 
of flows over airfoils in the low-Reynolds-number range 
(Re=5 x lo4 to 1 x 106). Aerodynamic characteris- 
tics of airfoils in this flow regirne are of importance in 
a variety of applications ranging from turbine blades 
to sailplanes and high altitude unmanned aerial ve- 
hicles (UAV’s) . [r8’] Hence, low-Reynolds-number flows 
with separation bubbles have been the subject of many 
experimental L3-71 and computational [‘-W studies. Fig- 
ure 1 shows a schematic of the s,tructure of a separation 
bubble. The laminar flow separates due to the adverse 
pressure gradient. The separated boundary layer is un- 
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stable, and there is rapid growth of disturbances. The 
flow consequently becomes turbulent and reattaches. 
The region between the separation point and the reat- 
tachment point is called the separation bubble. 

The strong influence of the separation bubbles on the 
performance of airfoils in low-Reynolds-number flows 
has been shown in many experimental studies. t384171 
The unsteady structure of the separation bubble has 
been investigated in many experimental studies. The 
instability associated with the separated boundary layer 
was confirmed by Leblanc, Blackwelder, and Liebeck. [51 
Their studies showed the presence of a dominant fre- 
quency in the velocity spectra in the separated region. 
The peak frequency was found to match the most am- 
plified frequency calculated from linear stability theory. 
Dovgal, Kozlov, and Michalke L6] studied the transition 
process in the separation bubbles. Their results showed 
the initial instability of the separated flow, the linear 
growth of disturbances and the subsequent nonlinear 
interactions leading to transition. 

Low-Reynolds-number flows have been numeri- 
cally studied using a variety of approaches ranging 
from integral methods [8112] to 2-D and 3-D direct 
simulations. [11,13-161 The 2-D incompressible simula- 
tions of Lin and Pauley [rl] showed the unsteady na- 
ture of the flowfield and the associated vortex shed- 
ding. Our previous incompressible and compressible 
2-D simulations [131141 of flow over the APEX airfoil 
showed the same vortex shedding process. An anal- 
ysis of the numerical results showed that the growth 
of disturbance waves in the separated region leads to 
the vortex shedding. The dominant frequency from the 
numerical simulations is found to agree with the most 
unstable frequency from a linear stability analysis. The 
numerical results also show the presence of nonlinear ef- 
fects in the separated region. Three dimensional effects 
in separation bubbles for flows over a flat plate have 
been studied by Hildings [16] and Rist and Maucher. [15] 
Rist and Maucher introduced various 2-D and 3-D dis- 
turbances into the flowheld to study the nonlinear dis- 
turbance development in the separation bubble. Their 
simulations were able to obtain a turbulent flowfield and 
predicted longitudinal vortices in the reattachment re- 
gion. 

The present work is a continuation of our previous 
unsteady 2-D studies of subsonic and transonic low- 
Reynolds-number flows over the APEX airfoil. [131141 
The APEX airfoil was designed at NASA Dryden for 
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the planned high altitude flight tests 1’1 which will col- 
lect aerodynamic data in the transonic low-Reynolds- 
number regime. In this paper we use 2-D simulations to 
study the unsteady separation bubbles over airfoils and 
flat plates. In the transonic case there is an additional 
frequency associated with the movement of shocks. In 
addition, the presence of shocks leads to large variations 
in the separation location. The 2-D computations over 
the APEX airfoil were performed using a second order 
implicit Gauss-Seidel method. In addition, a numerical 
code is developed for localized computations of the sep- 
aration bubbles using fifth order upwind schemes. 1181 

The code is used to compute a flat plate separation 
bubble test case. 

OBJECTIVES 

The objective of this paper is to numerically study the 
unsteady structure of transitional separation bubbles. 
The numerical approaches are as follows: 
(1) Two-dimensional time-accurate computations using 
laminar Navier-Stokes equations~ for flows over airfoils. 
The 2-D simulations can capture the large scale un- 
steady structure of the separation bubbles. The flows 
are calculated for a range of Reynolds-numbers and 
Mach-numbers (subsonic and transonic). The calcula- 
tions are used for a parametric study of the separation 
bubbles. 
(2) The stability of the separated boundary layer is an- 
alyzed using a linear stability analysis and the results 
compared with the numerical results. 
(3) The growth of disturbances in the separation bub- 
bles is studied in greater detail by considering a flat 
plate test case. A separation bubble is formed by speci- 
fying a velocity gradient in the freestream. The growth 
of disturbances in the separation bubble is studied nu- 
merically. 

NUMERICAL METHODS 

Two Dimensional Computations Over Airfoils 

Governing Equations 

The mass, momentum and energy conservation equa- 
tions for compressible flows in two dimensions are as 
follows : 

where 

P 

u= “,; 

I 1 e 

(1) 

! PU 

F= p2+P+u11 
puv + Cl2 

(3) 
u(e + P + 91) + m2v + 41 1 

r PV 1 
G= 

I 

P'ILV +a21 

PJ2+p+a22 
(4 

v(e +p+ ~22)+ ~2121+ q2 

where cij represents the shear stresses and 41, q2 are 
the heat conduction fluxes. The equation of state is as 
follows: 

p = (y - 1) 
[ 
e - kp (u2 + w”) 1 

Numerical Method 

In the computations the equations are transformed 
from the Cartesian coordinates(x,y,t) into the curvilin- 
ear computational coordinates(t,g,r). The computa- 
tions are performed on a C-grid (for airfoil computa- 
tions). The grids are generated using an elliptic grid 
generator. An implicit second order finite volume line 
Gauss-Seidel iteration method [I71 is used for the com- 
putations. The inviscid terms are computed using the 
flux splitting method and central differencing is used 
for the viscous terms. The computation involves calcu- 
lations which are implicit in the 77 (normal) direction, 
while the [ (streamwise) direction terms are computed 
by a line Gauss-Seidel iteration with alternating sweeps 
in the backward and forward E directions. The compu- 
tations are first order accurate in time, with the time 
step being small enough to resolve the time dependence 
of the solution. For laminar-turbulent calculations the 
turbulence model is used after the transition location. 
The transition location is determined using the transi- 
tion model. 

Localized Separation Bubble Calculations 

Governing Equations 

The governing equations are the unsteady three- 
dimensional Navier-Stokes equations: 

where 

(6) 

u = {P, mr PUZ, PUN, el (7) 

(8) 

I 
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Fuj = 

P = pRT (10) 
e = p(‘%T + $k%rC) (11) 

expression for the fifth order explicit upwind scheme is 
as follows: 

(9) 

Tij = -P (2’::) +2P/3zdij (12) 

dT 
qj = -karj (13) 

In the numerical simulations, the governing equation 
(6) are transformed into the computational domain (t, 
7, c, 7) as follows 

i au -- aE’ I dF’ I aG’ 

J ar + at a7 aC 

(14) 

where 

E, = J-55, + F2J:y + F3Ez 

J (15) 

.F,l% + F,2qy + Fv377, 
F’, = - 

.J~ (19) 

G’, = 
F,dz + Fc2Cy + Fv3Cz 

J 
(20) 

where J is the Jacobian of the coordinate transforma- 
tion, and EZ, &,, I=, G, qy, Q, qt, L, Cyj and t are the 
grid transformation metrics. 

The governing equations are discretized in the uni- 
form computational space. In the equations, the trans- 
formed inviscid fluxes E’, F’, ,and G’ are standard flux 
terms with known eigenvalues and eigenvectors. The 
transport flux terms EL, F,’ , and GL contain first-order 
spatial derivatives of velocity and temperature. These 
derivatives in the Cartesian coordinates (z, y, z) are 
transformed into the computational coordinates (<, q,[) 
using a chain rule for spatial discretization. 

Numerical Method 

The governing equation (14) is discretized in the com- 
putational domain (E, 7, C, 7) using the method of lines. 
The equations are discretized in space using high-order 
finite difference methods. 11’1 The inviscid and viscous 
flux terms are discretized using different methods: cen- 
tral difference schemes for the viscous flux terms and up- 
wind schemes for the inviscid ,Rux terms. The detailed 

u; = j$ 2 ai+k Ui+k 

’ k=-3 

Q h5 -- 

6! bi 

where 

aif = &l+&! 
as2 = 79-& 

aill = &45$ $Q! 
ai = o-$(Y bi = 60 

These 7-3-l-O schemes are fifth-order upwind scheme 
when Q < 0, and they are sixth-order central scheme 
when Q = 0. 

For the inviscid flux vector in the governing equa- 
tion (14), the flux Jacobians contains both positive and 
negative eigenvalues in general. A simple local Lax- 
Friedrichs scheme is used to split the inviscid flux vec- 
tors into positive and negative wave fields. For example, 
the flux term E’ in Eq. (14) is split as follows: 

where 

E’= Ei,+Ei_ (22) 

E; = i(E’ + XV) (23) 

E[_ = ;(E’- XV) (24 

(25) 

where X is chosen to be larger than the local maximum 
eigenvalues of E’: 

A= y (&Ej7P+c) 

where 

u’ = 5zU+ty~+5zw+& 
IW 

(26) 

(27) 

The parameter E is a small positive constant added for 
the smoothness of the splitting. The flux Ei, and EL 
contain only positive and negative eigenvalues respec- 
tively. Therefore, in the spatial discretization of Eq. 
(14), the flux derivatives are split into two terms 

aE’ aE; + aEi_ -=- - 
at at at 

where the first term on the right hand side is discretized 
by an upwind high-order finite-difference method and 
the second term is discretized by a downwind high-order 
finite-difference method. 
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For the compressible Navier-Stokes equations (14) in 
a conservation-law form, the second-order derivatives do 
not appear explicitly in the equations. Instead, they ap- 
pear as first-order derivatives in the transport flux vec- 
tors in Eq. (9). For such equations, the transport terms 
can be discretized by applying central finite-difference 
operators for the first derivative twice. 118] The approx- 
imation of the first-order derivative for computing the 
viscous terms is done using a sixth order central explicit 
scheme (o = 0 in equation 21). 

The spatial discretization of the governing equations 
leads to a system of first-order ordinary differential 
equations for the flow variables. The equations are 
solved using a third order low-storage Runge-Kutta 
scheme. 11’1 

Numerical Procedure 

The mean flow for the localized simulations is ob- 
tained by prescribing inlet and freestream conditions 
from the 2-D simulations, and the time averaged 2-D 
mean flow as the initial conditions. For the flat plate 
separation bubble test case the initial condition is set 
to the boundary layer solution. The separation bub- 
ble is obtained by prescribing a velocity gradient in the 
freestream. For the unsteady calculations the distur- 
bances are introduced upstream of the separation bub- 
ble and allowed to grow spatially through the domain. 
The disturbance is introduced in two ways: 1) the un- 
steady disturbance flow conditions are specified at the 
inlet based on eigenfunctions obtained through a linear 
stability analysis, and 2) a blowing and suction strip 
upstream of the separation bubble. For the flat plate 
separation bubble test case method (1) is used. No slip 
boundary conditions are used at the wall. Nonreflective 
boundary conditions are used in the freestream and at 
the exit. 

RESULTS~ 

The 2-D Navier-Stokes solver was validated by com- 
puting flow over the Eppler 387 airfoil. Ii3] The solver 
is then used to compute unsteady subsonic and tran- 
sonic low-Reynolds-number flowsover the APEX airfoil. 
The subsonic calculations showed the unsteady nature 
of the flow, with periodic vortex shedding. 113~141 The 
transonic computations show a similar vortex shedding 
process, with additional effects due to the presence of 
shocks. To better understand the characteristics of sep- 
aration bubbles a flat plate test case is calculated. The 
separation bubble is induced by specifying a velocity 
gradient in the freestream. A steady separation bubble 
is obtained. The unsteady characteristics are studied 
by introducing disturbances upstream of the separation 
bubble. The details of the numerical results are pre- 
sented below. 

2-D Simulations Over the APEX Airfoil 

Two-dimensional Navier-Stokes simulations are used 
to study laminar flows over the APEX airfoil. The cal- 
culations are performed for Mach numbers of 0.5 and 
0.65, a range of Reynolds-numbers from 200 to 200,000, 
and a range of angles of attack from 0” to 4’. The re- 
sults of the study are presented below. 

Effects of Reynolds-Number Variation 

The effects of Reynolds-number variation are studied 
by computing flows at a Mach number of 0.5, an an- 
gle of attack of 4’, and Reynolds-numbers of 200, 1000, 
20000, and 200000. A section of the 434 x 75 grid used 
for the computations is shown in Fig. 2. The compu- 
tations show that for the Re = 200 case the solution is 
steady with no separation. The streamlines for this case 
(Fig. 3) show that the flow remains attached. Figure 4 
shows the streamlines for the Re = 1000 case. The fig- 
ure shows that the flow separates on the upper surface 
of the airfoil. However, the solution is steady. When the 
Reynolds-number is further increased the separated flow 
becomes unsteady (for Re=20000 and Re=200000). In 
addition periodic vortex shedding is observed. This vor- 
tex shedding process is visualized in Fig. 5 using flow- 
field streamline plots in sequence, corresponding to one 

time period. Hence, the nature of the separated flow 
strongly depends on the Reynolds-number. 

Effects of Mach Number Variation 

The effects of Mach number variation are studied by 
performing calculations for subsonic (M = 0.5) and 
transonic (M = 0.65) Mach numbers. The Reynolds- 
number is set at 2 x lo5 and the angle of attack at 4’. 
The unsteady computations are carried out till a peri- 
odic state is reached. 

The computations show that the flow is unsteady, 
with vortex shedding. The vortex shedding process for 
the subsonic case-is visualized in Fig. 5 using flowfield 
streamline plots in sequence, corresponding to one time 
period. The frequency and wavenumber corresponding 
to the most unstable disturbance wave are compared 
with the dominant frequency and wavenumber from the 
numerical results in Table 1. The frequency (WR) and 
wavenumber are nondimensionalized as Q* = IYC, 
w;L = WR&. The numerical results show good agree- 
ment with the linear stability results. Detailed results 
for this case are given in our earlier paper. [I41 

The transonic computations over the APEX airfoil 
were performed for the following flow conditions: Re, 
= 2 x 105, Q = 4’, and Mm = 0.65. Two grid sizes 
of 602 x 150 and 802 x 150 were used for the compu- 
tations. A section of the 802 x 150 grid (over 8 pro- 
cessors) used for the computations is shown in Fig. 6. 
The results show the presence of vortex shedding as in 
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the subsonic case. This is illustrated in Fig. 7 which 
shows the unsteady variation of flowfield pressure con- 
tours calculated using the 602 ZX: 150 grid. The large scale 
features were found to be grid independent as seen in 
Fig. 8, which shows the unsteady variation of flowfield 
pressure contours from the fine grid results. In addition 
to the vortex shedding, the movement of shocks on the 
upper surface can be seen. The unsteady nature of the 
flowfield can also been seen frlom the unsteady surface 
pressure variations 21s shown in Fig. 9. The movement of 
the shock leads to a much larger variation in the separa- 
tion location than in the subsonic case. Also, in this case 
there are two dominant frequencies, one corresponding 
to the vortex shedding and another corresponding to 
the shock movement. The dominant frequencies from 
the computations are grid independent as shown in Ta- 
ble 2. 

Effects of Angle of Attack Variation 

The numerical simulations were done for angles of 
attack of O”, 2’, and 4’ for at flow at M = 0.65 and 
Re = 200000. Numerical results from all the cases show 
vortex shedding and unsteady shock movement. Figure 
10 shows instantaneous pressure contours for the o=O’ 
case. The figure shows that th’ere is separation on both 
the top and bottom surface of the airfoil. On the top 
surface the presence of shocks can also be seen. As 
the angle of attack is increased the extent of separation 
on the lower surface is reduced as seen from Figs. 11 
and 12 which show the instantaneous pressure contours 
for (~=2’ and CY=~’ cases resplectively. In addition, the 
numerical simulations also show that the range of shock 
movement increases as the angle of attack is increased. 

Flat Plate Calculations 

Validation Case 

The high order scheme is validated by computing a 
flat plate boundary layer flow. The test case considered 
is at a Mach number of 0.5 and the inlet Reynolds- 
number based on the boundary layer thickness (Res = 
v) is 750. Th e 1 8-O x 111 grid used for the computa- 
tions is shown in Fig. 13. The disturbance flow values, 
corresponding to the most unstable mode, are obtained 
from a linear stability analysis and specified at the in- 
let. The disturbance quantities are obtained as follows: 

q(y) = Re(!7(y)emiwt) (29) 
where q = (u’, v’, T’,p’), and i are the corresponding 
eigenfunctions obtained from a linear stability analysis. 
The disturbance frequency is w. For the test case chosen 
the nondimensional frequency w* (=&) is 0.048. The 
flow is allowed to develop spatially through the domain. 
The numerical results obtained are compared with re- 
sults from a spatial linear stability analysis. Figures 14 

and 15 show the comparison of disturbance horizontal 
velocity eigenfunction at two locations on the flat plate. 
The results from the numerical simulations are in agree- 
ment with the linear stability results. The disturbance 
normal velocity eigenfunctions are also in good agree- 
ment as seen in Figs. 16 and 17. 

Separation Bubble Case 

The validated high order code is used to compute sep- 
aration bubbles over a flat plate. The freestream Mach 
number is 0.5 and the inlet Reynolds-number based 
on the boundary layer thickness (Rea = y) is 750. 
The length of the domain is 480&,l,t and the height is 
100&d&. A velocity gradient ($$ ) is specified from 
150&l& to 2106,-&t as follows: 

where 

&L 
- = -0.16875 

(s - l)W, 
aX x2-21. ' 

(30) 

s= 
2z-(x1+22) 

x2-21 ' 
(31) 

where x1 = x, + 150&,l,t, 22 = x, + 210dii,l,t and x, 
is the x-coordinate of the inlet location. This gradient 
induces a separation bubble on the flat plate. Figure 
18 shows the streamlines for the mean flow. The sepa- 
ration bubble can be seen. Fig. 19 shows the variation 
of velocity in the separated region. The presence of an 
inflection point can be seen. The mean flow is used for 
unsteady calculations in which the disturbance eigen- 
functions corresponding to the most unstable boundary 
layer mode are specified at the inlet. The disturbance 
is allowed to grow spatially through the domain. The 
calculations for this case are in progress. 

SUMMARY 

Unsteady low-Reynolds-number separation bubbles 
have been studied using 2-D time-accurate simulations. 
A parametric study was conducted for flow over the 
APEX airfoil. The 2-D computations of flow over the 
APEX airfoil show the unsteady periodic vortex shed- 
ding associated with the separation bubbles. The nu- 
merical results are found to agree with a linear stability 
analysis of the separated boundary layer. In the tran- 
sonic case there are additional effects associated with 
the presence of shocks. There is periodic movement of 
the shocks leading to a corresponding movement in the 
separation location. A numerical procedure has been 
developed for localized simulations of separation bub- 
bles. A flat plate separation bubble case is simulated 
using this procedure. The separation bubble is formed 
by prescribing a velocity gradient in the freestream. 
Disturbances are introduced upstream of the separa- 
tion bubble. Future work will be focused on nonlinear 
and 3-D interactions of disturbances. In addition, the 
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numerical procedure used for the flat plate separation 
bubble simulations will be used for localized simulations 
of flow over airfoils. 
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Linear hstabiity Interaction of 
Nonlinear Disturbances 

Figure 1: Structure of the separation bubble for low- 
Reynolds-number flows. A schematic detailing the 
growth of disturbances in varimous regions of the sepa- 

Figure 2: A section of the 434 x 75 grid used for calcula- 

ration bubble. 
tions of flow over the APEX airfoil. 

LST Numerical Solution % Error 
a!* 62.51 66.32 6 
w;l 31.39 28.7 8.5 

Table 1:Comparison of numerical results with the linear 

stability theory (LST). w;i = Writ is the nondimensional 

frequency and Q* = LYC is the nondimensional wavenum- 

ber. Flow over the APEX airfoil at Mm = 0.5, Rem = 

2x lo5 and ==4O. 

Figure 3: Flowfield streamline contours showing fully 
unseparated flow over the APEX airfoil for M = 0.5, a = 

Coarse Grid Fine Grid % difference 4O I and Re = 200. Flow is steady in this case. 

fs 100.3 Hz 104.6 Hz 4 
fv 778.7 Hz 806.5 Hz 3.5 

Table 2:Comparison of shock movement frequency and 

the vortex shedding frequency from computations of dif- 

ferent grid sizes. fs is shock movement frequency and fv 

is the vortex shedding frequenc:y. Flow over the APEX 

airfoil at M, = 0.65, Re, = 2 x lo5 and (Y = 4O. 

Figure 4: Flowfield streamline contours showing sepa- 
rated flow over the APEX airfoil for M = 0.5, cy = 4’ , 
and Re = 1000. The separated flow is steady in this case. 
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Figure 5: Flowfield streamline plots (a)-(‘) I in sequence, corresponding 

(9 

to one time period, showing the vortex _ - shedding process. Flow over the APEX airfoil at Mm = 0.5, Re, = 2 x 105, and a = 4O Computations using a 410 x 75 
grid. 

Figure 6: A section of the 802 x 150 grid (distributed over 8 processors) used for the computations over the APEX 
airfoil. 
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Figure 7: Unsteady variation of flow-field pressure contours for transonic flow over the APEX airfoil at Mm = 0.65, 
Re, = 2 x 105, and e = 4’. Computations using a 602 x 150 grid. The movement of the shocks on the upper surface 
of the airfoil can be seen. 
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Figure 8: Unsteady variation of flow-held pressure contours, (a)-(‘) 1 in sequence in time for transonic flow over the 
APEX airfoil at Mm = 0.65, Re,, = 2 x lo’, and (Y = 4O. Computations using a 802 x 150 grid. The fine grid results 
also show the complex shock movement and vortex shedding process. The large scale structures are found to be grid 
independent. 
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l??gr 9: Unsteady variation of surface pressure, (a!-( ) i in sequence in time for transonic flow over the APEX airfoil 
m = 0.65, Re, = 2 x 105, and cy = 4’. Computations using a 802 x 150 grid. 
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Figure 10: Instantaneous pressure contours showing the 
shocks and vortex shedding. Flow over the APEX airfoil Figure 13: The 180 x 111 grid used for the flat plate 
at Mm = 0.65, Re, = 2 x 105, and cy = O” Computations boundary layer test case. 
using a 802 x 150 grid over eight processors. 

Figure 11: Instantaneous pressure contours showing the 
shocks and vortex shedding. Flow over the APEX airfoil 
at Mm = 0.65, Re, = 2 x lo’, and o = 2’ Computations 
using a 802 x 150 grid over eight processors. 

Figure 12: Instantaneous pressure contours showing the 
shocks and vortex shedding. Flow over the APEX airfoil 
at Mm = 0.65, Re, + 2 x 105, and LY = 4’ Computations 
using a 802 x 150 grid over eight processors. 

l Numerical Simulation 
- Linear Stabdity 

Figure 14: Comparison of numerical simulation and lin- 
ear stability results for disturbance-u eigenfunction. 

l Numerical Simulation 

- Linear Stability 

Figure 15: Comparison of numerical simulation and lin- 
ear stability results for disturbance-u eigenfunction. 
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l Numerical Simulahon 
- Linear Slabillry 

Figure 16: Comparison of numerical simulation and lin- 
ear stability results for disturbance-v eigenfunction. 

. Numerical Simulation 
- LIDear Slabddy 

Figure 17: Comparison of numerical simulation and lin- 
ear stability results for disturbance-v eigenfunction. 

Figure 19: Variation of horizontal velocity at a station in 
the separated region. Mean flow for flat plate separation 
bubble test case. 

Figure 18: Mean flow streamlines showing the separa- 
tion bubble over a flat plate. The separation bubble is 
induced using a velocity gradient in the freestream. 
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