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High-Order Semi-Implicit Schemes for Unsteady
Compressible Flow Simulations
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Direct numerical simulation of stability and transition of compressible boundary layers requires high-order-
accurate and computationally efficient numerical methods to resolve a wide range of time- and length scales
associated with wave fields in the boundary layers. Explicit methods have been used mainly in such simulations to
advance the compressible Navier-Stokes equations in time. However, the small wall-normal grid sizes for viscous
flow simulations impose a severe stability restriction on the allowable time steps in simulations using the explicit
method. This requires implicit treatment to our numerical method. Although fully implicit methods are often used
in steady-flow calculations to remove the stability restriction on time steps, they are seldom used in transient flow
simulations because the time steps used in time-accurate calculations are often not large enough to offset high
computational cost of using fully implicit methods. A high-order-accurate semi-implicit scheme is presented for
the direct numerical simulation of the stability and transition of compressible wall-bounded flows. The efficiency
and accuracy of the semi-implicit scheme are evaluated by applying the method to transient flow simulations of
several supersonic and hypersonic wall-bounded flow stability problems.

Introduction

HE numerical methods presented in this paper are motivated

by our research of direct numerical simulation of stability and
transition of compressible boundary layer. In recent years direct
numerical simulation (DNS) has become a powerful tool in the
study of fundamental flow physics of the stability and transition of
compressible boundary layers.! ~® In such requiring high order both
in space and in time-accurate simulations, the unsteady Navier-
Stokes equations are computed, without using any empirical model,
to resolve all time- and length scales associated with wave fields in
the boundary layers.

The DNS studies of the stability and transition of compressible
boundary layers over flat plates have been carried out by many re-
searchers using various methods. Kleiser and Zang' had reviewed
the status of numerical simulations and methods for the DNS of
compressible boundary layers and used compact scheme in spatial
discretization. Erlebacher and Hussaini® used the explicit Fourier-
Chebyshev collocation method to do numerical experiments in
supersonic boundary-layer stability. Fasel et al.> implemented the
explicit fourth-order finite difference method in DNS of oblique
breakdown transition in supersonic boundary layers. Eibler and
Bestek* used a modified explicit MacCormack predictor-corrector
scheme of second-order accuracy in time and fourth-order spatial
discretizationto do spatial numerical simulations of nonlinear tran-
sition phenomena in supersonic boundary layers. Adams® did nu-
merical simulation of transitionin a compressible flat-plate bound-
ary layer by using an explicit spectralffinite difference scheme. In
Guo et al.’s® numerical simulations of supersonic boundary-layer
transition, the explicit Runge-Kutta scheme in time and the high-
order compact scheme in space were used. Generally, in these simu-
lations high-order finite difference methods or spectral methods are
used to discretize the governing conservation equations in space.
The resulting semi-discrete systems of equations are then advanced
in time using explicittime-steppingschemes, such as the third-order
Runge-Kutta schemes.

Received 22 November 2000; revision received 1 November 2001; ac-
cepted for publication 20 November 2001. Copyright © 2002 by the Ameri-
can Institute of Aeronautics and Astronautics, Inc. All rightsreserved. Copies
of this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923;include the code 0001-1452/02
$10.00 in correspondence with the CCC.

*Ph.D. Student, Mechanical and Aerospace Engineering Department;
haibo @seas.ucla.edu. Student Member AIAA.

 Associate Professor, Mechanical and Aerospace Engineering Depart-
ment; xiaolin@seas.ucla.edu. Associate Fellow ATAA.

869

Although most of the previous DNS work for compressible flow
used explicit methods, simulations using explicit schemes for vis-
cous flow simulation are not computationally efficient because the
grid sizes in the wall-normal direction are much smaller than those
in the streamwise direction for viscous flow simulations. The small
wall-normal grid sizes impose severe stability restriction on the al-
lowable time steps in simulations using explicit schemes, where the
time steps required by the stability requirement in the calculations
are much smaller than those needed by accuracy consideration so
that it is difficult to perform the simulation in reasonable computa-
tion time. As a result, DNS of compressible boundary layers are an
order of magnitude more computationally expensive than their in-
compressiblesimulations. The removal of the restrictionon the time
steps for explicit schemes requires implicit treatment in numerical
computations. However, fully implicit methods, which advance all
derivativesin time usingimplicittime-steppingschemes, are seldom
used for transientflows because the time steps used in unsteady flow
calculationsare often not large enough to offset high computational
cost of using implicit methods because of the accuracy requirement
in computing the development of transient instability waves in the
streamwise direction. Therefore, the appropriate method that can
meet the requirement for both computational efficiency and numer-
ical accuracyin the DNS studiesis the semi-implicit method, which
only treats the derivatives in the wall-normal direction implicitly.
The idea of the semi-implicitmethod is not new; it has been a com-
mon method for DNS of incompressibleturbulence, which typically
treated viscous parts of the equations implicitly, or simulations of
chemical reaction, which treated the stiff term implicitly and used
second-order fractional step in time discretization.

This paper presents a high-order semi-implicit scheme for the
DNS of the stability and transition of compressible wall-bounded
flows. The unsteady compressible Navier-Stokes equations are dis-
cretized in space using high-order finite difference schemes. The
spatial discretization terms of the governing equations are sepa-
rated into stiff terms, involving derivatives along the wall-normal
direction only, and nonstiff terms for the rest of the equations. The
split equations are advanced in time using semi-implicit tempo-
ral schemes, which lead to efficient computations of block seven-
diagonal systems of implicitequations. In this papera set of second-
and third-order semi-implicit Runge-Kutta schemes’ are used for
the robust and accurate temporal discretization of stiff equationsfor
the DNS of unsteady compressible flows. For the direct numerical
simulation of hypersonic boundary layers behind bow shocks over
blunt bodies, a high-order shock-fitting numerical scheme devel-
oped by Zhong® is used to treat the presence of shock waves. The
efficiency and temporal accuracy of the semi-implicit scheme are
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evaluated by applying the method to several transient flow simula-
tions of compressible boundary-layerstability.

Governing Equations

The governing equations are the unsteady three-dimensional
Navier-Stokes equations written in a conservation-law form:
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The details for the expressions just listed can be found in Ref. 8.
The viscosity and heatconductivitycoefficients are computed by the
Sutherland law and the assumption of a constant Prandtl number.
Perfect gas assumptionis used in all flows considered in this paper.

For numerical simulations of flowfields over a curved body sur-
face, structuredbody-fitted grids are used to transformthe governing
equations (1) in the Cartesian coordinates into a set of curvilinear
three-dimensionalcoordinates (&, n, ¢, 7) along the body-fitted grid
lines. The transformationrelations for the two set of coordinatesare
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The governing equations (1) are transformed as follows:
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where J is the Jacobian of the coordinate transformationand &,, &,,
&, Ny Nys N2 N &y, &y, and & are the grid transformation matrices.
In the equations the transformed inviscid fluxes E’, F', and G’ are
standard flux terms with known eigenvalues and eigenvectors. The
transport flux terms E/, F,, and G| contain both first-order and
second-orderspatial derivatives of velocity and temperature. These
derivatives in the Cartesian coordinates (x, y, z) are transformed
into the computational coordinates (£, n, ¢) using a chain rule for
spatial discretization.

High-Order Semi-Implicit Method

InDNS of compressibleboundary-layerflow, the governingequa-
tions are often solved by using the method of lines that the govern-
ing equations (9) are first discretized in space by a high-order finite
difference method. The spatial discretization leads to a system of
split ordinary differential equations, which can be solved by a semi-
implicit time-stepping method.

In semi-implicitmethods the spatial discretizationof the Navier-
Stokes equations is split into the stiff terms involving spatial
derivatives normal to the wall and the rest of the flux terms.
The split ordinary differential equation is then integrated in time
using semi-implicit Runge-Kutta schemes derived by Zhong’
or second-order AB-CN (Adams-Bashford and Crank-Nicolson)
semi-implicitmethod. The resulting semi-implicitmethodsfor com-
putations of the Navier-Stokes equations are high-order accurate
in both space and time and are much more efficient than explicit
schemes because only the stiff terms in the equations are treated im-
plicitly. For simplicity, only two-dimensional formulas of the high-
order semi-implicitmethod are presented in the following sections.
The extension to three-dimensionalequations is straightforward.

Splitting of Governing Equations

The stiffness of viscous flow simulations is mainly a result
of terms associated with derivatives in the wall-normal direction
[8()/dn and 3%()/dn*] because of grid stretching near the wall.
Therefore, Eq. (9) for a two-dimensional flow in (§, 1, ) is addi-
tively split into relatively nonstiff part f(U;;) and stiff part g(U;;)
as follows:
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where i and j are the grid indices in the £ and n direction, respec-
tively. The transport flux vector in n direction F, is splitinto F),,
the part of the viscous flux terms only involving normal derivatives,
and F),, the part of the viscous flux terms except F,,, that is,

vl?
F,=F, +F), (19)
Specifically, F, can be derived from Eq. (14) as
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where k = 1, 2. The transportterms, 7;; and ¢; given by Egs. (6) and
(7), can be transformed into (&, n) coordinates using the chain rule.
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The F,, terms can then be obtained from Eq. (20) by picking out
the n derlvatlve terms. Then 0 F/, /97 in Eq. (18) can be obtained as
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where high-order finite difference methods are used to discretize
both ()/dn and 3%()/dn?* terms.

In Eq. (16), g(U;;) is much stiffer than f(U;;) because grid spac-
ing in the wall-normal direction is much smaller than that used in
streamwise direction for most viscous flow simulations. Therefore,
the high-order semi-implicit method is used to overcome the stiff-
ness of g(U;;) while maintaining high-order temporal accuracy.
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Spatial Discretization

The split governing equation (16) is first approximated by high-
order-accurate finite difference methods. For the case of DNS of
compressibleboundarylayers with a bow shock, the shock wave can
be treated by a shock-fitting method becausethereis no discontinuity
intheinteriorof the computationaldomain. In this papera fifth-order
upwind scheme® is used to discretize the inviscid flux derivatives.
Meanwhile, high-ordercentral differenceschemes, suchas the sixth-
order central scheme, are used to discretize the viscous flux terms
in the equations.

For the inviscid flux vectors in the Egs. (17) and (18), the flux
Jacobians contain both positiveand negative eigenvaluesin general.
A local Lax-Friedrichs scheme is used to split the inviscid flux
vectorsinto positiveand negative wave fields. As discussedin Ref. 8,
the Lax-Friedrichs scheme is dissipative for a low-order scheme,
but for a high-order scheme it performs very well. As a result, the
flux term F’ in Eq. (18) can be split into two terms of pure positive
and negative eigenvalues as follows:

F' =F, +F (22)
where
F. = 3(F +21U) (23)
F = 1(F —U) (24)

where A is chosen to be larger than the local maximum eigenvalues
of F":

r = (Vi |[Vieor Tut + ¢ (25)

where

u = Nt +nyv+n.w+ 1, (26)
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and the parametere is a small positiveconstantadded for the smooth-

ness of the splitting. The fluxes F and F” contain only positive

and negative eigenvalues, respectively. Therefore, in the spatial dis-

cretization of Eq. (17), the flux derivatives are split into two terms:
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where the first term on the right-hand side is discretized by an up-
wind high-order finite difference method and the second term is
discretizedby a downwind high-orderfinite difference method. The
fifth-order upwind explicit scheme® for the derivative of a variable

¢ is
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a;= ——a This scheme is a fifth-order upwmd scheme when a<0
(a = —2) The schemereducesto a sixth-ordercentral scheme when
o =0. Meanwhile, the corresponding sixth-order central explicit
inner scheme for the second-order spatial derivative in the viscous
term is
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The spatial discretization of the split Eq. (16) using these high-
order schemes coupled with appropriate boundary conditions leads
to a system of ordinary differential equations in the form of

& Lfw]+ g w] (30)

where u={U;; fori=1,...IL, j=1,...JL} is the vector of all
discretized variables in the flowfield; [f(?, u)] represents the dis-
cretized nonstiff term; and [g(?, u)] represents the discretized stiff
term.

Semi-Implicit Time-Stepping Schemes

The system of ordinary differential equations of Eq. (30) can
be integrated in time using semi-implicit temporal schemes, where
[f(t,u)] is treated explicitly and [g(?, u)] is treated implicitly.
Second-order AB-CN semi-implicit method and semi-implicit
Runge-Kutta schemes derived by Zhong’ and Yoh and Zhong® are
used in this paper.

The AB-CN method is

Wt =uw'+ (h)BfW) - f@ )]
+ (h/2)[g@™) +g@" "] (31)

where £ is the size of the time step. The AB-CN method is sim-
ple, but it is only second-order accurate. It was shown by Zhong’
that in order to have a third- or higher-order temporal accuracy the
semi-implicit method needs to be derived in a way that the effects
of coupling between the implicit and explicit terms on the accuracy
need to be considered. Zhong’ subsequently derived three kinds of
third-ordersemi-implicit Runge-Kutta schemes for high-ordertem-
poral integration of the governing equations for reacting flow simu-
lations. High-order,low-storage semi-implicitRunge-Kutta method
versions(LSSIRK) have alsobeenderivedin Ref. 9. In particular,the
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Rosenbrock-typeRunge-Kutta (LSSIRK-rC) method can be written
as follows:

U—heJ;_+¢ik;_)lk; =h[f(u;_,) +g;_,
+éik; D+ a;ll —hep ;i +cik;_)lk; -
up=u;_ +bjk; (32)

where j=1,...,r and parameters c;, ¢;, b; can be found in
Ref. 9. For instance, in LSSIRK-3C, by=1%, b,=32, by=3,
a, = —i, a = —%, ¢ =2.26760, ¢, =2.68530, c;=2.30975,
¢, =—1.14310, and ¢; = —2.03122. The parameters of the semi-
implicit Runge-Kutta methods are chosen by both stability and ac-
curacy requirements with the simultaneous coupling between the
explicit and implicit terms. In this paper, except for the AB-CN
method, there are three kinds of semi-implicit Runge-Kutta meth-
ods to be used to advance the spatial discretizationof Navier-Stokes
equations in time. They are the first-order semi-implicit Runge-
Kutta scheme (ASIRK-1C); the second-order, low-storage semi-
implicit Runge-Kutta scheme (LSSIRK-2C); and the third-order,
low-storage semi-implicit Runge-Kutta scheme (LSSIRK-3C).

In applying the semi-implicit method to Navier-Stokes
equation (30), the global Jacobian matrix comes from the implicit
method and can be defined by J(u) = dg/du. The components of
the Jacobian J(u) are derived by considering the variation of g(U;;)
in Eq. (16):
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where D/Dn is the fifth-order finite difference approximation of
the derivativesin the wall-normal directionand F, F! are inviscid
fluxes given by Eq. (27). The variations for these inviscid fluxes are
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and those for the viscous flux are

a2 d
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where the matrices M, A,, B,, and C, are given in the Appendix.
Substituting Egs. (34) and (35) into Eq. (33), where the derivatives
are approximated by the fifth-order upwind scheme and sixth-order
central scheme described in Eqs. (28) and (29), leads to

6g(Uij) = A;;8U;; 5 + B;;8U;; 5 + C; U5 + DU
+Eij8Uij+l +Fij8Uij+2 +G”8Ul,+3 (36)

where the coefficient matrices are given in the Appendix.

The final global Jacobian matrix for the system of ordinary differ-
ential equations, Eq. (30), is a block seven-diagonal matrix involv-
ing terms along the j grid direction only. This block seven-diagonal
system of equations can be solved efficiently by a banded matrix
solver.

Boundary Conditions

The physical boundary conditions for viscous flows are nonslip
conditions for velocity and isothermal or adiabatic condition for
temperature. The freestreamflow conditionsare specified by a given
flow. The disturbances such as planar acoustic waves imposed into
the flow are specified according to their own particular physical
nature.

For numerical simulationsit is necessary to set numerical bound-
ary conditions for some flow variables in addition to the physical
boundary conditions. This is especially the case at the computa-
tional boundary of the exit and inlet. There have been many in-
vestigations on the issues of numerical boundary conditions for
the direct numerical simulations of compressible as well as in-
compressible boundary layers. Examples of the work include the
following: Orszag et al.'” presented a sponge layer with absorb-
ing boundary conditions in the study of problems involving wave
propagation, Streett and Macaraeg'' proposed a buffer domain in

the outflow boundary for unsteady transition-to-turbuleace simu-
lations, Poinsot and Lele!? discussed characteristic-based bound-
ary conditions for direct simulation of compressible viscous flows,
and Guo et al.® compared the results obtained by using the preced-
ing differentboundary conditionsin the simulation of compressible
boundary-layertransition. Collis and Lele!® studied the problem of
compressiblesweptleading-edgereceptivityby usinginflow sponge
and outflow sponge boundary conditions.

Becausethe emphasisof currentpaperis the semi-implicitmethod
for efficient and accurate time integration of the governing equa-
tions, we will mainly consider flows either with periodic boundary
conditions or with a supersonic exit where the reflection of distur-
bances are negligible. Boundary conditions on the wall are included
in the global Jacobian matrix to ensure that it is a global implicit
equation and advanced in time. For example, to include the lower
wall boundary conditions, by imposing the fourth-order boundary
conditions U;; can be written as

SU., = v LAARYRAY SU.
" \av ) \evi, J\ou ) 77
U\ (avi\(av
— | (= )=) su
+(av)_ (am)(w). :
il i3
NEANEIATEIA
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where V and 9V /U can be found in Appendix and (3V;/
0Vi)(j =2,...,5) arethe coefficients of the correspondingbound-
ary conditions applied to the lower wall.

Numerical Results

To test the usefulness and accuracy of the new algorithm, the new
high-order semi-implicit schemes with a high-order shock-fitting
algorithm for hypersonic flow over a blunt body have been exten-
sively validated and evaluated. The shock-fitting procedure can be
turned off if there is no shock in the flowfield. The main issue of
the evaluationis the temporal accuracy of the implicit-explicitsplit-
ting in the high-order simulations and the efficiency of the semi-
implicitschemes compared to explicitschemes for transient viscous
flow simulations. In the following sections stability of supersonic
Couette flow is simulated by using the new high-ordersemi-implicit
method to test the accuracy and efficiency of the new method. Sub-
sequently, stability of supersonic boundary layer is studied. Finally,
two-dimensional hypersonicboundary-layerflow over a bluntbody
is validated.

Stability of Two-Dimensional Supersonic Couette Flow

The new high-order semi-implicit scheme is applied to the sim-
ulation of the two-dimensional compressible Navier-Stokes prob-
lem of temporal stability of supersonic Couette flow. Compressible
Couette flow is a wall-bounded parallel shear flow whose steady
mean flow can be obtained accurately by a shooting method. Be-
cause the mean flow is parallel, the temporal linear stability analysis
on the full Navier-Stokes equations can be obtained when distur-
bance is weak.® Therefore, we can test the semi-implicit method in
computing both steady and unsteady two-dimensional supersonic
Couette flow by comparing the numerical solutions with exact tran-
sient solutions obtained from the analysis based on linear stability
theory (LST).

Steady Flow Solutions

We first use the high-order semi-implicit codes for unsteady
Navier-Stokes equations to compute the steady solutions of the
supersonic Couette flow. The results are compared with the “exact”
solutions obtained by a shooting method. Several cases with differ-
ent Mach numbers, Reynolds numbers, and wall temperature have
been tested. The results of only one of the cases are shown in this
paper. The flow conditions are M,, =2 and the upper wall is an
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Table1 Numerical errors for computations of supersonic
Couette flow using fifth-order semi-implicit scheme
(eg=llell; and e; = lell,)

Grid e; x 107° Ratio ey x 1070 Ratio
50 6.9913 —_— 14114 —_—
100 0.2315 30.2 0.034 41.5
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Fig. 1 Dimensionless temperature and velocity profiles for a Mach 2
Couette flow.

isothermal wall with T, =220.66667 K, whereas the lower wall is
an adiabatic wall. The gas is assumed to be perfect gas with y = 1.4
and Pr =0.72. The viscosity coefficient is calculated by Suther-
land’s law. To calculate the steady flow of supersonic Couette flow,
the semi-implicit method ASIRK-1C is simplified to the fully im-
plicit method because the mean flow is parallel in the horizontal
direction. At this time, because the temporal accuracy is not our
important concern, very large At is used in the ASIRK-1C method
with a Courant-Friedrichs-Lewy (CFL) number 10°.

Figure 1 shows the steady nondimensional velocity and tempera-
ture profiles obtained by using the semi-implicit fifth-order upwind
scheme with 100 uniform grid points. Velocity is nondimensional-
ized by the velocity at the upper wall, and temperature is nondimen-
sionalized by T,,. The numerical results agree well with the exact
solutions. The accuracy of the numerical simulations is evaluated
by grid-refinement studies using several sets of uniform grids. The
quantitative numerical errors of the simulations using two kinds of
uniform grids are listed in Table 1. The table shows that the nu-
merical errors for this fifth-order semi-implicit scheme in spatial
discretization are of the order of 10~° using 50 grid points and
2.315 x 1077 using 100 grid points in a wall-normal direction. The
theoretical ratio of the errors between the coarse grids and the fine
grids is 32 for a fifth-order scheme. The results in Table 1 show that
the numerical algorithms are able to maintain high-order accuracy
in spatial discretization.

Unsteady Flow Solutions

Three different kinds of semi-implicit schemes, ASIRK-1C,
LSSIRK-2C, and LSSIRK-3C, are subsequently tested by doing
numerical simulations for the temporal stability of the same steady
two-dimensional compressible Couette flow. The temporal stability
problems are concerned with the growth or decay of some super-
imposed spatially periodic disturbances on the steady Couette flow
solutions. The small initial disturbances, which are periodic in the
x direction, are in the form of eigenfunctions obtained from linear
stability analysis:

q'(x,y,t) = q(y)expli(ax — wt)] (38)

where « (real number) is a given wave number and complex fre-
quency w and eigenfunctiong (y) are both obtained by the stability
analysis; ¢’ (x, y,t) is the disturbance of any flow variable. The
disturbances will grow or decay exponentially if the sign of the
imaginary part of w is positive or negative, respectively.

In the numerical simulationsthe developmentsof these initial dis-
turbances in the two-dimensional flowfield are computed using the

full Navier-Stokes equations. The initial conditions are the steady
flow solutions plus disturbances given by a set of eigenfunctions
obtained by linear stability analysis'* as follows:

u(x,y, t =0) =it + eRe{i(y) expli(ax — wt)]} (39)

where € is the magnitude of the disturbance.

The unsteady flowfield is solved by computing the unsteady
Navier-Stokes equations using differentkinds of implicit temporal
discretizations. The same stretched grids are used in the y direction
as those used in the linear stability theory calculations. The com-
putational domain in the simulation is one period in length in the x
direction,and periodicboundary conditionsare used. The numerical
accuracy of the semi-implicit schemes is evaluated using analytical
solutions obtained from the linear stability analysis.!*

The initial disturbance of the test case is chosen to be a sta-
ble mode according to the linear stability theory. The flow con-
ditions are M,, =2 and Re,, = 10°. The initial disturbance wave
has a dimensionless wave number of o =3, which is nondimen-
sionalized by the distance between two plates, and the eigen-
value obtained from the temporal linear stability analysis is
o=, + w;i =5.52034015848— 0.132786378788&, where a neg-
ative w; means that the disturbanceswill decay in time with a dimen-
sionlessfrequency w, . The magnitude of the disturbancese is 0.002.
Figure 2 shows the contour of the real part of the eigenfunciton of
p’ in the flowfield obtained by linear stability analysis. To evaluate
the temporal accuracy and efficiency of the semi-implicit schemes
for unstable flow simulations, the unsteady two-dimensional su-
personic Couette flow is computed by using four kinds of time-
stepping methods, which are first-orderexplicittemporal discretiza-
tion, ASIRK-1C, LSSIRK-2C, and LSSIRK-3C, respectively. The
spatial scheme is the same fifth-order scheme describedin Eq. (28).
In the simulation a set of 52 x 101 stretching grids is used. The ex-
plicit and semi-implicit methods use different time steps according
to the stability restriction. The actual values of CFL number used in
the simulations are given in Table 2.

Figure 3 shows the comparison of the numerical results using
the LSSIRK-2C method and the linear stability theory predictions
for the time history of velocity perturbations perturbations, respec-
tively, at a fixed point in the two-dimensional supersonic Couette

Table 2 Efficiency comparison for the simulations
of temporal stability of supersonic Couette flow
(M =2.0,Re=10°, run to 4.22837 x 10~ 3 5)

Parameter Explicit Semi-implicit

or scheme method method Ratio
CFL number 0.0043 0.33 —_—
Ax/Ay 202.95 202.95 —_—
Numer of time steps 226,116 3,000 75.372

CPU time consumed, s
Explicit 60,456.63 —_—
ASIRK-1C —_— 3,518.96 17.1802
LSSIRK-2C —_— 7,144.83 8.4616
LSSIRK-3C —_— 11,541.26 5.2383
1.0

0.6

0.4

0.2 =

1.0 1.5
X

Fig.2 Wave patterns of Re{p'} with w =5.520340158— 0.132786378i.
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Fig.3 Comparisons of velocity perturbation time history and distribu-
tions in the y direction (LST: dug, dvg, dpy, 6To; DNS: du, dv, dp, 6T).

flowfield and the comparison of the distribution of instantaneous
flow perturbationsin the y direction after about six wave periods.
The results show that the two-dimensionalnumerical simulations of
the Navier-Stokes equations for the stability of supersonic Couette
flow by using semi-implicitmethod agree well with the results from
linear stability theory.

The amplitudes of the disturbance waves decay as a function
of time in this case. For sufficiently low-amplitude waves, linear
stability analysis shows that the perturbation kinetic energy of the
solutions is

1
FO= / / S +v?) dedy = Ege (40)

where Ej is the perturbation energy at # = 0. Figure 4 displays the
time history of ta[E(¢)/E] for the computed perturbation energy
and the analytical value of the linear stability analysis in one wave
period, which is equal to 2w; . Different grid numbers in the y direc-
tion are used to study the required grids by accuracy requirement.
The numerical results using 100 grid points in the y direction agree
well with the linear stability results. However, the numerical errors
are accumulated along the time when fewer grids, 20 and 30 grids,
are used in the y direction.

To evaluate the temporal accuracy of the semi-implicit schemes
at differentorders, Fig. 5 shows the relative errors for the solutions
in the y direction for four kinds of numerical methods at the end
of two wave periods. Each method uses different size of time step
At according to the stability restriction of each individual method.
Consequently, the explicitmethod uses smaller At in every time step
because of stability constraint and is not efficient in computational
time. On the other hand, much larger Ar can be used for semi-
implicit methods so that the computational time can be reduced.
However, it is necessary to ensure that temporal accuracy is not
reduced because of the lager Atz. Figure 5 shows that the explicit
method has small errors even for the first-order explicit temporal
discretization. The errors for the explicit scheme are mainly caused
by those from the spatial discretization while very small At is used.
The semi-implicit method, on the other hand, loses some accuracy

o LST results

100 grids in y direction
— — — 30 grids in y direction
20 grids in y direction

~ ! I ! I I I
0'%.0 0.2 0.4 0.6 0.8 1.0 12

Fig.4 Computed perturbation energy using different grid numbers in
the y direction.

Full Explicit Method
ASIRK-1C
LSSIRK-2C
LSSIRK-3C

1.5

.
o

o
n

Relative Errors (x10%)

ogl

Fig. 5 Comparisons of relative errors among different numerical
methods.

when first-order temporal discretizationis used because a larger At
isusedinevery time step. As the temporal orders of the semi-implicit
methodsincreasedto secondand third order, the relative errors of the
semi-implicit methods were close to those of explicit method; even
the time step was much larger. This is because the relative errors for
the second-orderand third-order semi-implicit methods are mainly
caused by the numerical errors from the spatial discretization. The
temporal accuracy are ensured for both second-orderand third-order
semi-implicit methods using large At with CFL number 0.33.

Table 2 compares the computational efficiency using the explicit
method and the semi-implicitmethods by simulating the flow about
two wave periods and records the real CPU time consumed by each
method. Table 2 shows that the time-stepratio of the explicitmethod
and the semi-implicit methods is about 75.4. Therefore, though it
takes more CPU time to advance the semi-implicit method per time
step, the overall CPU time is much smaller than that used by the
explicitmethod. Specifically, the explicit method requires about 8.5
and 5.2 times more CPU time than the second-orderand third-order
semi-implicitmethods, respectively, to do the same simulation with
the same accuracy. Therefore, the overall computational efficiency
is improved while the temporal accuracy of transient flow simu-
lation is maintained by using second-order and third-order semi-
implicit methods. Considering the computation accuracy and effi-
ciency together, the second-order semi-implicit method is the pre-
ferred method in this paper.

Stability of Two-Dimensional Supersonic Boundary Layers

Compared with the supersonic Couette flow, the supersonic
boundary layeris a test case that is closer to practical wall-bounded
high-speed viscous flow. The fifth-order semi-implicit schemes
for unsteady Navier-Stokes equations are applied to simulate the
temporal stability of supersonic flat-plate boundary layer. In this
test case the semi-implicit method contains both explicit and im-
plicit treatment in the x and y directions, respectively. The initial
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conditions are the steady boundary-layerflow solutions plus distur-
bances given by a set of eigenfunctions obtained by linear stability
analysis. The flow conditions are M., =4.5 and Reynolds number
Re = 10° (based on the boundary-layer thickness).

The computation uses 42 x 141 grids covering a section of the
boundary layer. The grids are stretched in the y direction in order
to resolve the high shear layer in the boundary layer. Based on
the results of the accuracy assessment in simulating stability of
supersonic Couette flow, the LSSIRK-2C semi-implicit method is
used as the time-stepping method. The grid has an aspect ratio of
Ax/Ay=169.2857.

Again, the numerical methods are first tested in steady mean flow
computations. Figure 6 displays the mean flow of numerical re-
sults compared with the exact solutions obtained by solving the
boundary-layerequations using a shooting method with several or-
ders of magnitude smaller errors. The numerical results agree well
with the exact solutions.

The unsteady flow simulations are carried out by choosing
the initial disturbance wave number o =0.22, which is nondi-
mensionalized by boundary-layer thickness 6. The eigenvalue
obtained from the temporal linear stability analysis is w =w, +
;1 =25.77363556598+0.2497128329918i. The disturbancesare
amplified with time because of a positive w;. In the temporal sim-
ulations of the growth of the initial disturbances in the boundary
layer, the periodic boundary condition is used for the disturbances
in the x direction. The magnitude € of the disturbances is 0.004.
The numerical results are compared with results from linear stabil-
ity analysis.

Figure 7 shows the comparison of the DNS results and the LST
predictions for the time history of velocity perturbations at a fixed
point in the two-dimensional supersonic flat-plate boundary layer.
The DNS results and the LST predictions agree very well. Similar
to the test case of supersonic Couette flow, comparisons of the time
history of fa[E(¢)/E] for the computed perturbation energy by

1.0

o  Exact Solution
Numerical Result

Fig. 6 Comparisons of velocity profiles of flat-plate boundary-layer
flow.

0.006

0.0055

Disturbance values
o
(=]
o
o

o
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o
w

—0.00% . : :

Fig.7 Comparisons of velocity perturbation time history (LST: duy,
dvy; DNS: du, dv).

Table 3 Efficiency comparison for the simulations of temporal
stability of supersonic flat-plate boundary layer
(M =4.5,run t0 1.074 X 103 5)

Explicit LSSIRK-2C
Parameter method method Ratio
CFL number 0.00284 0.18 —_—
Ax/Ay 169.2857 169.2857 —_—
Number of time steps 126,702 2,000 63.351
CPU time, s 39,809.77 6,184.35 6.437
0.4r fo) LSTresults
140 grids in y direction
— — — 50 grids in y direction P
—--—— 25 grids in y direction e

I 1 I L L 1

0.0 0.1 0.2 0.3 0.4 0.5 ‘ 0.6

Fig.8 Computed perturbation energy using different grid numbers in
the y direction.

using different grid numbers in the y direction are shown in Fig. 8.
The numerical results obtained by using 140 grids in the y direction
agree well with the linear stability results. When fewer grids such
as 50 and 25 grids are used in the y direction, the numerical errors
are accumulated along the time.

The efficiency of the semi-implicit method is evaluated, and the
results are shown in Table 3. Compared with the CFL number
0.00284 used by the explicit method, a larger CFL number 0.18
can be used by the semi-implicit method. The ratio of CPU time
required by the explicitmethod and the semi-implicit method to ad-
vance the simulations about two wave periods is about 6.4. There-
fore, the overall computationalefficiency can be improved by using
a semi-implicit method.

Receptivity of Hypersonic Flow over a Parabola

The lasttestis the numerical simulation of the receptivityof a two-
dimensionalboundarylayerto weak freestreamacousticdisturbance
waves for hypersonic flow past a parabolic leading edge at zero
angle of attack. The same problemis studied in details using explicit
method by Zhong in Ref. 8. In this paper the same flow conditions
and boundary conditions as those in Ref. 8 are used to evaluate
the numerical efficiency and accuracy of the new high-order semi-
implicit method.

In the receptivity simulation the unsteady motions of the bow
shock caused by freestream disturbances are treated by a shock-
fitting method as a computational boundary. The steady flowfield
is first obtained by computing the flow without freestream waves.
The unsteady simulation is then carried out by superimposing a
freestream disturbances on the steady mean flow solutions. The
subsequentdevelopmentof disturbance waves in the boundary layer
with the effects of the bow-shockinteractionis simulatedby comput-
ing the full Navier-Stokes equations. The freestream disturbances
are assumed to be weak monochromatic planar acoustic waves with
wave front normal to the center line of the body. The perturbations
of flow variable introduced by the freestream acoustic wave before
reaching the bow shock can be written in the following form:

(', v, p', p'Yoo = {11, V'], 1P/, 10" }oo expli (kx — wit)] (41)

where ||, [u'|, | p'|, and | p'| are dimensionless perturbation ampli-
tudes satisfying [u'|, =€, |V |0 =0, |p'leo =y M€, and |p']| =
M€, where € is a small number representing the freestream wave
magnitude. The parameter w is the freestream circular frequency.
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The corresponding dimensionless frequency F is defined as F =
oV /U2 =w/Re,,.

The specific two-dimensional test case is a Mach 15 flow over
a two-dimensional parabolic body, which surface is given by
x*=b*y*? —d*, where b* is a given constant and d* taken as the
reference length. The body surface is assumed to be a nonslip wall
with an isothermal wall temperature 7). The specific flow condi-
tions are M, =15, =5 x 1074, T* =192.989 K, p’ =10.3 Pa,
Tr=1000 K, y =14, R*=286.94 Nm/kgK, Pr=0.72, b*=
40m',d*=0.1m, T* = 288K, T* =110.33 K, u* =0.17894 x
10~* kg/ms, and Re,, = p* UXd*/u*, = 6026.55.

The steady flow solutions of the Navier-Stokes equations for the
viscous hypersonic flow over the parabola are first obtained by us-
ing second-order AB-CN semi-implicit temporal discretization in-
stead of LSSIRK-2C temporal discretization because the AB-CN
method is easier to program for the problem with shock-fitting
method and has fewer computation steps than the LSSIRK-2C.
Meanwhile, AB-CN has second-order temporal accuracy, which is
the same as the LSSIRK-2C method. LSSIRK-3C is used for third-
order temporal discretization.In this paper only the results using the
AB-CN method are presented. On the other hand, fifth-order spatial
discretization is implemented, and the solutions are advanced to a
steady state without freestream perturbations. The calculations are
carried out by using a set of 160 x 120 grids. The use of the semi-
implicit method makes it possibleto use a larger time step measured
by the larger CFL number used in the simulations. In steady flow
simulation the CFL number used by the semi-implicit method is
0.15 depending on Ax. This is much larger than the CFL number
0.0049 used by the explicit simulations.

Having obtained the steady solutions, the unsteady simulations
are carried out for the generationof boundary-layerinstability waves
by introducing freestream planar acoustic disturbances wave with
a dimensionless frequency F x 107° =2655. The numerical solu-
tions are obtained by using a high-order semi-implicit method with
a set of 160 x 120 grids. To maintain the temporal accuracy in un-
steady simulations, the CFL number is used as 0.14 based on Ax
compared with CFL number 0.0047 used by the explicit method.
The unsteady computationsare run for more than 29 periodsin time
to ensure that periodic solutions have been reached for the entire
flowfield. Efficiency and accuracy of the new semi-implicit method
are studied for this unsteady receptivity problem.

Figure 9 shows the contours for the instantaneous perturbation u’
of the velocity in the x direction after the flowfield has reached a
periodic state and the amplitude |u'| of the disturbances.The instan-
taneous contours of u’ show the development of instability waves
in the boundary layer on the surface. The first region of x <0.2
dominated by the first mode instability and the second region of
x > 0.2 dominated by the second mode instability are numerically
obtained by using the semi-implicit method. The characteristics of
the switching of instability modes from region 1 to region 2, the
decay of the first mode and the growth of the second mode with the
sudden phase angle change near the body surface around x = 0.2,
which have been discussed in Ref. 8 by using the high-order ex-
plicit method, are obtained, too. The accuracy of the unsteady so-
lutions obtained by using the new semi-implicit method with much
larger CFL number is assessed by comparison with the explicit
solutions.

Figure 10 compares the distribution of instantaneous entropy
perturbations along the parabola surface. The results show a
very good agreement between results of the semi-implicit method
and those of the explicit method. Table 4 shows the real con-
sumed CPU time comparison between the explicit method and the

Table4 Efficiency comparison for the simulations of the receptivity
of hypersonic flow over a parabola (M., =15, run to 1.0091 X 10~ 3 s)

Parameter Explicit method AB-CN method Ratio
CFL number 0.0047 0.14 e
Grid 160 x 120 160 x 120 —_—
Ax /Ay 245.82 245.82 —_—
Number of time steps 446,811 15,000 29.787
CPU time, s 213,037.47 24,437.55 8.718

Level u

0.00298
0.00182
0.00066
-0.00050
-0.00166
-0.00283
-0.00399

- N WP~

Level |u'l

0.00302
0.00261
0.00219
0.00177
0.00136
0.00094
0.00052
0.00010
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Fig.9 Instantaneousu’ (top)and the Fourier amplitude |z’ | contours
(bottom).
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Fig. 10 Comparisons of computed entropy perturbations s’ (top) and
the Fourier amplitude |s' | (bottom).
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second-order AB-CN semi-implicit method. The real consumed
CPU time is recorded by running the code about 10 wave pe-
riods. The computation results show that the new schemes im-
prove the computational efficiency by nearly one order of mag-
nitude compared with the explicit method. In this case the mag-
nitude of the maximum time step used in numerical calculation
is limited by the stability conditions related to the grid size in
the streamwise direction only. The results demonstrate that stiff-
ness of fine grids in the direction across the boundary layers has
been removed by the semi-implicit method while the temporal ac-
curacy of the unsteady simulations has been maintained. Accu-
racy and efficiency are well approached for the simulations of un-
steady compressible flows by using the high-order semi-implicit
method.
Conclusions

An efficient and high-order-accurate semi-implicit method has
been presented in this paper for the DNS of unsteady compressible
flows based on the unsteady Navier-Stokes equations. The method
uses semi-implicit treatment to overcome the stiffness of viscous
wall-normal derivative terms, whereas the streamwise terms are
computed by the explicit method for efficient unsteady flow calcu-
lations. The efficiency and accuracy of the method has been tested
in several cases of steady and unsteady two-dimensional compress-
ible flow. The main focus of the evaluation is on the efficiency
and the accuracy of the semi-implicit methods for transient flow
simulations when a large CFL number is used to reduce the compu-
tational time. The results of all of the test cases show that by using
the semi-implicit method the computational efficiency can be im-
provednearly by one order of magnitude while the high accuracy of
the explicit method is maintained. Meanwhile, the CFL numbers in
the semi-implicit computationsare limited only by streamwise grid
sizes and the accuracy requirement for unsteady flow computations.
The results have demonstrated the advantage in efficiency by using
the high-order semi-implicit time-stepping methods in the DNS of
unsteady compressible flows.

Appendix: Jacobian Matrices and Coefficient Matrices

The detailed Jacobian matrices for the viscous flux vector in
Eq. (35) for semi-implicit schemes are
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where the coefficients in the matrices of A,, B,, and C, are
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The detailed coefficient matrices in Eq. (36) are
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where a}, a}, b}, and @} (I=1,...,7) are the coefficients of high-

order finite difference schemes given by Eqs. (28) and (29). The
superscripts 1, 2, and 3 represent the coefficients for the upwind,
downwind, and central scheme, respectively.
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