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High-Order Semi-Implicit Schemes for Unsteady
Compressible Flow Simulations
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Direct numerical simulation of stability and transition of compressible boundary layers requires high-order-
accurate and computationally ef� cient numerical methods to resolve a wide range of time- and length scales
associated with wave � elds in the boundary layers. Explicit methods have been used mainly in such simulations to
advance the compressible Navier–Stokes equations in time. However, the small wall-normal grid sizes for viscous
� ow simulations impose a severe stability restriction on the allowable time steps in simulations using the explicit
method. This requires implicit treatment to our numerical method. Although fully implicit methods are often used
in steady-� ow calculations to remove the stability restriction on time steps, they are seldom used in transient � ow
simulations because the time steps used in time-accurate calculations are often not large enough to offset high
computational cost of using fully implicit methods. A high-order-accurate semi-implicit scheme is presented for
the direct numerical simulation of the stability and transition of compressible wall-bounded � ows. The ef� ciency
and accuracy of the semi-implicit scheme are evaluated by applying the method to transient � ow simulations of
several supersonic and hypersonic wall-bounded � ow stability problems.

Introduction

T HE numerical methods presented in this paper are motivated
by our research of direct numerical simulation of stability and

transition of compressible boundary layer. In recent years direct
numerical simulation (DNS) has become a powerful tool in the
study of fundamental � ow physics of the stability and transition of
compressibleboundary layers.1¡6 In such requiring high order both
in space and in time-accurate simulations, the unsteady Navier–
Stokes equationsare computed,without using any empirical model,
to resolve all time- and length scales associated with wave � elds in
the boundary layers.

The DNS studies of the stability and transition of compressible
boundary layers over � at plates have been carried out by many re-
searchers using various methods. Kleiser and Zang1 had reviewed
the status of numerical simulations and methods for the DNS of
compressible boundary layers and used compact scheme in spatial
discretization.Erlebacher and Hussaini2 used the explicit Fourier–
Chebyshev collocation method to do numerical experiments in
supersonic boundary-layer stability. Fasel et al.3 implemented the
explicit fourth-order � nite difference method in DNS of oblique
breakdown transition in supersonic boundary layers. Eibler and
Bestek4 used a modi� ed explicit MacCormack predictor-corrector
scheme of second-order accuracy in time and fourth-order spatial
discretizationto do spatial numerical simulations of nonlinear tran-
sition phenomena in supersonic boundary layers. Adams5 did nu-
merical simulation of transition in a compressible � at-plate bound-
ary layer by using an explicit spectral/� nite difference scheme. In
Guo et al.’s6 numerical simulations of supersonic boundary-layer
transition, the explicit Runge–Kutta scheme in time and the high-
order compact scheme in spacewere used.Generally, in these simu-
lations high-order � nite differencemethods or spectralmethods are
used to discretize the governing conservation equations in space.
The resulting semi-discrete systems of equations are then advanced
in time using explicit time-steppingschemes, such as the third-order
Runge–Kutta schemes.
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Although most of the previous DNS work for compressible � ow
used explicit methods, simulations using explicit schemes for vis-
cous � ow simulation are not computationally ef� cient because the
grid sizes in the wall-normal direction are much smaller than those
in the streamwise direction for viscous � ow simulations.The small
wall-normal grid sizes impose severe stability restriction on the al-
lowable time steps in simulationsusing explicit schemes, where the
time steps required by the stability requirement in the calculations
are much smaller than those needed by accuracy consideration so
that it is dif� cult to perform the simulation in reasonable computa-
tion time. As a result, DNS of compressible boundary layers are an
order of magnitude more computationally expensive than their in-
compressiblesimulations.The removalof the restrictionon the time
steps for explicit schemes requires implicit treatment in numerical
computations. However, fully implicit methods, which advance all
derivativesin time usingimplicit time-steppingschemes,are seldom
used for transient� ows becausethe time stepsused in unsteady� ow
calculationsare often not large enough to offset high computational
cost of using implicit methods becauseof the accuracy requirement
in computing the development of transient instability waves in the
streamwise direction. Therefore, the appropriate method that can
meet the requirement for both computationalef� ciency and numer-
ical accuracy in the DNS studies is the semi-implicitmethod, which
only treats the derivatives in the wall-normal direction implicitly.
The idea of the semi-implicitmethod is not new; it has been a com-
mon method for DNS of incompressibleturbulence,which typically
treated viscous parts of the equations implicitly, or simulations of
chemical reaction, which treated the stiff term implicitly and used
second-order fractional step in time discretization.

This paper presents a high-order semi-implicit scheme for the
DNS of the stability and transition of compressible wall-bounded
� ows. The unsteadycompressibleNavier–Stokes equations are dis-
cretized in space using high-order � nite difference schemes. The
spatial discretization terms of the governing equations are sepa-
rated into stiff terms, involving derivatives along the wall-normal
direction only, and nonstiff terms for the rest of the equations. The
split equations are advanced in time using semi-implicit tempo-
ral schemes, which lead to ef� cient computations of block seven-
diagonal systemsof implicit equations. In this paper a set of second-
and third-order semi-implicit Runge–Kutta schemes7 are used for
the robust and accurate temporal discretizationof stiff equationsfor
the DNS of unsteady compressible � ows. For the direct numerical
simulation of hypersonic boundary layers behind bow shocks over
blunt bodies, a high-order shock-� tting numerical scheme devel-
oped by Zhong8 is used to treat the presence of shock waves. The
ef� ciency and temporal accuracy of the semi-implicit scheme are
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evaluated by applying the method to several transient � ow simula-
tions of compressible boundary-layerstability.

Governing Equations
The governing equations are the unsteady three-dimensional

Navier–Stokes equations written in a conservation-lawform:
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The details for the expressions just listed can be found in Ref. 8.
The viscosityand heatconductivitycoef� cients are computedby the
Sutherland law and the assumption of a constant Prandtl number.
Perfect gas assumption is used in all � ows considered in this paper.

For numerical simulations of � ow� elds over a curved body sur-
face, structuredbody-� ttedgridsareused to transformthegoverning
equations (1) in the Cartesian coordinates into a set of curvilinear
three-dimensionalcoordinates(» , ´, ³ , ¿ ) along the body-� tted grid
lines. The transformationrelations for the two set of coordinatesare
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The governing equations (1) are transformed as follows:
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where

E 0 D .F1»x C F2»y C F3»z C U»t /=J (10)

F 0 D .F1´x C F2´y C F3´z C U´t /=J (11)

G 0 D .F1³x C F2³y C F3³z C U³t /=J (12)
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where J is the Jacobianof the coordinate transformationand »x , »y ,
»z, ´x , ´y , ´z , ´t , ³x , ³y , and ³z are the grid transformationmatrices.
In the equations the transformed inviscid � uxes E 0, F 0, and G 0 are
standard � ux terms with known eigenvalues and eigenvectors.The
transport � ux terms E 0

v , F 0
v , and G 0

v contain both � rst-order and
second-orderspatial derivatives of velocity and temperature.These
derivatives in the Cartesian coordinates .x; y; z/ are transformed
into the computational coordinates .»; ´; ³ / using a chain rule for
spatial discretization.

High-Order Semi-Implicit Method
InDNS of compressibleboundary-layer� ow, thegoverningequa-

tions are often solved by using the method of lines that the govern-
ing equations (9) are � rst discretized in space by a high-order � nite
difference method. The spatial discretization leads to a system of
split ordinarydifferentialequations,which can be solved by a semi-
implicit time-stepping method.

In semi-implicitmethods the spatial discretizationof the Navier–
Stokes equations is split into the stiff terms involving spatial
derivatives normal to the wall and the rest of the � ux terms.
The split ordinary differential equation is then integrated in time
using semi-implicit Runge–Kutta schemes derived by Zhong7

or second-order AB-CN (Adams–Bashford and Crank–Nicolson)
semi-implicitmethod.The resultingsemi-implicitmethodsfor com-
putations of the Navier–Stokes equations are high-order accurate
in both space and time and are much more ef� cient than explicit
schemes becauseonly the stiff terms in the equationsare treated im-
plicitly. For simplicity, only two-dimensional formulas of the high-
order semi-implicit method are presented in the following sections.
The extension to three-dimensionalequations is straightforward.

Splitting of Governing Equations
The stiffness of viscous � ow simulations is mainly a result

of terms associated with derivatives in the wall-normal direction
[@. /=@´ and @2. /=@´2] because of grid stretching near the wall.
Therefore, Eq. (9) for a two-dimensional � ow in (» , ´, ¿ ) is addi-
tively split into relatively nonstiff part f .Ui j / and stiff part g.Ui j /
as follows:
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where i and j are the grid indices in the » and ´ direction, respec-
tively. The transport � ux vector in ´ direction F 0

v is split into F 0
v2,

the part of the viscous � ux terms only involvingnormal derivatives,
and F 0

v1 , the part of the viscous � ux terms except F 0
v2, that is,

F 0
v D F 0

v1 C F 0
v2 (19)

Speci� cally, F 0
v can be derived from Eq. (14) as
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where k D 1; 2. The transport terms, ¿i j and qi given by Eqs. (6) and
(7), can be transformed into (» , ´) coordinatesusing the chain rule.
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The F 0
v2 terms can then be obtained from Eq. (20) by picking out

the ´ derivative terms. Then @F 0
v2=@´ in Eq. (18) can be obtainedas
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where high-order � nite difference methods are used to discretize
both @. /=@´ and @2. /=@´2 terms.

In Eq. (16), g.Ui j / is much stiffer than f.Ui j / because grid spac-
ing in the wall-normal direction is much smaller than that used in
streamwise direction for most viscous � ow simulations.Therefore,
the high-order semi-implicit method is used to overcome the stiff-
ness of g.Ui j / while maintaining high-order temporal accuracy.

Spatial Discretization
The split governing equation (16) is � rst approximated by high-

order-accurate � nite difference methods. For the case of DNS of
compressibleboundarylayerswith a bow shock, the shockwave can
be treatedbya shock-� ttingmethodbecausethere is nodiscontinuity
in the interiorof the computationaldomain.In thispapera � fth-order
upwind scheme8 is used to discretize the inviscid � ux derivatives.
Meanwhile,high-ordercentraldifferenceschemes,suchas thesixth-
order central scheme, are used to discretize the viscous � ux terms
in the equations.

For the inviscid � ux vectors in the Eqs. (17) and (18), the � ux
Jacobianscontainboth positiveand negativeeigenvaluesin general.
A local Lax–Friedrichs scheme is used to split the inviscid � ux
vectorsintopositiveandnegativewave � elds.As discussedin Ref. 8,
the Lax–Friedrichs scheme is dissipative for a low-order scheme,
but for a high-order scheme it performs very well. As a result, the
� ux term F 0 in Eq. (18) can be split into two terms of pure positive
and negative eigenvalues as follows:
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and theparameter² is a smallpositiveconstantaddedfor the smooth-
ness of the splitting. The � uxes F 0

C and F 0
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and negativeeigenvalues, respectively.Therefore, in the spatial dis-
cretization of Eq. (17), the � ux derivatives are split into two terms:
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where the � rst term on the right-hand side is discretized by an up-
wind high-order � nite difference method and the second term is
discretizedby a downwind high-order� nite differencemethod.The
� fth-order upwind explicit scheme8 for the derivative of a variable
Á is
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The spatial discretization of the split Eq. (16) using these high-
order schemes coupled with appropriateboundary conditions leads
to a system of ordinary differential equations in the form of

du
dt

D [ f .t; u/] C [g.t; u/] (30)

where u D fUi j for i D 1; : : : IL; j D 1; : : : JLg is the vector of all
discretized variables in the � ow� eld; [ f .t; u/] represents the dis-
cretized nonstiff term; and [g.t ; u/] represents the discretized stiff
term.

Semi-Implicit Time-Stepping Schemes
The system of ordinary differential equations of Eq. (30) can

be integrated in time using semi-implicit temporal schemes, where
[ f .t ; u/] is treated explicitly and [g.t; u/] is treated implicitly.
Second-order AB-CN semi-implicit method and semi-implicit
Runge–Kutta schemes derived by Zhong7 and Yoh and Zhong9 are
used in this paper.

The AB-CN method is

un C 1 D un C .h=2/[3 f .un/ ¡ f .un ¡ 1/]

C .h=2/[g.un/ C g.un C 1/] (31)

where h is the size of the time step. The AB-CN method is sim-
ple, but it is only second-order accurate. It was shown by Zhong7

that in order to have a third- or higher-order temporal accuracy the
semi-implicit method needs to be derived in a way that the effects
of coupling between the implicit and explicit terms on the accuracy
need to be considered. Zhong7 subsequently derived three kinds of
third-ordersemi-implicitRunge–Kutta schemes for high-ordertem-
poral integrationof the governingequationsfor reacting � ow simu-
lations.High-order,low-storagesemi-implicitRunge–Kuttamethod
versions(LSSIRK)havealsobeenderivedin Ref. 9. In particular,the
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Rosenbrock-typeRunge–Kutta (LSSIRK-rC) methodcan be written
as follows:

8
<

:
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where j D 1; : : : ; r and parameters c j , Nc j , b j can be found in
Ref. 9. For instance, in LSSIRK-3C, b1 D 1

4 , b2 D 2
9 , b3 D 3,

a1 D ¡ 1
4
, a2 D ¡ 29

27
, c1 D 2:26760, c2 D 2:68530, c3 D 2:30975,

Nc2 D ¡1:14310, and Nc3 D ¡2:03122. The parameters of the semi-
implicit Runge–Kutta methods are chosen by both stability and ac-
curacy requirements with the simultaneous coupling between the
explicit and implicit terms. In this paper, except for the AB-CN
method, there are three kinds of semi-implicit Runge–Kutta meth-
ods to be used to advancethe spatial discretizationof Navier–Stokes
equations in time. They are the � rst-order semi-implicit Runge–

Kutta scheme (ASIRK-1C); the second-order, low-storage semi-
implicit Runge–Kutta scheme (LSSIRK-2C); and the third-order,
low-storage semi-implicit Runge–Kutta scheme (LSSIRK-3C).

In applying the semi-implicit method to Navier–Stokes
equation (30), the global Jacobian matrix comes from the implicit
method and can be de� ned by J.u/ D @g=@u. The components of
the Jacobian J.u/ are derived by considering the variation of g.Ui j /
in Eq. (16):
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where D=D´ is the � fth-order � nite difference approximation of
the derivatives in the wall-normal direction and F 0
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where the matrices M, Av , Bv , and Cv are given in the Appendix.
Substituting Eqs. (34) and (35) into Eq. (33), where the derivatives
are approximatedby the � fth-order upwind scheme and sixth-order
central scheme described in Eqs. (28) and (29), leads to

±g.Ui j / D Ai j ±Ui j ¡ 3 C Bi j ±Ui j ¡ 2 C Ci j ±Ui j ¡ 1 C Di j ±Ui j

C Ei j ±Ui j C 1 C Fi j ±Ui j C 2 C Gi j ±Ui j C 3 (36)

where the coef� cient matrices are given in the Appendix.
The � nal global Jacobianmatrix for the systemof ordinarydiffer-

ential equations, Eq. (30), is a block seven-diagonalmatrix involv-
ing terms along the j grid directiononly. This block seven-diagonal
system of equations can be solved ef� ciently by a banded matrix
solver.

Boundary Conditions
The physical boundary conditions for viscous � ows are nonslip

conditions for velocity and isothermal or adiabatic condition for
temperature.The freestream� ow conditionsare speci� ed by a given
� ow. The disturbances such as planar acoustic waves imposed into
the � ow are speci� ed according to their own particular physical
nature.

For numerical simulations it is necessary to set numerical bound-
ary conditions for some � ow variables in addition to the physical
boundary conditions. This is especially the case at the computa-
tional boundary of the exit and inlet. There have been many in-
vestigations on the issues of numerical boundary conditions for
the direct numerical simulations of compressible as well as in-
compressible boundary layers. Examples of the work include the
following: Orszag et al.10 presented a sponge layer with absorb-
ing boundary conditions in the study of problems involving wave
propagation, Streett and Macaraeg11 proposed a buffer domain in

the out� ow boundary for unsteady transition-to-turbulence simu-
lations, Poinsot and Lele12 discussed characteristic-based bound-
ary conditions for direct simulation of compressible viscous � ows,
and Guo et al.6 compared the results obtained by using the preced-
ing differentboundaryconditionsin the simulationof compressible
boundary-layertransition.Collis and Lele13 studied the problem of
compressibleswept leading-edgereceptivitybyusingin� ow sponge
and out� ow sponge boundary conditions.

Becausetheemphasisof currentpaper is the semi-implicitmethod
for ef� cient and accurate time integration of the governing equa-
tions, we will mainly consider � ows either with periodic boundary
conditions or with a supersonic exit where the re� ection of distur-
bances are negligible.Boundary conditionson the wall are included
in the global Jacobian matrix to ensure that it is a global implicit
equation and advanced in time. For example, to include the lower
wall boundary conditions, by imposing the fourth-order boundary
conditions ±Ui1 can be written as
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where V and @V =@U can be found in Appendix and .@Vi1=
@Vi j /. j D 2; : : : ; 5/ are the coef� cientsof thecorrespondingbound-
ary conditions applied to the lower wall.

Numerical Results
To test the usefulnessand accuracyof the new algorithm, the new

high-order semi-implicit schemes with a high-order shock-� tting
algorithm for hypersonic � ow over a blunt body have been exten-
sively validated and evaluated. The shock-� tting procedure can be
turned off if there is no shock in the � ow� eld. The main issue of
the evaluation is the temporal accuracyof the implicit-explicitsplit-
ting in the high-order simulations and the ef� ciency of the semi-
implicit schemes compared to explicit schemes for transientviscous
� ow simulations. In the following sections stability of supersonic
Couette � ow is simulatedby using the new high-ordersemi-implicit
method to test the accuracy and ef� ciency of the new method. Sub-
sequently,stability of supersonicboundary layer is studied. Finally,
two-dimensionalhypersonicboundary-layer� ow over a blunt body
is validated.

Stability of Two-Dimensional Supersonic Couette Flow
The new high-order semi-implicit scheme is applied to the sim-

ulation of the two-dimensional compressible Navier–Stokes prob-
lem of temporal stability of supersonic Couette � ow. Compressible
Couette � ow is a wall-bounded parallel shear � ow whose steady
mean � ow can be obtained accurately by a shooting method. Be-
cause the mean � ow is parallel, the temporal linear stability analysis
on the full Navier–Stokes equations can be obtained when distur-
bance is weak.8 Therefore, we can test the semi-implicit method in
computing both steady and unsteady two-dimensional supersonic
Couette � ow by comparing the numerical solutionswith exact tran-
sient solutions obtained from the analysis based on linear stability
theory (LST).

Steady Flow Solutions
We � rst use the high-order semi-implicit codes for unsteady

Navier–Stokes equations to compute the steady solutions of the
supersonicCouette � ow. The results are compared with the “exact”
solutions obtained by a shooting method. Several cases with differ-
ent Mach numbers, Reynolds numbers, and wall temperature have
been tested. The results of only one of the cases are shown in this
paper. The � ow conditions are M1 D 2 and the upper wall is an
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Table 1 Numerical errors for computations of supersonic
Couette � ow using � fth-order semi-implicit scheme

(e1 = k k e k k 1 and e2 = k k e k k 2 )

Grid e1 £ 10¡6 Ratio e2 £ 10¡6 Ratio

50 6:9913 —— 1:4114 ——
100 0:2315 30:2 0:034 41:5

Fig. 1 Dimensionless temperature and velocity pro� les for a Mach 2
Couette � ow.

isothermal wall with T1 D 220:66667 K, whereas the lower wall is
an adiabaticwall. The gas is assumed to be perfect gas with ° D 1:4
and Pr D 0:72. The viscosity coef� cient is calculated by Suther-
land’s law. To calculate the steady � ow of supersonic Couette � ow,
the semi-implicit method ASIRK-1C is simpli� ed to the fully im-
plicit method because the mean � ow is parallel in the horizontal
direction. At this time, because the temporal accuracy is not our
important concern, very large 1t is used in the ASIRK-1C method
with a Courant–Friedrichs–Lewy (CFL) number 105 .

Figure 1 shows the steady nondimensionalvelocity and tempera-
ture pro� les obtained by using the semi-implicit � fth-order upwind
scheme with 100 uniform grid points. Velocity is nondimensional-
ized by the velocity at the upper wall, and temperature is nondimen-
sionalized by T1 . The numerical results agree well with the exact
solutions. The accuracy of the numerical simulations is evaluated
by grid-re� nement studies using several sets of uniform grids. The
quantitative numerical errors of the simulations using two kinds of
uniform grids are listed in Table 1. The table shows that the nu-
merical errors for this � fth-order semi-implicit scheme in spatial
discretization are of the order of 10¡6 using 50 grid points and
2:315 £ 10¡7 using 100 grid points in a wall-normal direction. The
theoretical ratio of the errors between the coarse grids and the � ne
grids is 32 for a � fth-order scheme. The results in Table 1 show that
the numerical algorithms are able to maintain high-order accuracy
in spatial discretization.

Unsteady Flow Solutions
Three different kinds of semi-implicit schemes, ASIRK-1C,

LSSIRK-2C, and LSSIRK-3C, are subsequently tested by doing
numerical simulations for the temporal stability of the same steady
two-dimensionalcompressibleCouette � ow. The temporal stability
problems are concerned with the growth or decay of some super-
imposed spatially periodic disturbanceson the steady Couette � ow
solutions. The small initial disturbances, which are periodic in the
x direction, are in the form of eigenfunctions obtained from linear
stability analysis:

q 0.x; y; t/ D Oq.y/ exp[i.®x ¡ !t/] (38)

where ® (real number) is a given wave number and complex fre-
quency ! and eigenfunction Oq.y/ are both obtained by the stability
analysis; q 0.x; y; t/ is the disturbance of any � ow variable. The
disturbances will grow or decay exponentially if the sign of the
imaginary part of ! is positive or negative, respectively.

In the numericalsimulationsthe developmentsof these initial dis-
turbances in the two-dimensional � ow� eld are computed using the

full Navier–Stokes equations. The initial conditions are the steady
� ow solutions plus disturbances given by a set of eigenfunctions
obtained by linear stability analysis14 as follows:

u.x; y; t D 0/ D Nu C ²Ref Ou.y/ exp[i.®x ¡ !t/]g (39)

where ² is the magnitude of the disturbance.
The unsteady � ow� eld is solved by computing the unsteady

Navier–Stokes equations using different kinds of implicit temporal
discretizations.The same stretched grids are used in the y direction
as those used in the linear stability theory calculations. The com-
putational domain in the simulation is one period in length in the x
direction,and periodicboundaryconditionsare used.The numerical
accuracy of the semi-implicit schemes is evaluated using analytical
solutions obtained from the linear stability analysis.14

The initial disturbance of the test case is chosen to be a sta-
ble mode according to the linear stability theory. The � ow con-
ditions are M1 D 2 and Re1 D 103. The initial disturbance wave
has a dimensionless wave number of ® D 3, which is nondimen-
sionalized by the distance between two plates, and the eigen-
value obtained from the temporal linear stability analysis is
! D !r C !i i D 5:52034015848¡ 0:132786378788i , where a neg-
ative!i means that the disturbanceswill decay in time with a dimen-
sionlessfrequency!r . The magnitudeof the disturbances² is 0.002.
Figure 2 shows the contour of the real part of the eigenfunciton of
p0 in the � ow� eld obtained by linear stability analysis. To evaluate
the temporal accuracy and ef� ciency of the semi-implicit schemes
for unstable � ow simulations, the unsteady two-dimensional su-
personic Couette � ow is computed by using four kinds of time-
steppingmethods,which are � rst-orderexplicit temporaldiscretiza-
tion, ASIRK-1C, LSSIRK-2C, and LSSIRK-3C, respectively. The
spatial scheme is the same � fth-order scheme described in Eq. (28).
In the simulation a set of 52 £ 101 stretching grids is used. The ex-
plicit and semi-implicit methods use different time steps according
to the stability restriction.The actual values of CFL number used in
the simulations are given in Table 2.

Figure 3 shows the comparison of the numerical results using
the LSSIRK-2C method and the linear stability theory predictions
for the time history of velocity perturbationsperturbations, respec-
tively, at a � xed point in the two-dimensional supersonic Couette

Table 2 Ef� ciency comparison for the simulations
of temporal stability of supersonic Couette � ow
(M1 = 2:0, Re = 103, run to 4:22837 £ £ 10¡ 3 s)

Parameter Explicit Semi-implicit
or scheme method method Ratio

CFL number 0:0043 0:33 ——
1x=1y 202:95 202:95 ——
Numer of time steps 226,116 3,000 75:372

CPU time consumed, s
Explicit 60,456.63 —— ——
ASIRK-1C —— 3,518.96 17:1802
LSSIRK-2C —— 7,144.83 8:4616
LSSIRK-3C —— 11,541.26 5:2383

Fig. 2 Wave patterns of Re f p 0 g with ! = 5.520340158 ¡¡ 0:132786378i.
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Fig. 3 Comparisonsof velocity perturbation time history and distribu-
tions in the y direction (LST: ±u0 , ±v0, ±p0 , ±T0; DNS: ±u, ±v, ±p, ±T).

� ow� eld and the comparison of the distribution of instantaneous
� ow perturbations in the y direction after about six wave periods.
The results show that the two-dimensionalnumerical simulationsof
the Navier–Stokes equations for the stability of supersonicCouette
� ow by using semi-implicitmethod agree well with the results from
linear stability theory.

The amplitudes of the disturbance waves decay as a function
of time in this case. For suf� ciently low-amplitude waves, linear
stability analysis shows that the perturbation kinetic energy of the
solutions is

E .t/ D
Z Z

1

2
.u 02 C v 02/ dx dy D E0e2!i t (40)

where E0 is the perturbation energy at t D 0. Figure 4 displays the
time history of [E.t/=E0] for the computed perturbation energy
and the analytical value of the linear stability analysis in one wave
period, which is equal to 2!i . Different grid numbers in the y direc-
tion are used to study the required grids by accuracy requirement.
The numerical results using 100 grid points in the y direction agree
well with the linear stability results. However, the numerical errors
are accumulated along the time when fewer grids, 20 and 30 grids,
are used in the y direction.

To evaluate the temporal accuracy of the semi-implicit schemes
at different orders, Fig. 5 shows the relative errors for the solutions
in the y direction for four kinds of numerical methods at the end
of two wave periods. Each method uses different size of time step
1t according to the stability restriction of each individual method.
Consequently,theexplicitmethoduses smaller1t in every time step
because of stability constraint and is not ef� cient in computational
time. On the other hand, much larger 1t can be used for semi-
implicit methods so that the computational time can be reduced.
However, it is necessary to ensure that temporal accuracy is not
reduced because of the lager 1t . Figure 5 shows that the explicit
method has small errors even for the � rst-order explicit temporal
discretization.The errors for the explicit scheme are mainly caused
by those from the spatial discretizationwhile very small 1t is used.
The semi-implicit method, on the other hand, loses some accuracy

Fig. 4 Computed perturbation energy using different grid numbers in
the y direction.

Fig. 5 Comparisons of relative errors among different numerical
methods.

when � rst-order temporal discretizationis used because a larger 1t
is used in everytime step.As the temporalordersof the semi-implicit
methods increasedto secondand thirdorder, the relativeerrorsof the
semi-implicit methods were close to those of explicit method; even
the time step was much larger. This is because the relative errors for
the second-orderand third-order semi-implicit methods are mainly
caused by the numerical errors from the spatial discretization.The
temporalaccuracyare ensuredfor bothsecond-orderand third-order
semi-implicit methods using large 1t with CFL number 0.33.

Table 2 compares the computational ef� ciency using the explicit
method and the semi-implicitmethods by simulating the � ow about
two wave periods and records the real CPU time consumed by each
method.Table 2 shows that the time-stepratio of the explicitmethod
and the semi-implicit methods is about 75:4. Therefore, though it
takes more CPU time to advance the semi-implicit method per time
step, the overall CPU time is much smaller than that used by the
explicitmethod. Speci� cally, the explicitmethod requires about 8.5
and 5.2 times more CPU time than the second-orderand third-order
semi-implicitmethods, respectively,to do the same simulationwith
the same accuracy. Therefore, the overall computational ef� ciency
is improved while the temporal accuracy of transient � ow simu-
lation is maintained by using second-order and third-order semi-
implicit methods. Considering the computation accuracy and ef� -
ciency together, the second-order semi-implicit method is the pre-
ferred method in this paper.

Stability of Two-Dimensional Supersonic Boundary Layers
Compared with the supersonic Couette � ow, the supersonic

boundary layer is a test case that is closer to practicalwall-bounded
high-speed viscous � ow. The � fth-order semi-implicit schemes
for unsteady Navier–Stokes equations are applied to simulate the
temporal stability of supersonic � at-plate boundary layer. In this
test case the semi-implicit method contains both explicit and im-
plicit treatment in the x and y directions, respectively. The initial
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conditions are the steady boundary-layer� ow solutions plus distur-
bances given by a set of eigenfunctions obtained by linear stability
analysis. The � ow conditions are M1 D 4:5 and Reynolds number
Re D 103 (based on the boundary-layer thickness).

The computation uses 42£ 141 grids covering a section of the
boundary layer. The grids are stretched in the y direction in order
to resolve the high shear layer in the boundary layer. Based on
the results of the accuracy assessment in simulating stability of
supersonic Couette � ow, the LSSIRK-2C semi-implicit method is
used as the time-stepping method. The grid has an aspect ratio of
1x=1y D 169:2857.

Again, the numericalmethods are � rst tested in steady mean � ow
computations. Figure 6 displays the mean � ow of numerical re-
sults compared with the exact solutions obtained by solving the
boundary-layerequations using a shooting method with several or-
ders of magnitude smaller errors. The numerical results agree well
with the exact solutions.

The unsteady � ow simulations are carried out by choosing
the initial disturbance wave number ® D 0:22, which is nondi-
mensionalized by boundary-layer thickness ±. The eigenvalue
obtained from the temporal linear stability analysis is ! D !r C
!i i D 25:77363556598C 0:2497128329918i . The disturbancesare
ampli� ed with time because of a positive !i . In the temporal sim-
ulations of the growth of the initial disturbances in the boundary
layer, the periodic boundary condition is used for the disturbances
in the x direction. The magnitude ² of the disturbances is 0.004.
The numerical results are compared with results from linear stabil-
ity analysis.

Figure 7 shows the comparison of the DNS results and the LST
predictions for the time history of velocity perturbations at a � xed
point in the two-dimensional supersonic � at-plate boundary layer.
The DNS results and the LST predictions agree very well. Similar
to the test case of supersonicCouette � ow, comparisonsof the time
history of [E .t/=E0] for the computed perturbation energy by

Fig. 6 Comparisons of velocity pro� les of � at-plate boundary-layer
� ow.

Fig. 7 Comparisons of velocity perturbation time history (LST: ±u0,
±v0; DNS: ±u, ±v).

Table 3 Ef� ciency comparison for the simulations of temporal
stability of supersonic � at-plate boundary layer

(M1 = 4:5, run to 1:074 £ £ 10¡ 3 s)

Explicit LSSIRK-2C
Parameter method method Ratio

CFL number 0:00284 0:18 ——
1x=1y 169:2857 169:2857 ——
Number of time steps 126,702 2,000 63:351
CPU time, s 39,809.77 6,184.35 6:437

Fig. 8 Computed perturbation energy using different grid numbers in
the y direction.

using different grid numbers in the y direction are shown in Fig. 8.
The numerical results obtained by using 140 grids in the y direction
agree well with the linear stability results. When fewer grids such
as 50 and 25 grids are used in the y direction, the numerical errors
are accumulated along the time.

The ef� ciency of the semi-implicit method is evaluated, and the
results are shown in Table 3. Compared with the CFL number
0.00284 used by the explicit method, a larger CFL number 0.18
can be used by the semi-implicit method. The ratio of CPU time
requiredby the explicitmethod and the semi-implicitmethod to ad-
vance the simulations about two wave periods is about 6:4. There-
fore, the overall computationalef� ciency can be improved by using
a semi-implicit method.

Receptivity of Hypersonic Flow over a Parabola
The last test is thenumericalsimulationof the receptivityof a two-

dimensionalboundarylayer to weak freestreamacousticdisturbance
waves for hypersonic � ow past a parabolic leading edge at zero
angleof attack.The same problemis studied in detailsusing explicit
method by Zhong in Ref. 8. In this paper the same � ow conditions
and boundary conditions as those in Ref. 8 are used to evaluate
the numerical ef� ciency and accuracy of the new high-order semi-
implicit method.

In the receptivity simulation the unsteady motions of the bow
shock caused by freestream disturbances are treated by a shock-
� tting method as a computational boundary. The steady � ow� eld
is � rst obtained by computing the � ow without freestream waves.
The unsteady simulation is then carried out by superimposing a
freestream disturbances on the steady mean � ow solutions. The
subsequentdevelopmentof disturbancewaves in the boundary layer
with theeffectsof thebow-shockinteractionis simulatedbycomput-
ing the full Navier–Stokes equations. The freestream disturbances
are assumed to be weak monochromaticplanar acoustic waves with
wave front normal to the center line of the body. The perturbations
of � ow variable introduced by the freestream acoustic wave before
reaching the bow shock can be written in the following form:

fu 0; v 0; p0; ½0g1 D fju0j; jv 0j; jp0j; j½0jg1 exp[i.kx ¡ !t/] (41)

where ju0j, ju 0j, jp0j, and j½0j are dimensionlessperturbationampli-
tudes satisfying ju0j1 D ², jv 0j1 D 0, jp0j1 D ° M1², and j½ 0j1 D
M1² , where ² is a small number representing the freestream wave
magnitude. The parameter ! is the freestream circular frequency.
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The corresponding dimensionless frequency F is de� ned as F D
!¤º¤=U ¤2

1 D !=Re1 .
The speci� c two-dimensional test case is a Mach 15 � ow over

a two-dimensional parabolic body, which surface is given by
x¤ D b¤ y¤2 ¡ d¤, where b¤ is a given constant and d¤ taken as the
reference length. The body surface is assumed to be a nonslip wall
with an isothermal wall temperature T ¤

w . The speci� c � ow condi-
tions are M1 D 15, ² D 5 £ 10¡4 , T ¤

1 D 192:989 K, p¤
1 D 10:3 Pa,

T ¤
w D 1000 K, ° D 1:4, R¤ D 286:94 Nm/kgK, Pr D 0:72, b¤ D

40 m¡1 , d¤ D 0:1 m, T ¤
r D 288 K, T ¤

s D 110:33 K, ¹¤ D 0:17894£
10¡4 kg/ms, and Re1 D ½¤

1U ¤
1d¤=¹¤

1 D 6026:55.
The steady � ow solutions of the Navier–Stokes equations for the

viscous hypersonic � ow over the parabola are � rst obtained by us-
ing second-order AB-CN semi-implicit temporal discretization in-
stead of LSSIRK-2C temporal discretization because the AB-CN
method is easier to program for the problem with shock-� tting
method and has fewer computation steps than the LSSIRK-2C.
Meanwhile, AB-CN has second-order temporal accuracy, which is
the same as the LSSIRK-2C method. LSSIRK-3C is used for third-
order temporaldiscretization.In this paperonly the results using the
AB-CN method are presented.On the other hand, � fth-order spatial
discretization is implemented, and the solutions are advanced to a
steady state without freestream perturbations. The calculations are
carried out by using a set of 160£ 120 grids. The use of the semi-
implicit method makes it possibleto use a larger time step measured
by the larger CFL number used in the simulations. In steady � ow
simulation the CFL number used by the semi-implicit method is
0.15 depending on 1x. This is much larger than the CFL number
0.0049 used by the explicit simulations.

Having obtained the steady solutions, the unsteady simulations
are carriedout for thegenerationof boundary-layerinstabilitywaves
by introducing freestream planar acoustic disturbances wave with
a dimensionless frequency F £ 10¡6 D 2655. The numerical solu-
tions are obtained by using a high-order semi-implicit method with
a set of 160 £ 120 grids. To maintain the temporal accuracy in un-
steady simulations, the CFL number is used as 0.14 based on 1x
compared with CFL number 0.0047 used by the explicit method.
The unsteadycomputationsare run for more than 29 periods in time
to ensure that periodic solutions have been reached for the entire
� ow� eld. Ef� ciency and accuracy of the new semi-implicitmethod
are studied for this unsteady receptivity problem.

Figure 9 shows the contours for the instantaneousperturbationu 0

of the velocity in the x direction after the � ow� eld has reached a
periodic state and the amplitude ju 0j of the disturbances.The instan-
taneous contours of u 0 show the development of instability waves
in the boundary layer on the surface. The � rst region of x < 0:2
dominated by the � rst mode instability and the second region of
x > 0:2 dominated by the second mode instability are numerically
obtained by using the semi-implicit method. The characteristicsof
the switching of instability modes from region 1 to region 2, the
decay of the � rst mode and the growth of the second mode with the
sudden phase angle change near the body surface around x D 0:2,
which have been discussed in Ref. 8 by using the high-order ex-
plicit method, are obtained, too. The accuracy of the unsteady so-
lutions obtained by using the new semi-implicit method with much
larger CFL number is assessed by comparison with the explicit
solutions.

Figure 10 compares the distribution of instantaneous entropy
perturbations along the parabola surface. The results show a
very good agreement between results of the semi-implicit method
and those of the explicit method. Table 4 shows the real con-
sumed CPU time comparison between the explicit method and the

Table 4 Ef� ciency comparison for the simulations of the receptivity
of hypersonic � ow over a parabola (M 1 = 15, run to 1:0091 £ £ 10¡ 3 s)

Parameter Explicit method AB-CN method Ratio

CFL number 0:0047 0:14 ——
Grid 160£ 120 160£ 120 ——
1x=1y 245:82 245:82 ——
Number of time steps 446,811 15,000 29:787
CPU time, s 213,037.47 24,437.55 8:718

Fig. 9 Instantaneous u 0 (top) and the Fourier amplitude j j u 0 j j contours
(bottom).

Fig. 10 Comparisons of computed entropy perturbations s 0 (top) and
the Fourier amplitude j j s0 j j (bottom).
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second-order AB-CN semi-implicit method. The real consumed
CPU time is recorded by running the code about 10 wave pe-
riods. The computation results show that the new schemes im-
prove the computational ef� ciency by nearly one order of mag-
nitude compared with the explicit method. In this case the mag-
nitude of the maximum time step used in numerical calculation
is limited by the stability conditions related to the grid size in
the streamwise direction only. The results demonstrate that stiff-
ness of � ne grids in the direction across the boundary layers has
been removed by the semi-implicit method while the temporal ac-
curacy of the unsteady simulations has been maintained. Accu-
racy and ef� ciency are well approached for the simulations of un-
steady compressible � ows by using the high-order semi-implicit
method.

Conclusions
An ef� cient and high-order-accurate semi-implicit method has

been presented in this paper for the DNS of unsteady compressible
� ows based on the unsteady Navier–Stokes equations. The method
uses semi-implicit treatment to overcome the stiffness of viscous
wall-normal derivative terms, whereas the streamwise terms are
computed by the explicit method for ef� cient unsteady � ow calcu-
lations. The ef� ciency and accuracy of the method has been tested
in several cases of steady and unsteady two-dimensionalcompress-
ible � ow. The main focus of the evaluation is on the ef� ciency
and the accuracy of the semi-implicit methods for transient � ow
simulations when a large CFL number is used to reduce the compu-
tational time. The results of all of the test cases show that by using
the semi-implicit method the computational ef� ciency can be im-
proved nearly by one order of magnitudewhile the high accuracyof
the explicit method is maintained. Meanwhile, the CFL numbers in
the semi-implicit computationsare limited only by streamwise grid
sizes and the accuracy requirement for unsteady� ow computations.
The results have demonstrated the advantage in ef� ciency by using
the high-order semi-implicit time-stepping methods in the DNS of
unsteady compressible � ows.

Appendix: Jacobian Matrices and Coef� cient Matrices
The detailed Jacobian matrices for the viscous � ux vector in

Eq. (35) for semi-implicit schemes are
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The detailed coef� cient matrices in Eq. (36) are
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where a1
l , a2

l , b3
l , and a3

l .l D 1; : : : ; 7/ are the coef� cients of high-
order � nite difference schemes given by Eqs. (28) and (29). The
superscripts 1, 2, and 3 represent the coef� cients for the upwind,
downwind, and central scheme, respectively.
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