
Journal of Computational Physics 225 (2007) 1066–1099

www.elsevier.com/locate/jcp
A new high-order immersed interface method for solving
elliptic equations with imbedded interface of discontinuity

Xiaolin Zhong

Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA, United States

Received 28 September 2005; received in revised form 1 December 2006; accepted 17 January 2007
Available online 30 January 2007
Abstract

This paper presents a new high-order immersed interface method for elliptic equations with imbedded interface of dis-
continuity. Compared with the original second-order immersed interface method of [R.J. LeVeque, Z. Li. The immersed
interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31
(1994) 1001–25], the new method achieves arbitrarily high-order accuracy for derivatives at an irregular grid point by
imposing only two physical jump conditions together with a wider set of grid stencils. The new interface difference formulas
are expressed in a general explicit form so that they can be applied to different multi-dimensional problems without any
modification. The new interface algorithms of up to O(h4) accuracy have been derived and tested on several one and two-
dimensional elliptic equations with imbedded interface. Compared to the standard second-order immersed interface
method, the test results show that the new fourth-order immersed interface method leads to a significant improvement
in accuracy of the numerical solutions. The proposed method has potential advantages in the application to two-phase
flow because of its high-order accuracy and simplicity in applications.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, there has been strong interest in developing numerical methods for computing multi-phase flow
with unsteady interface. These methods have many practical applications, such as the simulation of the
dynamics of gas bubbles in a liquid [11], drop deformation and breakup in viscous flow [44], free surface flow
[51,41], and the breakup of a liquid jet emanating into another fluid [30].

Compared with single-phase numerical methods, algorithms for two-phase flow simulation face addi-
tional difficulties related to the interface treatment. Firstly, the shape of the interface can be complex,
and can undergo change, merge and breakup during the course of the simulation. Consequently, it is
difficult to use body-fitted unsteady grid to fit the evolving interface. A fixed Cartesian grid, where the
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interface can cut through the grid lines, is often used. In a fixed grid, the interface can be treated by,
among others, the volume-of-fluid method, the front tracking method [50,14], the level set method
[42,43,35,36], and the boundary element method [39]. Each of these methods has its own advantages
and disadvantages. The volume-of-fluid method is simple and robust. It can maintain a conservation of
bubble or droplet volumes. But it is relatively inaccurate in tracking the interface. The front tracking
method can track the interface with relatively high accuracy. But it is difficult to use the method to model
the connectivity of the interface undergoing complex changes. The level set method, on the other hand, can
easily handle the connectivity of complex interface by using a level set function to track the location and
movement of the interface.

Secondly, flow variables and their derivatives can be discontinuous across the interface. Specific jump con-
ditions at the interface depend on the physical property of the problems, the unsteadiness of the interface, and
the geometric characteristics of the interface. Consequently, special treatments are necessary for computing
flow equations at grid points adjacent to the interface (i.e. irregular points). One of the popular methods in
treating interface discontinuity is the immersed boundary method (IBM) originally developed by Peskin
(see review by Peskin [37]) for simulating blood flow in the heart. The basic idea of the immersed boundary
method is to model the interface by adding a delta-function source term to the Navier–Stokes equations. The
resulting equations are then discretized by a standard finite difference method in a fixed Cartesian (or non-
Cartesian) grid. The singular delta function is regularized by an approximate smooth function spanning a
few grid cells. The immersed boundary method has been incorporated in the front tracking method [50]
and the level set method [45,46,6] in the interface treatment.

The immersed boundary method, however, is only first order accurate in computing two-phase flow with
discontinuous solutions across the interface, even though higher-order approximation to the delta function
can be achieved for problems with smooth solutions [4,22,49,15,9]. Beyer and LeVeque [4] studied the approx-
imation to the delta function by a smooth function for the one-dimensional heat equation. The accuracy was
measured by a discrete moment condition. They found that it is possible to achieve second-order accuracy by
carefully choosing the discrete representation of the delta function. For some problems, however, it is neces-
sary to add a correction term to the approximation to the delta function in order to maintain second-order
accuracy. Griffith and Peskin [15] showed that higher-order convergence rates can only be achieved for suffi-
ciently smooth problems. Tornberg and Engquist [49] studied the numerical approximations of singular source
terms in differential equations. Specifically, regularization methods for the delta function were analyzed. They
showed that fourth-order convergence can be achieved away from the singularity, when a fourth-order differ-
ence formula of the ordinary differential operator is coupled to a regularization function with moment order 4.
In general, any delta function regularization produces O(h) errors in the neighborhood of the singularity.
Consequently, the interface is ‘‘smeared’’ in a numerical solution computed by the immersed boundary
method [31].

An alternative to the immersed boundary method is the ‘‘sharp-interface’’ methods which achieve uni-
formly second (or higher) order accuracy by incorporating the jump conditions into the finite difference for-
mulas. The immersed interface method (IIM) introduced by LeVeque and Li [24] is one of these methods. A
similar idea was used earlier by Mayo [34] for the fast solution of the Poisson’s and the biharmonic equations.
In presenting their original IIM method, LeVeque and Li [24] considered finite difference methods for the fol-
lowing elliptic equation:
r � ðbðxÞruðxÞÞ þ jðxÞuðxÞ ¼ f ðxÞ ð1Þ
The equation is defined in a simple region with a uniform Cartesian grid. Fig. 1 shows a schematic of a two-
dimensional grid. There is an irregular surface C, which may cut across the grid lines, in the computational
domain. Across the interface, b, j, and f may be discontinuous, and along it f may have a delta function sin-
gularity. In the derivation of finite difference formulas, the computational grid points are classified into two
categories depending on their relative locations with respect to C: regular points away from C and irregular
points adjacent to C. A globally O(h2) accuracy is achieved by using the conventional O(h2) central scheme
for the regular points and a locally O(h) scheme for the irregular points. In the one-dimensional case, a finite
difference formula of O(h) accuracy at an irregular point uses a three-point grid stencil together with an addi-
tional correction term. A Taylor series expansion at the interface is used to obtain a set of linear equations for
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Fig. 1. A schematic of two-dimensional uniform grid with an immersed interface C with discontinuity in solutions.
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the undetermined coefficients and the correction term. The linear equations are often problem dependent, and
they need to be solved numerically every time they are used in the simulation. In order to reach a locally O(h)
approximation, the correction term requires jump conditions of up to the second derivatives, i.e.
½u�; ½bux�; and ½buxx� ð2Þ

where [ ] denotes the jump in variables across the interface.

Since the publication of the original immersed interface method [24], there have been many further devel-
opments and analysis in various aspects of the immersed interface methods [26,27,55,56,18,12,28,7,1,8,2].
Among these developments, Wiegmann and Bube [55,56] developed an explicit-jump immersed interface
method for the special cases where the explicit jump conditions of variables and derivatives ([u], [ux], [uxx],
etc.) are known. Though in a simpler explicit form, the explicit-jump immersed interface method is not appli-
cable to the general jump conditions given by (2).

The immersed interface methods have been applied to the Stokes flow with elastic boundaries or surface
tension [25], Hele–Shaw flow [17], incompressible flow based on the Navier–Stokes equations with singular
source terms [29,5,23], and nonlinear problems in magneto-rheological fluids [19]. Despite these applications,
the immersed interface methods are often difficult to apply to complex two or three-dimensional two-phase
flow problems. In order to maintain a second-order accuracy, it is necessary to obtain jump conditions at
the interface for flow variables and their first and second derivatives. For the Navier–Stokes equations with
an interface of discontinuity, it is easy to derive the physical jump conditions for flow variables and their first
derivatives across the interface. But it is difficult to obtain jump conditions for the second or higher-order
derivatives. In order to develop third or higher-order immersed interface methods, it is necessary to obtain
jump conditions for the third and higher derivatives. In addition, the finite difference formulas of the original
immersed interface method need to be re-derived for different problems. The coefficients and the correction
terms in the finite difference formulas at irregular points cannot be obtained explicitly. They are often com-
puted numerically by solving a matrix equation. The repeated computations for the coefficients and correction
terms can be computationally expensive.

Linnick and Fasel [31] presented a high-order immersed interface method for simulating unsteady incom-
pressible flow in an irregular domain. Their method is an extension of the explicit-jump immersed interface
method of Wiegmann and Bube [56]. Instead of using analytical jump conditions, they compute the jump con-
ditions for higher derivatives numerically. A fourth-order compact scheme was successfully tested for comput-
ing incompressible flow over a cylinder. This method, however, is not applicable to two-phase flow with
moving interface with general jump conditions, such as those of Eq. (2). Piraux and Lombard [38,32] pre-
sented another sharp-interface method for numerical computations of interface for wave equations. In order
to discretize derivatives at irregular points, a set of modified variables across the interface are computed by
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using the original variables on both sides of the interface and a set of jump conditions for variables and deriv-
atives. This method also requires the knowledge of jump conditions of high-order derivatives.

Another ‘‘sharp-interface’’ method is the ghost fluid method of Fedkiw et al. [10,21,13]. The basic idea is to
extrapolate variables on one side of the interface into the ‘‘ghost cells’’ on the other side. Gibou and Fedkiw
[13] introduced an O(h4) accurate finite difference discretization for the Laplace and heat equations on irreg-
ular domain. However, the ghost fluid method is only first order accurate for two-phase flow simulation. Hel-
enbrook et al. [16] presented a second order interface method with ghost cells for incompressible flow with
surface discontinuity. The limitation of the method is that it is most suitable for inviscid flow only. It should
also be mentioned that sharp interface Cartesian grid methods have been developed for flow with moving solid
bodies [54,53,52,3,20,33,40]. These methods can be up to second order accurate. The treatment of irregular
points near the solid-fluid interface is mainly based on local polynomial extrapolations.

Based on the brief review above, it is desirable for a high-order immersed interface method to have the fol-
lowing properties:

1. Only two physical jump conditions of the variables and their first derivatives should be needed in the second
or higher-order immersed interface methods.

2. Finite difference formulas at irregular points should be expressed in a general explicit form (without the
need to compute matrix equations repeatedly) so that they can be applied to different problems without
any modification.

To reach these goals, this paper presents a new set of high-order immersed interface methods. They can be
arbitrarily high-order accurate, and require only jump conditions for variables and their first derivatives. The
new methods also have the advantage that the finite difference formulas at irregular points are derived in a
general explicit form. Compared with the original IIM method, one of the disadvantages of the new methods
is that they lead to wider grid stencils. They also do not recover the original finite difference expressions in
regular grid points when there is no jump at the interface. In the case of no discontinuity at the interface, how-
ever, the current methods are equivalent to a local high-order spline approximation at the interface. While the
main purpose of the current approach is to develop higher-order interface treatments, at second order approx-
imation, the current method provides an alternative approach to original second-order immersed interface
method.

The derivation, analysis, and test results of the new methods are presented in following sections. Though
the motivation of the present work is to apply the methods to multi-phase flow simulation [47,48], the new
high-order immersed interface methods are presented in this paper for elliptic equations in the form of Eq.
(1) with imbedded interface of discontinuity only. Nevertheless, the method has potential advantages in the
application to two-phase flow because of its high-order accuracy and simplicity in applications by requiring
only the physical jump conditions for variables and their first derivatives are needed in the finite difference
formulas. The derivation of jump conditions involving the second or higher-order derivatives can be difficult
for two-phase flow problem involving the Navier–Stokes equations.

During the review of this paper, one of the reviewers pointed out a paper by Zhou et al. [57] on a new high-
order matched interface and boundary (MIB) method for solving elliptic equations with discontinuous coef-
ficients and singular sources on Cartesian grids. The paper was in press by the Journal of Computational Phys-
ics at the time of making the revision of this paper. The MIB method is based on the use of fictitious points to
achieve high-order accuracy. To construct higher-order interface schemes, the MIB method bypasses the
major challenge of implementing high-order jump conditions by repeatedly enforcing the lowest order jump
conditions. In treating straight, regular interfaces, MIB schemes up to 16th-order were constructed. For more
general elliptic problems with curved, irregular interfaces and boundary, up to 6th-order MIB schemes were
demonstrated. The approach presented in the current paper is similar to Zhou et al.’s approach in that both
are high-order methods using lower order jump conditions only. The two methods are different in that Zhou’s
methods employ fictitious points to achieve high-order accuracy, which is similar to the idea of Ghost Fluid
Methods. In addition, the MIB formulas are not explicitly derived. Instead, they are computed by a computer
program. The current methods, on the other hand, do not use fictitious points and express the finite difference
formulas at irregular points in a generally applicable and explicit form.
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2. Explicit finite difference formulas at irregular grid points

The new high-order immersed interface method is presented for one-dimensional differential elliptic equa-
tions in the form of Eq. (1) in this section. The method is extended to two-dimensional elliptic equations after-
ward. For simplicity, only the finite difference approximation to ðdu=dxÞi and ðd2u=dx2Þi is presented, though
formulas for higher derivatives can be easily obtained by the same method. A uniform grid of mesh size h

shown in Fig. 2 is used for the discretization. Without losing generality, it is assumed that the origin of the
coordinate system is located at grid point i, i.e.
Fig. 2.
and rig
xiþk ¼ kh ðk ¼ 0;�1;�2; . . .Þ ð3Þ

The interface is located at:
xC ¼ xi þ rh ¼ rh ð4Þ

where r is the interface location parameter which satisfies
0 6 r 6 1 ð5Þ

As discussed in the preceding section, only two jump conditions involving u and ux are used in the finite dif-
ference approximation of the derivatives. A general jump conditions across the interface can be written as:
½au� ¼ aþuþ � a�u� ¼ A ð6Þ

and
½bux� ¼ bþuþx � b�u�x ¼ B ð7Þ

where the superscripts, ‘‘+’’ and ‘‘�’’, represent the variables and constants at the right and left sides of the
interface C, respectively. The constants, a+, a�, b+, b�, A, and B, are known constants determined by the nat-
ure of the equation being computed. In an actual two-phase flow problem, the jump conditions can be formu-
lated such that a+, a�, b+, b� are dimensionless constants.

A grid point is called a regular point if the finite difference formulas at this point only involve grid points on
the same side of the interface. Otherwise, it is an irregular point. If grid point i is a regular point (without the
interface), finite difference approximation of an arbitrary order can be easily derived by a Taylor series expan-
sion or by a polynomial interpolation. For example, the second and fourth order central difference approxi-
mations to ðd2u=dx2Þi are:
d2u
dx2

� �
i

¼ ui�1 � 2ui þ uiþ1

h2
þ Oðh2Þ ð8Þ
and
d2u
dx2

� �
i

¼ �ui�2 þ 16ui�1 � 30ui þ 16uiþ1 � uiþ2

12h2
þ Oðh4Þ ð9Þ
i+m... ...ii-n+1 i+1i-1

h

Interface Γσ h

(n  points on left side) (m points on right side) 

Uniform grid with an interface located on the right side of irregular point i with a general grid stencil of n and m points on the left
ht sides, respectively.
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Therefore, in the case of O(h2) approximation in the regular points, i and iþ 1 (Fig. 2) are irregular points. For
the O(h4) approximation, there are four irregular points, from i� 1 to iþ 2. Alternatively, we can treat only
points i and iþ 1 as irregular points, while fourth-order one-sided approximation is used for points i� 1 and
iþ 2. The latter approach is used in this paper.

For irregular point i shown in Fig. 2, the use of Eq. (8) will lead to large computational errors because of
the discontinuity of u at C. LeVeque and Li [24] derived a locally O(h) approximation at i by adding a cor-
rection term to the three-point stencil. The difference formula and the correction term are then determined
by a Taylor expansion at the interface. In order to reach O(h) approximation, it is necessary to know the jump
conditions involving u, ux and uxx. The first two jump conditions can be obtained easily. The jump conditions
for the second derivatives can be obtained by taking derivatives of the lower order jump conditions together
with the differential equation.

Therefore, the high-order immersed interface method presented below achieves a high-order approximation
at the irregular point i by imposing the two jump conditions given by Eqs. (6) and (7) only. Instead of using
more and more jump conditions of higher-order derivatives to achieve higher-order accuracy at the irregular
point as done in the original IIM method, we use more and more grid points on both sides of the interface so
that arbitrary order approximation can be achieved while only the two jump conditions (6) and (7) are
imposed. General difference formulas for ðdu=dxÞi and ðd2u=dx2Þi in explicit form can be derived by a matched
polynomial expansion, so that they are problem independent.

Finite difference approximation for ðdu=dxÞi and ðd2u=dx2Þi at the irregular point i is considered by using a
stencil of n points on the left of C and m points on the right (Fig. 2). The order of the approximation increases
with the increasing values of n and m. In order to have a uniform accuracy, it is desirable to have the same
number of points on both sides of the interface, i.e.
n ¼ m ð10Þ

Since n and m can be different in some special circumstances, we derive the general formulas by assuming arbi-
trary values of n and m. The finite difference formulas for i can be derived by a Taylor series expansion with r
as a parameter. The case of locally O(h) approximation for ðd2u=dx2Þi at interface is considered first as an
example below. A general formula for arbitrary values of n and m is derived afterward.

2.1. Difference formulas for ðd2u=dx2Þi at irregular points ðOðhÞ; n ¼ m ¼ 2Þ

For the case of local O(h) approximation, it can be shown that it is necessary to use two points on both
sides of C ðn ¼ m ¼ 2Þ when only two jump conditions (6) and (7) are used in the formula. A general finite
difference formula, using the four-point stencil and the two jump conditions, can be written in the following
form:
d2u
dx2

� �
i

¼ d�1ui�1 þ d0ui þ d1uiþ1 þ d2uiþ2 þ dAAþ hdBB

h2
þ OðhÞ ð11Þ
where dks are determined by Taylor expansions around xC with the requirement that the approximation is
O(h). The constants A and B are given by Eqs. (6) and (7). By paying special attention to the fact that u

and its derivatives can be discontinuous at C, we obtain the Taylor expansions at xC as:
ui�1 ¼ u�C � ð1þ rÞh du
dx

� ��
C

þ 1

2!
ð1þ rÞ2h2 d2u

dx2

� ��
C

þ � � � ð12Þ

ui ¼ u�C � rh
du
dx

� ��
C

þ 1

2!
r2h2 d2u

dx2

� ��
C

þ � � � ð13Þ

uiþ1 ¼ uþC þ ð1� rÞh du
dx

� �þ
C

þ 1

2!
ð1� rÞ2h2 d2u

dx2

� �þ
C

þ � � � ð14Þ

uiþ2 ¼ uþC þ ð2� rÞh du
dx

� �þ
C

þ 1

2!
ð2� rÞ2h2 d2u

dx2

� �þ
C

þ � � � ð15Þ
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where superscripts ‘‘�’’ and ‘‘+’’ represent the variables on the left and right sides of the interface, respec-
tively. Substituting Eqs. (6) and (7) into Eqs. (14) and (15), we have
uiþ1 ¼
A
aþ
þ ð1� rÞhB

bþ
þ cau�C þ cbð1� rÞh du

dx

� ��
C

þ 1

2!
ð1� rÞ2h2 d2u

dx2

� �þ
C

þ � � � ð16Þ

uiþ2 ¼
A
aþ
þ ð2� rÞhB

bþ
þ cau�C þ cbð2� rÞh du

dx

� ��
C

þ 1

2!
ð2� rÞ2h2 d2u

dx2

� �þ
C

þ � � � ð17Þ
where ca and cb are parameters determined by the jump conditions of the physical problems, i.e.,
ca ¼ a�=aþ ð18Þ
cb ¼ b�=bþ ð19Þ
Substituting Eqs. (12), (13), (16), and (17) into Eq. (11) leads to
d2u
dx2

� �
i

¼ 1

h2
a1u�C þ a2

du
dx

� ��
C

hþ a3

d2u
dx2

� ��
C

h2 þ a4

d2u
dx2

� �þ
C

h2 þ a5Aþþa6Bhþ Oðh3Þ
 !

ð20Þ
where the coefficients ai for ði ¼ 1; . . . ; 6Þ can be obtained easily. The conditions for an O(h) approximation of
ðd2u=dx2Þi are then obtained by Eq. (20), i.e.,
ai ¼ 0 ði ¼ 1; . . . ; 6 and i 6¼ 3Þ
a3 ¼ 1

�
ð21Þ
Hence the conditions for O(h) approximation of ðd2u=dx2Þi can be written as:
1 1 ca ca 0 0

�ð1þ rÞ �r ð1� rÞcb ð2� rÞcb 0 0

ð1þ rÞ2 r2 0 0 0 0

0 0 ð1� rÞ2 ð2� rÞ2 0 0

0 0 1 1 aþ 0

0 0 ð1� rÞ ð2� rÞ 0 bþ

26666666664

37777777775

d�1

d0

d1

d2

dA

dB

2666666664

3777777775
¼

0

0

2

0

0

0

2666666664

3777777775
ð22Þ
It is necessary to solve the matrix equation above in order to obtain the values of dk (k ¼ �1; . . . ; 2), dA, and
dB. For the current case of using two grid points on both sides of the interface, the grid stencil is relatively
small and the analytical solution of Eq. (22) can be obtained as:
d�1 ¼
1

D
fcað3r� 2r2Þ � cbð�2þ 3r� r2Þg

d0 ¼
1

D
fcað�3� rþ 2r2Þ � cbð2� 3rþ r2Þg

d1 ¼
1

D
f4� 4rþ r2g

d2 ¼
1

D
f�1þ 2r� r2g

dA ¼
1

aþD
f�3þ 2rg

dB ¼ �
1

bþD
f2� 3rþ r2g

ð23Þ
where
D ¼ 1

2
fcbð2þ r� 5r2 þ 2r3Þ � cað�3r� r2 þ 2r3Þg
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and dks are functions of r (and jump parameters: ca, cb, a+, and b+), i.e.
dk ¼ dkðrÞ k ¼ ð�1; . . . ; 2;A;BÞ ð24Þ

Eq. (11), together with Eq. (23), is an explicit difference formula for O(h) approximation to ðd2u=dx2Þi. The
same general formula can be used for different problems as long as the jump conditions are specified in the
form of Eqs. (6) and (7). Eq. (23) shows that the current formula at the irregular point does not have singu-
larity even for the special cases of C coinciding with grid i ðr ¼ 0Þ or iþ 1 ðr ¼ 1Þ.

For high-order approximations with larger values of n and m, the same procedure can be used to derive the
finite difference approximation to the second derivative of ðd2u=dx2Þi. For the general case of arbitrary n and
m, the Taylor expansion leads to a linear system of nþ m equations for the coefficients dk. The analytical solu-
tion for the matrix equation similar to Eq. (22) is difficult to obtain in the general case. The matrix equation
can be solved numerically during the simulation after the value of r is determined at a particular grid point.
Such calculations were used in LeVeque and Li’s original second-order IIM method. Since r can change dur-
ing the course of the calculations, repeatedly solving the matrix equation for dk can be computationally expen-
sive (if n and m are large). Therefore, it is desirable to have explicit difference formulas for dk, similar to those
of Eq. (23), for any order of approximation, instead of a matrix equation. These general formulas are derived
by a matched polynomial interpolation in next section.

2.2. Difference formulas at irregular point with a general nþ m grid stencil

The general case of finite difference formulas at irregular point i for arbitrary stencil of n and m points are
considered in this section. The finite difference approximation at irregular grid point i (Fig. 2) can be derived
either by a Taylor series expansion or by a matched polynomial interpolation. Both methods lead to the same
results. Since an explicit formula for a general finite difference approximation for arbitrary values of r, n, and
m can be obtained by a matched polynomial interpolation, it is used for the derivation here.

Because of the discontinuity at C, it is necessary to use two separate polynomials to interpolate through grid
points on both sides of the interface. The two polynomials satisfy the two jump conditions of Eqs. (6) and (7).
The two polynomials are dependent on each other because of the constraint imposed by the jump conditions.
The appropriate polynomials on the either side of C will be one degree higher than the Lagrange polynomial
supported by the one-sided grid stencil, with an arbitrary undetermined coefficient. The two unknown coeffi-
cients are subsequently determined by the jump conditions. It can be shown that the polynomial on the left
side of C, interpolating through n grid points (Fig. 2), can be written as
P�ðxÞ ¼
X�nþ1

k¼0

lkðxÞuiþk þ anRðxÞ ð25Þ
where an is an undetermined coefficient to be decided by the jump conditions, and
RðxÞ ¼
Y�nþ1

k¼0

ðx� xiþkÞ ð26Þ
lkðxÞ is the Lagrange polynomial interpolating through the n grid points on the left hand side of C, i.e.
lkðxÞ ¼
Y�nþ1

l¼0;l 6¼k

ðx� xiþlÞ
Y�nþ1

l¼0;l 6¼k

,
ðxiþk � xiþlÞ ð27Þ
Similarly, the polynomial on the right hand side of C is:
PþðxÞ ¼
Xm

k¼1

hkðxÞuiþk þ bmQðxÞ ð28Þ
where bm is an undetermined coefficient, and
QðxÞ ¼
Ym

k¼1

ðx� xiþkÞ ð29Þ
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hkðxÞ is the Lagrange polynomial through the m grid points on the right hand side, i.e.
hkðxÞ ¼
Ym

l¼1;l 6¼k

ðx� xiþlÞ
Ym

l¼1;l 6¼k

ðxiþk � xiþlÞ
,

ð30Þ
The two undetermined coefficients, an and bm, are determined by Eqs. (6) and (7). Substituting Eqs. (25) and
(28) into Eq. (6):
aþ
Xm

k¼1

hkðxCÞuiþk þ bmQðxCÞ
( )

� a�
X�nþ1

k¼0

lkðxCÞuiþk þ anRðxCÞ
( )

¼ A ð31Þ
Rearrange the equation above:
c11an þ c12bm ¼ b1 ð32Þ
where
c11 ¼ �a�RðxCÞ
c12 ¼ aþQðxCÞ ð33Þ

b1 ¼ A� aþ
Xm

k¼1

hkðxCÞuiþk þ a�
X�nþ1

k¼0

lkðxCÞuiþk
Similarly, the second jump condition is imposed by substituting Eqs. (25) and (28) into Eq. (7), i.e.
bþ
Xm

k¼1

h0kðxCÞuiþk þ bmQ0ðxCÞ
( )

� b�
X�nþ1

k¼0

l0kðxCÞuiþk þ anR0ðxCÞ
( )

¼ B ð34Þ
or
c21an þ c22bm ¼ b2 ð35Þ

where
c21 ¼ �b�R0ðxCÞ
c22 ¼ bþQ0ðxCÞ

b2 ¼ B� bþ
Xm

k¼1

h0kðxCÞuiþk þ b�
X�nþ1

k¼0

l0kðxCÞuiþk

ð36Þ
Solving Eqs. (32) and (35) results in the following general formulas for an (the value of bm is not needed for the
approximation of ðd2u=dx2Þi at i, which is located on the left side of C):
an ¼
Xm

k¼�nþ1

ckuiþk þ n�A Aþ n�B B ð37Þ
where
ck ¼
1
J fa�b

þQ0ðxCÞlkðxCÞ � aþb�QðxCÞl0kðxCÞg ðk ¼ �nþ 1 . . . 0Þ
aþbþ

J f�Q0ðxCÞhkðxCÞ þ QðxCÞh0kðxCÞg ðk ¼ 1; . . . ;mÞ

(

n�A ¼
1

J
bþQ0ðxCÞ
� �

ð38Þ

n�B ¼ �
1

J
faþQðxCÞg

J ¼ aþb�R0ðxCÞQðxCÞ � a�bþQ0ðxCÞRðxCÞ
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Based on Eq. (25) and an given by Eq. (37), finite difference approximation of derivatives of any order at an
irregular grid point located on the left side of C can be derived by evaluating the derivatives of P�ðxÞ at the
corresponding location. Hence, the lth derivative at point i can be approximated by
dlu
dxl

� �
i

� dlP�ðxÞ
dxl

� �
x¼xi

ð39Þ
where l is an arbitrary positive integer. By substituting Eqs. (25) and (37) in to Eq. (39), the general finite dif-
ference formula is:
dlu
dxl

� �
i

�
Xm

k¼�nþ1

dkuiþk þ dAAþ dBB ð40Þ
where
dk ¼
lðlÞk ðxiÞ þ ckRðlÞðxiÞ ðk ¼ �nþ 1 . . . 0Þ
ckRðlÞðxiÞ ðk ¼ 1; . . . ;mÞ

(
dA ¼ n�A RðlÞðxiÞ ð41Þ
dB ¼ n�B RðlÞðxiÞ
Eq. (40) can be used to obtain finite difference approximation for ðdu=dxÞi and ðd2u=dx2Þi, as well as any other
derivatives, for the case of C located on the right side of irregular point i. Formulas for the case of interface
located on the left side of the irregular grid point can be derived from Eq. (40) by a coordinate transformation
described later in the section.

The specific difference formulas of various orders are derived in this paper by a computer program based
on the general formulas listed above. The order of accuracy increases when the grid stencil surrounding the
irregular point becomes larger. In order to maintain a uniform accuracy, the same numbers (n ¼ m) of grid
points are used on both sides of C. The most useful formulas are presented below and in the Appendix of
this paper.

2.3. Difference formulas at irregular points with four-point stencil (n ¼ m ¼ 2)

2.3.1. Interface located on the right side of irregular grid point

This case is shown in Fig. 2, where the interface is located on the right side of i with a given value of
r. A four-point grid stencil, two on each side of the interface, is used for the finite difference approx-
imation of derivatives at i. The general formula for the second derivative was derived by Taylor expan-
sions in Eqs. (11) and (23). In addition to the same results for ðd2u=dx2Þi, the matched polynomial
interpolation formula (40) can provide formulas for first and higher derivatives. The general formulas
are:
du
dx

� �
i

¼ d�1ui�1 þ d0ui þ d1uiþ1 þ d2uiþ2 þ dAAþ hdBB
2h

þ ui � ui�1

h
þ Oðh2Þ ð42Þ

d2u
dx2

� �
i

¼ d�1ui�1 þ d0ui þ d1uiþ1 þ d2uiþ2 þ dAAþ hdBB

h2
þ OðhÞ ð43Þ
where dks are the same as those derived by the Taylor expansion in Eq. (23).

2.3.2. Interface located on the left side of irregular grid point

This case is demonstrated in Fig. 3, where C is specified by r. Finite difference formulas for this case can be
obtained from Eqs. (42) and (43) by a coordinate transformation, i.e.
x0 ¼ �x ð44Þ



i+m... ...i i+1i-n+1 i-1

h

Interface Γ
σ h

(n  points on left side) (m points on right side) 

Fig. 3. Uniform grid with an interface located on the left side of irregular point i.
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It can be shown that the finite difference formulas at i for the current case are:
du
dx

� �
i

¼ � d�1uiþ1 þ d0ui þ d1ui�1 þ d2ui�2 � dAAþ hdBB
2h

þ uiþ1 � ui

h
þ Oðh2Þ ð45Þ

d2u
dx2

� �
i

¼ d�1uiþ1 þ d0ui þ d1ui�1 þ d2ui�2 � dAAþ hdBB

h2
þ OðhÞ ð46Þ
where dks are given by Eq. (23).
The difference formulas above are general in the sense that they can be used without modification for dif-

ferent problems as long as the jump conditions are given in the form of (6) and (7). For the special case that
there is no discontinuity at the interface, corresponding to:
½a� ¼ 0; ½b� ¼ 0; A ¼ 0; B ¼ 0
Eqs. (42) and (43) reduce to a local piecewise polynomial approximation with continuous zero and first deriv-
atives at the interface. As stated before, in the limiting case of C coinciding with the two grid points i (r ¼ 0)
and iþ 1 (r ¼ 1), Eqs. (42) and (43) are not singular. In other words, the coefficients given by Eq. (23) are well
defined in r 2 ½0; 1�, including the two end points.

The four-grid stencil (n ¼ m ¼ 2) leads to a piecewise second-degree polynomial approximation at the irreg-
ular point. This results in a O(h) approximation for ðd2u=dx2Þi and a O(h2) approximation for ðdu=dxÞi. This
approximation has the same order of accuracy as LeVeque and Li’s [24] locally first-order (but globally sec-
ond-order) immersed interface method.

The difference formulas at irregular points with 6–10-point stencils (n ¼ m ¼ 3, n ¼ m ¼ 4 and n ¼ m ¼ 5)
have also been computed, and they are given in the Appendix.

2.4. Difference formulas at irregular points with two-point stencil (n ¼ m ¼ 1)

Finite difference formula can be derived for the special case of using one grid point on both sides of the
interface at the irregular grid point i shown in Fig. 2. Second derivative cannot be obtained in this case because
the stencil is not wide enough. For the case shown in Fig. 2:
du
dx

� �
i

¼ d0ui þ d1uiþ1 þ dAAþ hdBB
h

þ OðhÞ ð47Þ
where
d0 ¼
1

D
fcag

d1 ¼
�1

D

dA ¼
1

aþD

dB ¼ �
1

bþD
f�1þ rg

ð48Þ
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where
Fig.
D ¼ fcbð�1þ rÞ � caðrÞg

In the special case of a� ¼ b� ¼ 1, the jump conditions (6) and (7) reduce to: ½u� ¼ A and ½ux� ¼ B. In this case,
Eq. (47) can be written as:
du
dx

� �
i

¼ uiþ1 � ui � J
h

þ OðhÞ ð49Þ
where the correction term is:
J ¼ Aþ ð1� rÞhB ¼ ½u�C þ ð1� rÞh½ux�C ð50Þ

This correction term is the same as the correction term when a linear extrapolation used in the ghost fluid
method to approximate the first derivative at the interface.

2.5. Special case of irregular point surrounded by two interfaces

The difference formulas presented in the preceding sections are for an irregular grid point which is affected
by one interface either on its left side or on its right side. In actual computations, however, special cases can
arise where these general formulas do not apply. Fig. 4 shows an example of the special cases when an irreg-
ular point is surrounded by two interfaces from both sides. Similar special situations also appear when the
interface is very close to the boundary of the computation domain, or when two or more interfaces are very
close to a grid point. The difference formulas for irregular grid points need to be modified for the special cases.

In this section, only the special case shown in Fig. 4 is considered. Other special cases can be treated sim-
ilarly. They are not discussed here. Fig. 5 shows a one-dimensional counter part of Fig. 4 where an irregular
point i is surrounded by two interfaces. The locations of the two interfaces are specified by r1 (r1 2 ½0; 1�) and
r2 (r2 2 ½0; 1�) as shown in Fig. 5. The grid points are separated into three sections by the two interfaces. We
assume a general case of approximating derivatives at point i by using a grid stencil of three groups of grids (K,
N, and M) in the three sections separated by the interfaces, i.e.

� K points in the left section ðj ¼ i� K � N þ 1; . . . ; i� NÞ;
� N points in the middle section ðj ¼ i� N þ 1; . . . ; iÞ;
� M points in the right section ðj ¼ iþ 1; . . . ; iþMÞ.

Finite difference formulas at the irregular point i for this case are derived by a matched polynomial inter-
polation satisfying the following four jump conditions at the two interfaces:

At C1:
½a1u� ¼ aþ1 uþ � a�1 u� ¼ A1 ð51Þ
Irregular Point( i,j)

Δy

i-2

j

i+2i

j+2

j-1

Interface Γ

Δx
i-1 i+1

j+1

PQ

4. A special case where the irregular point (i, j) is surrounded by two interfaces from both sides along the horizontal grid line.



i+m... ...ii-k-n+1 i+1i-n+1

h

Interface Γ1

σ1 hInterface Γ2
σ2 h

... i-n

(K  left points)        (N mid  points)        (M right points) 

Fig. 5. Uniform grid with two interfaces surrounding an irregular point i.
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½b1ux� ¼ bþ1 uþx � b�1 uþx ¼ B1 ð52Þ

At C2:
½a2u� ¼ aþ2 uþ � a�2 u� ¼ A2 ð53Þ
½b2ux� ¼ bþ2 uþx � b�2 uþx ¼ B2 ð54Þ
Because of the discontinuity at the interfaces, it is necessary to use three polynomials for the three groups of
grid points. Similar to the derivation of Section 2.2, it can be shown that the polynomials for the three sections
can be written as follows.

2.5.1. Middle region with N grid points

The polynomial, which interpolates through N points in the middle section between C1 and C2

(j ¼ i� N þ 1; . . . ; i) and satisfies the jump conditions from both interfaces, is:
P 0ðxÞ ¼
X�Nþ1

k¼0

lkðxÞuiþk þ ða1 þ a2xÞRðxÞ ð55Þ
where R(x) and lk(x) are given by Eqs. (26) and (27), respectively. Because of the additional jump conditions at
the interfaces, there are two undetermined coefficients, a1 and a2, in this case.

2.5.2. Right region with M grid points

The polynomial, which interpolates through M points located on the right hand side of interface C1

(j ¼ iþ 1; . . . ; iþM), is:
P 1ðxÞ ¼
XM

k¼1

hkðxÞuiþk þ a3QðxÞ ð56Þ
where Q(x) and hk(x) are given by Eqs. (29) and (30). There is one undetermined coefficient a3 to be decided by
the jump conditions.

2.5.3. Left region with K grid points

The polynomial, which interpolates through K points located on the left hand side of interface C2

(j ¼ i� K � N þ 1; . . . ; i� N ), is:
P 2ðxÞ ¼
X�K�Nþ1

k¼�N

tkðxÞuiþk þ a4T ðxÞ ð57Þ
where
T ðxÞ ¼
Y�N�Kþ1

k¼�N

ðx� xiþkÞ ð58Þ
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and tk(x) is the Lagrange interpolation polynomial through the K grid points on the left hand side of the inter-
face C2, i.e.,
tkðxÞ ¼
Y�N�Kþ1

l¼�N ;l 6¼k

ðx� xiþlÞ
, Y�N�Kþ1

l¼�N ;l 6¼k

ðxiþk � xiþlÞ ð59Þ
There is one undetermined coefficient a4 to be decided by the jump conditions.
There are four undetermined coefficients, al ðl ¼ 1; . . . ; 4Þ, in polynomials (55)–(57). They are decided by

the four jump conditions (51)–(54). Substituting Eqs. (55)–(57) into the four jump conditions, we have:
aþ1
XM

k¼1

hkðxC1
Þuiþk þ a3QðxC1

Þ
( )

� a�1
X�Nþ1

k¼0

lkðxC1
Þuiþk þ ða1 þ a2xC1

ÞRðxC1
Þ

( )
¼ A1 ð60Þ

bþ1
XM

k¼1

h0kðxC1
Þuiþk þ a3Q0ðxC1

Þ
( )

� b�1
X�Nþ1

k¼0

l0kðxC1
Þuiþk þ ða1 þ a2xC1

ÞR0ðxC1
Þ þ a2RðxC1

Þ
( )

¼ B1 ð61Þ

aþ2
X�Nþ1

k¼0

lkðxC2
Þuiþk þ ða1 þ a2xC2

ÞRðxC2
Þ

( )
� a�2

X�N�Kþ1

k¼�N

tkðxC2
Þuiþk þ a4T ðxC2

Þ
( )

¼ A2 ð62Þ

bþ2
X�Nþ1

k¼0

l0kðxC2
Þuiþk þ ða1 þ a2xC2

ÞR0ðxC2
Þ þ a2RðxC2

Þ
( )

� b�2
X�N�Kþ1

k¼�N

t0kðxC2
Þuiþk þ a4T 0ðxC2

Þ
( )

¼ B2 ð63Þ
Similar to the derivation in Section 2.2, the undetermined coefficients can be obtained explicitly by solving the
four linear equations above. Specifically, and arbitrary coefficient, al, can be expressed in the following form:
al ¼
XM

k¼�K�Nþ1

cðlÞk uiþk þ cðlÞA1
A1 þ cðlÞB1

B1 þ cðlÞA2
A2 þ cðlÞB2

B2 ðl ¼ 1; . . . ; 4Þ ð64Þ
where cðlÞk s are obtained by solving Eqs. (60)–(63) as explicit functions of r1 and r2, i.e.
cðlÞk ¼ cðlÞk ðr1; r2Þ ð65Þ

Once these coefficients are determined, finite difference approximation of the first and second derivatives, as
well as derivatives of any other order, at any irregular grid point in these three sections can be derived by eval-
uating the derivatives of the corresponding polynomial in the corresponding section. For irregular point i in
the middle section, for example, the second derivative can be approximated as:
d2u
dx2

� �
i

� d2P 0ðxÞ
dx2

� �
x¼xi

ð66Þ
The equation above leads to a general finite difference in the following form:
d2u
dx2

� �
i

� 1

h2

XM

k¼�K�Nþ1

dkuiþk þ d11A1 þ d12hB1 þ d13A2 þ d14hB2

( )
ð67Þ
where the coefficients can be expressed as explicit rational functions of r1 and r2. The finite difference formulas
for irregular grid points in the left and right sections in Fig. 5 can also be derived similarly.

In order to maintain uniform accuracy, it is necessary to use a grid stencil where the numbers of grid points
in the three sections satisfy:
M ¼ K ¼ N þ 1 ð68Þ

In other words, we can use one less grid point in the mid section without lowering the order of approximation.
For example, if there is only one grid point in the mid section (N ¼ 1), we can still obtain an O(h) approxi-
mation for ðd2u=dx2Þi by using the following grid stencil of one point in the middle section and two points
in each of the two other sections, i.e.
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M ¼ K ¼ 2

N ¼ 1
ð69Þ
The corresponding finite difference formula is
d2u
dx2

� �
i

¼ d�2ui�2 þ d�1ui�1 þ d0ui þ d1uiþ1 þ d2uiþ2 þ d11A1 þ d12hB1 þ d13A2 þ d14hB2

h2
þ OðhÞ ð70Þ
The coefficients in the above equation can be derived by using the general formulas presented in this section.

3. Application to one-dimensional equations

The new high-order finite difference approximation to derivatives at irregular points has been tested in sev-
eral one-dimensional equations with discontinuous coefficients and delta function source terms. An example is
shown here for the following one-dimensional equation:
d2u
dx2
þ a2u ¼ bdðx� xCÞ ð�0:5 6 x 6 0:5Þ ð71Þ
where b is a constant, and a is discontinuous across the interface located at x ¼ xC:
a ¼
a1 �0:5 6 x 6 xC

a2 xC 6 x 6 0:5

�
ð72Þ
where a1 and a2 are known integers. The boundary conditions are: uð�0:5Þ ¼ uð0:5Þ ¼ 0. In this equation,
there is a discontinuity in ux(x) across the interface xC, i.e.
½u�C ¼ 0

½ux�C ¼ b
ð73Þ
The exact solution is:
uexðxÞ ¼

b cosða2xCÞ cosða1xÞ
a1 cosða2xCÞ sinða1xCÞ � a2 sinða2xCÞ cosða1xCÞ �0:5 6 x 6 xC

b cosða1xCÞ cosða2xÞ
a1 cosða2xCÞ sinða1xCÞ � a2 sinða2xCÞ cosða1xCÞ xC 6 x 6 0:5

8>><>>: ð74Þ
A set of uniform grid of N þ 1 points is used to discretize the equation. The coordinate of an arbitrary grid
point is:
xi ¼ �0:5þ ih ði ¼ 0; . . . ;NÞ ð75Þ

where h ¼ 1=N . The interface is located at the interval between i ¼ iC and i ¼ iC þ 1, where
iC ¼ bðxC þ 0:5Þ=hc. The interface location parameter r is:
~r ¼ xC þ 0:5

h
� iC ð76Þ
In this case, all grid points are regular points except the two grid points located immediately next to the inter-
face, i.e., the indices of the two irregular points are: i ¼ iC and i ¼ iC þ 1.

In this paper, six versions of the new immersed interface method (Methods A–F in Table 1) with different
combinations of orders for the regular points and for the irregular points are considered. The finite difference
formulas to discretize Eq. (71) by Method A are shown here as an example. In Eq. (71), ðd2u=dx2Þi is computed
by Eq. (8) for the regular grid points. For the irregular points (i ¼ iC and i ¼ iC þ 1), locally O(h) (n ¼ m ¼ 2)
finite difference formulas for ðd2u=dx2Þi are used. The difference formulas for the irregular points have different
forms, depending on whether xC is located on the left or right side of the grid point: Eq. (43) for i ¼ iC and Eq.
(46) for i ¼ iC þ 1. Hence,



Table 1
Six versions of current immersed interface method tested in this paper

Methods Order at regular grid points Order at irregular grid points Expected global order of accuracy

Method A O(h2) O(h) ðn ¼ m ¼ 2Þ O(h2)
Method B O(h2) O(h2) ðn ¼ m ¼ 3Þ O(h2)
Method C O(h4) O(h) ðn ¼ m ¼ 2Þ O(h2)
Method D O(h4) O(h2) ðn ¼ m ¼ 3Þ O(h3)
Method E O(h4) O(h3) ðn ¼ m ¼ 4Þ O(h4)
Method F O(h4) O(h4) ðn ¼ m ¼ 5Þ O(h4)
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d2u
dx2

� �
i

¼

d�1ui�1 þ d0ui þ d1uiþ1 þ d2uiþ2 þ dAAþ hdBB
h2 i ¼ iC

~d2ui�1 þ ~d1ui þ ~d0uiþ1 þ ~d�1uiþ2 � ~dAAþ h~dBB
h2 i ¼ iCþ1

ui�1 � 2ui þ uiþ1

h2 others

8>>>>><>>>>>:
ð77Þ
where dks for i ¼ iC are computed by Eq. (23) directly by using the value of r ¼ ~r given by Eq. (76) and the
following jump parameters for Eq. (71):
aþ ¼ bþ ¼ ca ¼ cb ¼ 1; A ¼ 0; B ¼ b ð78Þ

The coefficients ~dks for i ¼ iCþ1 are computed by Eq. (23) using the value of r ¼ 1� ~r and jump conditions
(78) (see Section 2.3).

3.1. Stiffness of difference operator with new high-order approximation at interface

Eq. (77) can be written in the vector form:
d2

dx2

u1

..

.

uN�1

2664
3775 ¼M

u1

..

.

uN�1

2664
3775þ b ð79Þ
where M is the coefficient matrix. The stability and the stiffness of the numerical computations involving the
difference formulas given by Eq. (79) can be measured by the condition number of M. Therefore, it is inter-
esting to evaluate the effect of the current interface treatment on the stiffness of M by comparing its condition
numbers for two cases with and without the interface treatment. The condition number of M is approximately
measured by the ratio of the maximum and minimum magnitudes of its eigenvalue spectrum, i.e.
Cond ¼
ðmax jkjÞk2rðMÞ
ðmin jkjÞk2rðMÞ

ð80Þ
where rðMÞ denotes the set of all eigenvalues of M. The relative stiffness of M is measured by the ratio of the
condition number when there are irregular point treatments and that when there are no interface treatments,
i.e. the following ‘‘stiffness ratio’’ is computed:
Stiffness ratio ¼ CondIIM

CondReg

ð81Þ
where CondIIM and CondReg are the condition numbers of M with and without using the IIM formulas at the
irregular grid points. Therefore, the ratio measures the relative increase of stiffness of M when the IIM formu-
las are used at the irregular points. At the same time, the effect of the interface location on the stiffness of the
coefficient matrix can be examined. It should be pointed out that the value of b does not show up in the coef-
ficient matrix. Instead, it is part of the non-homogeneous term in Eq. (79). Hence it does not affect the stiffness
of the matrix.
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Fig. 6 shows the stiffness ratios of M for ðd2u=dx2Þi for Method A (globally O(h2) and n ¼ m ¼ 2) and
Method E (globally O(h4) and n ¼ m ¼ 4) as functions of the interface location parameter r. The figure shows
that the stiffness of M is the lowest when the interface is located midway between two grid points (r ¼ 0:5).
The stiffness increases when the interface moves closer to one of the two end points. It is the highest when xC

coincides with one of the two grid points (r ¼ 0 or r ¼ 1). In the case of Method A with a locally O(h) at the
interface, the stiffness ratio is:

� 1.15 when r ¼ 0:5
� 1.62 when r ¼ 0 or r ¼ 1.

This means that the interface treatment in this case is at most 1.62 times as stiff as the regular case without
the interface. When the order of the approximation is increased to O(h4) for Method E, the stiffness ratio
increases slightly to:

� 1.21 when r ¼ 0:5
� 2.69 when r ¼ 0 or r ¼ 1.
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This figure also shows that the stiffness ratio does not change much for different values of xði ¼ iCÞ (the fig-
ure shows the cases of xði ¼ iCÞ ¼ 0 and xði ¼ iCÞ ¼ 0:5Þ. Similarly, the computational results also show that
the stiffness ratio stays about the same between two cases of different grid points (N ¼ 40 and N ¼ 80Þ as
shown in Fig. 7.

Therefore, the use of current interface treatment slightly increases the stiffness of the coefficient matrix M.
Along the same line, in order to reach higher-order accuracy, the current interface treatment results in a non-
symmetric coefficient matrix M, which is different from that of the regular case without an interface. The non-
symmetric coefficient matrix may increase the cost of solving the linear equations involving M. Nevertheless,
this is a reasonable price to pay in order to obtain higher-order accuracy at the interface as long as the benefits
of the higher-order accuracy outweight the slight increases of stiffness and the loss of symmetry in M. The
actual benefits of the current high-order interface treatment for practical two and three-dimensional two-phase
flow simulation will be studied in a separate paper as mentioned in the abstract.

3.2. Results of one-dimensional test case

Fig. 8 shows the results of Eq. (71) computed by the current interface methods with the following
parameters:
Fig. 8.
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Table 2
Comparison of numerical errors of three methods for computing one-dimensional equation with a discontinuous interface

N r Delta function method O(h) Current method A O(h2) Current method D Oðh3Þ
kENk1 Ratio p kENk1 Ratio p kENk1 Ratio p

20 2/3 4.268(+1) 1.798(+1) 2.059
40 1/3 1.377 1.279 2.820(�2)
80 2/3 2.788(�1) 153.1 3.63 3.039(�1) 59.2 2.94 5.484(�3) 375.5 4.28

160 1/3 8.754(�2) 15.7 1.99 7.049(�2) 18.1 2.09 1.173(�4) 240.4 3.95
320 2/3 1.755(�2) 15.9 1.99 1.866(�2) 16.3 2.01 5.996(�5) 91.5 3.26
640 1/3 8.199(�3) 10.7 1.71 4.390(�3) 16.1 2.00 1.052(�6) 111.5 3.40

1280 2/3 2.276(�3) 7.71 1.47 1.167(�3) 16.0 2.00 8.244(�7) 72.7 3.09
2560 1/3 1.195(�3) 6.86 1.39 2.745(�4) 16.0 2.00 1.368(�8) 76.9 3.13
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Three interface methods are tested:

1. Immersed boundary method where the delta function in Eq. (71) is approximated by the standard linear hat
function.

2. Method A in Table 1 with global O(h2) accuracy, where (77) is used for ðd2u=dx2Þi.
3. Method D of Table 1 with a global Oðh3Þ accuracy, where O(h4) approximation is used at regular points

and a locally O(h2) formula (n ¼ m ¼ 3, Eq. (117)) is used at the irregular points.

Fig. 8 compares the solutions of the three methods with the exact solution. The solution is continuous at xC,
but there is a jump in the first derivatives at the interface. The three methods capture the solutions and the
discontinuity at the interface very well. There are no numerical oscillations in the three sets of numerical
solutions.

Fig. 8 also shows the errors of the solution obtained by using the three methods. For the current grid of
N ¼ 640, the second order Method A is slightly more accurate than the standard IBM method in computing
the interface. On the other hand, the numerical errors of the 3rd order Method D is about two orders of mag-
nitudes lower than those of the standard IBM method.

Table 2 shows the maximum-norm errors of the three methods, the corresponding error ratios, and com-
puted orders of accuracy p using eight sets of grids: N ¼ 20; 40; 80; . . . ; 2560. Since the location of the inter-
face, xC, is fixed when the grids are refined, the values of r, which represents the relative location of the
interface with respect to the grid points, vary alternatively between 1/3 and 2/3 (Table 2). In order to compare
the grid refinement results with the same conditions, the results are compared between grids N and N/4 (both
have the same r) in the grid refinement study. When the number of grids is increased by a factor of 4, the
errors are expected to decrease by a factor of 4p for a pth order method. The error ratio in Table 2 is defined
as
Ratio ¼ kEN=4k1
kENk1

ð82Þ
The order p in the same table computed by the grid refinement study is:
p ¼ lnðkEN=4k1=kENk1Þ
lnð4Þ ð83Þ
Table 2 shows that both method A second order) and method D (third order) produce numerical results which
are consistent with their orders of accuracy. The current second and third order methods lead to much more
accurate results than the first-order d function method.

4. Application to two-dimensional equations

All six versions of the new high-order immersed interface method listed in Table 1, with orders ranging
from O(h2) to O(h4), have been tested for a two-dimensional equation (in Section 4.1) used by LeVeque
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and Li [24]. In addition, the second order Method A and the fourth-order Method E have been tested for
another example (in Section 4.2) of LeVeque and Li [24]. The accuracy of the new methods is evaluated by
grid refinements and by comparing the current results with those of the original immersed interface method
by LeVeque and Li.

4.1. Two-dimensional example 1

The first two-dimensional example, which was used by LeVeque and Li [24] to test their second order IIM
method, is: Z
uxx þ uyy ¼
C

2dðx� X ðsÞÞdðy � Y ðsÞÞds ð84Þ
where the interface C is a circle defined by: x2 þ y2 ¼ 1=4. The computational domain is �1 6 x; y 6 1 shown
in Fig. 1. The Dirichlet boundary condition is specified along the boundary by using the exact solution:
uðx; yÞ ¼
1 if r 6 1=2

1þ logð2rÞ if r > 1=2

�
ð85Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The jump conditions at all points on C are
½u�C ¼ 0 ð86Þ
ou
on

� 	
C

¼ 2 ð87Þ
The computational domain is discretized by uniform grid as shown in Fig. 1.
The current one-dimensional difference formulas in Section 2 for high-order immersed interface method are

extended to two (and three) dimensional equations by a dimension by dimension approach. For a regular grid
point away from the interface, the derivatives with respective to x and y in Eq. (84) can be approximated by
standard central difference formulas below:
o2u
ox2

� �
i;j

¼
ui�1;j � 2ui;j þ uiþ1;j

Dx2 OðDx2Þ approximation

�ui�2;j þ 16ui�1;j � 30ui;j þ 16uiþ1;j � uiþ2;j

12Dx2 OðDx4Þ approximation

8><>: ð88Þ

o2u
oy2

� �
i;j

¼

ui;j�1 � 2ui;j þ ui;jþ1

Dy2 OðDy2Þ approximation

�ui;j�2 þ 16ui;j�1 � 30ui;j þ 16ui;jþ1 � ui;jþ2

12Dy2 OðDy4Þ approximation

8>><>>: ð89Þ
The irregular points are defined according to the coordinate directions. For example, a grid point is termed i-
irregular point if it is next to the interface along the i grid line. Fig. 9 shows a schematic of a two-dimensional
uniform grid with an immersed interface. In the figure, (i, j) is an i-directional irregular point, where the inter-
face cuts across the horizontal grid line at the nearby point P. The relative location of the interface is measured
by r shown in the figure. Similarly, for y derivatives, the interface point for the j-irregular point (i, j) is located
at point Q. In general, a grid point can be regular in one direction, but irregular in another. For interface point
P, the normal vector of the interface is n, which has angle a with respect to the x-axis.

In this case, the general finite difference formulas for the x-derivatives, such as Eqs. (43) and (46) for
Method A, are used directly. The jump conditions on u and ux for derivatives in x-direction are derived by
applying a coordinate transformation to the general jump condition (87). The jump conditions of the first
derivatives in the current example can be written in the following form:
ou
os

� 	
C

¼ A

ou
on

� 	
C

¼ B
ð90Þ
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Fig. 9. A schematic of a two-dimensional uniform grid with in immersed interface C, where (i, j) is an I-directional irregular point (J-
directional irregular points can be defined similarly).
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where (s,n) is the local coordinate along the tangential and normal directions of the interface, respectively. In
the case of Eq. (87), the corresponding values of A and B are:
A ¼ 0 and B ¼ 2 ð91Þ

The normal and tangential unit vectors in Fig. 9 are:
n ¼ cos aiþ sin aj

s ¼ � sin aiþ cos aj
ð92Þ
Hence Eq. (90) leads to:
cos a
ou
ox
þ sin a

ou
oy

� 	
C

¼ B

� sin a
ou
ox
þ cos a

ou
oy

� 	
C

¼ A
ð93Þ
Solving the two equations above:
ou
ox

� 	
C

¼ B cos a� A sin a ð94Þ

ou
oy

� 	
C

¼ B sin aþ A cos a ð95Þ
Therefore, in this case, we can directly use the general one-dimensional formulas for derivatives in the x-direc-
tion at i-irregular points together with the jump conditions (86) and (94). For example, if Method A
(n ¼ m ¼ 2) is used, ðo2u=ox2Þi;j at an irregular grid point can be calculated by Eq. (43) together with Eqs.
(86) and (94). Using the same approach, formulas for ðo2u=oy2Þi;j in the y-direction at a j-irregular point
can be derived at interface point Q shown in Fig. 9.

In the computer programming for a two-dimensional problem, the grid points are classified into four cat-
egories according to their relative locations with respect to the interface in a dimension-by-dimension manner.
For example, a grid point can be classified as one of the four kinds for the purpose of discretization in the i-
direction:

1. Regular point in i-direction;
2. Irregular point with an interface located between (i, j) and ðiþ 1; jÞ;
3. Irregular point with an interface located between ði� 1; jÞ and (i, j);
4. Irregular point of special kind, such as the case when point (i, j) is near two interfaces on both sides as

shown in Fig. 4.
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Similar classification of grid points is also defined independently for the derivatives in the y-direction. Sub-
sequently, all interface information can be calculated, and the finite difference formulas can be derived for each
grid point. The resulting linear finite difference equation can be solved by a number of elliptic equation solvers.
Since the focus of this paper is on the introduction of the basic algorithms, the linear equations are computed
by a direct solver in this paper, for the sake of simplicity.

4.1.1. Eigenvalue spectra of the coefficient matrices

The discretization of Eq. (84) by an immersed interface method in a uniform grid of N �M points leads to a
set of K ¼ ðN � 2Þ � ðM � 2Þ linear equations for all ui,j in the interior of the computational domain in the
range of i ¼ 2; . . . ;N � 1 and j ¼ 2; . . . ;M � 1. The linear equations can be written in the vector form as:
Fig. 10
irregul
PU ¼ b ð96Þ

where
U ¼ ½u2;2; . . . ; u2;N�1; u3;2; . . . ; uM�1;N�1�T ð97Þ

where P is the coefficient matrix of dimension K � K, U is the vector for all ui,j in the interior of the compu-
tational domain, and b is the non-homogeneous term. The stability of numerical computations involving a
finite difference approximation for Eq. (84) requires that all eigenvalues k of P satisfies:
ReðkÞ 6 0 ð98Þ

Therefore, it is necessary to evaluate the effect of the current interface treatment method on the eigenvalue
spectra of matrix P.

Fig. 10 shows the eigenvalue spectra of the coefficient matrix for discretizing Eq. (84) by using methods A
and F defined in Table 1. The two methods treat the regular and irregular points with different orders of
approximation. Method A is globally second order, while method F is fourth order. A uniform 40� 40 grid
is used in the computations. The eigenvalues in the figure are normalized by a factor of Dx2 so that the nor-
malized eigenvalues are ‘‘dimensionless’’. The figure shows that the real part of all eigenvalues of both method
A and method F are always negative, which satisfies the stability condition of Eq. (98). The computations of
the eigenvalue spectra for all six methods listed in Table 1 show that the current interface treatment is stable
for Eq. (84). Fig. 11 shows the spectra of four of those methods in the local area near the origin. Again, all
eigenvalues satisfy the stability condition given by Eq. (98). Therefore, the proposed high-order immersed
interface methods do satisfy the stability condition in terms of eigenvalue spectra for the two-dimensional test
problem of Eq. (84).
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4.1.2. Numerical results and comparison

LeVeque and Li [24] computed the same test case by using both the Delta function approach of the
immersed boundary method and their second-order immersed interface method. Here, their results are com-
pared with those computed by the six methods listed in Table 1.

Fig. 12 shows the numerical solution computed by Method A using 80� 80 grid. There is a discontinuity in
derivatives at the interface. This figure also compares the contours of the exact solution and those computed
by current fourth-order immersed interface method E. The two solutions agree very well with each other.
There are no visible differences between the two solutions as shown in the figures. In addition, there are no
oscillations in the numerical solutions at the interfaces with discontinuous gradients.

A grid refinement study based on the infinity-norm numerical errors, kENk1, has been conducted by using
the following two sets of grids: 40� 40 and 80� 80 grids. Table 3 shows the numerical errors of the six current
methods of various orders (Table 1), as well as the results of LeVeque and Li’s original second-order immersed
interface method and the delta function approximation results. For a pth order method, the ratio of the errors
of two successive sets of grids should approach the following limit:
Ratio ¼ kENk1
kE2Nk1

! 2p ð99Þ
Table 3 shows that the current second-order methods (Methods A–C) produce the same level of accuracy as
the original second-order IIM of LeVeque and Li [24]. The error ratios and computed order of accuracy p are
also listed in the table. Their error ratios are slightly better than the asymptotic value of 4. In the case of Meth-
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Table 3
Comparison of computational errors of six current immersed interface methods (from O(h2) to Oðh3Þ) and those of the original second-
order IIM of LeVeque and Li [24]

Methods kENk1 40� 40 Grid kENk1 80� 80 Grid Error ratio p

d Function method 2:6467� 10�2 1:3204� 10�2 2.0045 1.003
LeVeque & Li’s (O(h2)) IIM 8:3461� 10�4 2:4451� 10�4 3.4134 1.771
Current Method A (O(h2)) 1:6339� 10�3 2:8581� 10�4 5.7165 2.515
Current Method B (O(h2)) 4:4405� 10�4 9:5040� 10�5 5.7244 2.517
Current Method C (O(h2)) 1:5715� 10�3 2:5039� 10�4 6.2763 2.650
Current Method D (O(h3)) 4:9529� 10�4 4:7499� 10�5 10.4275 3.382
Current Method E (O(h4)) 1:2215� 10�4 6:1514� 10�6 19.8574 4.311
Current Method F (O(h4)) 1:5521� 10�5 3:4286� 10�7 45.2678 5.500
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od C, though the fourth-order central scheme is used in the regular points, only the locally first-order method
(Eq. (43), n ¼ m ¼ 2) is used at the interface. This table shows this method is only globally O(h2) because the
interface treatment is first order accurate.

The table also shows that when a fourth-order approximation is used at the regular points with second or
higher-order approximation at the interface (Methods D–F), the numerical solutions have much higher accu-
racy. In the case of overall fourth order Method F, the errors with 80� 80 grid are two orders of magnitudes
lower than those of LeVeque and Li’s original second-order immersed interface method. The errors ratios also
show very high convergence rates. The contours of the local errors of the current six IIM methods tested are
shown in Figs. 13 and 14. The figures show that the main errors in the computations are originated from the
approximation at the interface, which demonstrates the importance of using higher-order approximation
methods for interface treatment. The fourth-order IIM methods (Methods E and F) maintain high level of
computational accuracy as expected. Table 3 and Figs. 13 and 14 also show that although both Method E
and Method F are fourth order, the use of fourth-order approximation at irregular points in Method F results
in much higher accuracy.

4.2. Two-dimensional example 2

In this section, current Method A (O(h2)) and Method E (O(h4)) are tested on the second example computed
by LeVeque and Li [24]. The equation is a two-dimensional Poisson equation with a delta function source term
and with a discontinuous coefficient b as follows:
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ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ þ C
Z

C
dð~x� ~X ðsÞÞds ð100Þ
where
f ðx; yÞ ¼ 8r2 þ 4 ð101Þ

The interface C is a circle specified by x2 þ y2 ¼ 1=4, and the computational domain is �1 6 x; y 6 1 shown in
Fig. 1. The coefficient b is discontinuous at the interface:
bðx; yÞ ¼ r2 þ 1 if r2
6 1=4

b if r2 > 1=4

�
ð102Þ
where the value of b determine the magnitude of jump in b across the interface. The Dirichlet boundary con-
dition is specified along the boundary by using the following exact solution:
ueðx; yÞ ¼
r2 if r 6 1

2

1
4
þ �9þr4þ2r2þc logð2rÞ

2b if r > 1
2

(
ð103Þ
For the current case, the jump conditions at C are
½u�C ¼ 0 ð104Þ
ou
os

� 	
C

¼ 0 ð105Þ

b
ou
on

� 	
C

¼ C ð106Þ
A uniform grid is used to compute the two-dimensional equation. Again, the extension of the current interface
Methods A and E to a general two-dimensional problem is done by a dimension-by-dimension approach. Be-
fore the difference approximation at regular and irregular points is applied, Eq. (100) is rewritten in the fol-
lowing form: Z
bðuxx þ uyyÞ þ bxux þ byuy ¼ f ðx; yÞ þ C
C

dð~x� ~X ðsÞÞds ð107Þ
The approximation for the x derivatives, ux and uxx at a grid point (i, j), can then be approximated by using
finite difference formulas for either regular or i-irregular points. In order to be consistent with the orders at the
interface, the second and fourth-order central schemes are used for the regular points for Methods A and E
respectively. Similar approximation can be done for the y derivatives, uy and uyy.

In order to apply the new immersed interface method in a grid direction, it is necessary to derive jump con-
ditions for partial derives of u in either x or y-directions only. The general jump conditions for the normal and
tangential derivatives can be expressed in the general form below:
a
ou
os

� 	
C

¼ Bs ð108Þ

b
ou
on

� 	
C

¼ Bn ð109Þ
Using the normal and tangential unit vectors at the interface given by Eqs. (92), (108) and (109) are trans-
formed into Cartesian coordinates as follows:
~b
ou
ox

� 	
¼ eBx ð110Þ
where
~b ¼ b cos2 hþ a sin2 h ð111Þ

eBx ¼ Bn cos h� Bs sin h� ðb� aÞ cos h sin h
ou
oy

� 	
ð112Þ



1092 X. Zhong / Journal of Computational Physics 225 (2007) 1066–1099
For finite difference approximation of x derivatives at an irregular point, the jump condition (110) is used. The
y derivative term, du/dy, on the right hand side of (112) is evaluated by one-sided difference formulas at an
order of accuracy which is consistent with the order of accuracy of the overall calculations. Similarly, for finite
difference approximation of y derivatives, the following jump condition is used:
Fig. 15
lines c
~a
ou
oy

� 	
¼ eBy ð113Þ
where
~a ¼ b sin2 hþ a cos2 h ð114Þ

eBy ¼ Bn sin hþ Bs cos h� ðb� aÞ cos h sin h
ou
ox

� 	
ð115Þ
Again, the x derivative term, du/dx, on the right hand side of (115) is evaluated by one-sided difference for-
mulas at an order of accuracy which is consistent with the order of accuracy of the overall calculations. This
dimension-by-dimension treatment of the two-dimensional jump conditions is tested in the current example.

This two-dimensional example has been computed by the current second-order interface method A
(n ¼ m ¼ 2) and the fourth-order method E (n ¼ m ¼ 4), with three sets of grids: 20� 20, 40� 40 and
80� 80 points. Figs. 15 and 16 show the results for the case with the following parameters used by LeVeque
and Li [24]: b ¼ 10 and C ¼ 0:1. The figures show that the current numerical results agree very well with the
exact solution. The maximum-norm errors for the solutions computed by using Methods A and E are compared
in Table 4 with those of LeVeque and Li [24] using their original second order IIM method. The table shows
that the current Method A has a similar second-order error ratio as the original IIM method, though the mag-
nitudes of the errors of the current method A are about an order of magnitude smaller. For the case of 80� 80
points, the error of method A is: kEnk1 ¼ 1:6862� 10�5. This is equivalent to the second order original IIM
method of LeVeque and Li [24], where the corresponding error is 1:6512� 10�4. Table 4 also shows that the
use of the current and fourth-order IIM method E leads to much better accuracy for the computations for this
two-dimensional example. The error for method E with the 80� 80 grid is 2:7026� 10�6. Therefore, the use of
the current high-order immersed interface methods lead to significant improvement of the accuracy of the
solutions.

For the 2D example 2, the magnitude of the jump in the first derivatives across the interface depends on the
parameter b as shown in Eq. (102). According to the exact solution (103), the jump in derivatives increases as
the value of b decreases. In addition, as b decreases, the maximum magnitude of juðx; yÞj increases. Therefore,
it is expected that, with the same grid resolution, the computational errors will increase when the value of b
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. Solution, z ¼ uðx; yÞ and comparison of the profiles of the exact (ue) and numerical (u) solutions along a number of horizontal grid
omputed by Method A (O(h2)) for the second two-dimensional example with a set of 20� 20 grid.
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Fig. 16. Contours of local errors computed by current second-order interface method A for two sets of grids.

Table 4
Comparison of numerical errors of current immersed interface method A (O(h2)) and those of the original second-order IIM of LeVeque
and Li [24]

Methods 20� 20 Grid 40� 40 Grid 80� 80 Grid

kENk1 kENk1 Error ratio kENk1 Error ratio

LeVeque & Li’s O(h2) IIM 3:5195� 10�3 7:5613� 10�4 4.65 1:6512� 10�4 4.58
Current O(h2) Method A 4:6344� 10�4 7:4775� 10�5 6.20 1:6862� 10�5 4.43
Current O(h4) Method E 7:0678� 10�6 3:0719� 10�5 0.23 2:7026� 10�6 11.4
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decreases. In this paper, the new second and fourth-order immersed interface methods A and E have been
tested for a wide range of different values of b between 10 and 10�4. The results are shown in Tables 5–7.

For the second order Method A, Table 5 shows that the errors increase as the values of b decrease as
expected. For the three cases of b larger or equal to 1.0, the error ratios approach the expected value of
4.0 for the 80� 80 grid. When b is smaller than 1.0, the error ratios gradually deviate from the expected values
of 4.0. This is a result of the fact that the relative grid resolution drops when b decreases. More grid points are
needed in order to achieve the expected error ratios for the cases of very small b. In other words, more grid
points are necessary if higher accuracy is needed for those cases.
Table 5
Comparison of numerical errors of current immersed interface method A (O(h2)) for example 2 with large and small jump conditions
(different b values)

b 20� 20 Grid 40� 40 Grid 80� 80 Grid

kENk1=uð1; 1Þ kENk1=uð1; 1Þ Error ratio kENk1=uð1; 1Þ Error ratio

10.0 7:3905� 10�4 1:1924� 10�4 6.20 2:6890� 10�5 4.43
5.0 9:1942� 10�4 1:5175� 10�4 6.06 3:4342� 10�5 4.42
1.0 1:3457� 10�3 2:6576� 10�4 5.06 6:4985� 10�5 4.09
0.5 1:8102� 10�3 4:4112� 10�4 4.10 1:1784� 10�4 3.74
0.1 4:6614� 10�3 1:9357� 10�3 2.41 5:2898� 10�4 3.66
0.05 7:9192� 10�3 3:7478� 10�3 2.11 1:0276� 10�3 3.65
0.01 2:8857� 10�2 1:9098� 10�2 1.51 5:1582� 10�3 3.70
0.005 4:6733� 10�2 4:1145� 10�2 1.14 1:0777� 10�2 3.82
0.001 9:5708� 10�2 6:1626� 10�1 0.155 8:8844� 10�2 6.94
0.0005 1:1041� 10�1 8:1457� 10�1 0.136 9:7951� 10�1 0.832
0.0001 1:2593� 10�1 2:8489� 10�1 0.442 1:3940� 10�1 2.04



Table 6
Comparison of numerical errors of current immersed interface method E (O(h4)) for example 2 with large and small jump conditions
(different b values)

b 20� 20 Grid 40� 40 Grid 80� 80 Grid

kENk1=uð1; 1Þ kENk1=uð1; 1Þ Error ratio kENk1=uð1; 1Þ Error ratio

10.0 1:1271� 10�5 4:8988� 10�5 0.23 4:3099� 10�6 11.4
1.0 2:0064� 10�5 7:9568� 10�6 2.52 8:8516� 10�7 8.99
0.1 6:7636� 10�5 1:3981� 10�4 0.48 2:5626� 10�5 3.66
0.01 4:9414� 10�4 1:0503� 10�3 0.47 2:4357� 10�4 4.31
0.001 3:6403� 10�3 9:1621� 10�3 0.40 2:4271� 10�3 3.77
0.0001 1:0775� 10�2 4:7165� 10�2 0.23 2:5376� 10�2 1.86

Table 7
Comparison of numerical errors of current immersed interface method E (O(h4)) for example 2 with large and small jump conditions (b
values) with a different set of grids

b 21� 21 Grid 42� 42 Grid 84� 84 Grid

kENk1=uð1; 1Þ kENk1=uð1; 1Þ Error ratio kENk1=uð1; 1Þ Error ratio

10.0 1:1948� 10�5 3:5563� 10�5 0.34 2:8838� 10�6 12.3
1.0 1:8540� 10�4 9:8585� 10�6 18.8 2:7161� 10�6 3.63
0.1 1:3619� 10�3 8:8457� 10�5 15.4 2:8870� 10�5 3.06
0.01 1:3569� 10�2 8:3963� 10�4 16.2 2:6654� 10�4 3.15
0.001 8:4079� 10�1 8:8555� 10�3 95.0 2:6261� 10�3 3.37
0.0001 1:6260� 10�1 2:4029� 10�1 0.677 2:5311� 10�2 9.49
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On the other hand, the use of fourth-order immersed interface method E leads to significant improvement
in terms of numerical accuracy as shown by the results in Table 6. The general trend of the errors for Method
E when b decreases is the same as that for Method A. In order words, the grids for very small b are not fine
enough to produce the expected error ratios for the fourth-order method. In addition, as discussed in Section
3.2, the computational errors for the current immersed interface method depend on the location of the inter-
face represented by the value of r. When the grids are refined from 40� 40 grid to 80� 80 grid, for example,
the r values at all interface locations will be different. As a result, the computational errors will be affected by
the differences in r. Therefore, the correct error ratios can be achieved only when r is the same for the two sets
of grids. This is shown in the 1D results of Table 2 for different grids with r ¼ 2=3 or r ¼ 1=3. To demonstrate
this point, Table 7 shows the results of fourth-order method E for different values of b computed by slightly
different grids: 21� 21, 42� 42 and 84� 84 points. Though the trend of the results are the same as those of
Table 6, the slight change in grid points lead to relatively large changes in accuracy mainly due to the change in
r. Overall, for all cases tested, fourth order Method E leads to much better numerical accuracy than the cor-
responding second order Method A.
5. Conclusions

A new arbitrarily high-order immersed interface method has been presented in this paper. The new
method can be of arbitrarily high-order accuracy and it is simple to be applied to practical two-phase
flow problems by requiring only the physical jump conditions for variables and first derivatives. It also
has the advantage that the finite difference formulas at irregular points are expressed in an explicit form
so that they can be applied to difference problems without modifications. Six versions of the new
method of up to fourth-order accuracy have been tested for both one and two-dimensional model equa-
tions. The numerical results show that they can produce very accurate results for elliptic equations with
embedded interfaces.
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Appendix A

A.1. Difference formulas at irregular points with six-point stencil ðn ¼ m ¼ 3Þ

For the case shown in Fig. 2, where the interface is located on the right side of i with a given value of r, we
have:
du
dx

� �
i

¼
P3

k¼�2dkuiþk þ dAAþ hdBB
3h

þ 3ui � 4ui�1 þ ui�2

2h
þ Oðh3Þ ð116Þ

d2u
dx2

� �
i

¼
P3

k¼�2dkuiþk þ dAAþ hdBB

h2
þ ui�2 � 2ui�1 þ ui

h2
þ Oðh2Þ ð117Þ
The coefficients in the equations above are:
d�2 ¼
1

D
ca

11

2
r� 1

2
r2 � 9

2
r3 þ 3

2
r4

� �
� cb �3� 1

2
rþ 8r2 � 11

2
r3 þ r4

� �� 

d�1 ¼

1

D
fcað�22rþ 13r2 þ 6r3 � 3r4Þ � cbð12� 10r� 10r2 þ 10r3 � 2r4Þg

d0 ¼
1

D
ca 11þ 9

2
r� 19

2
r2 � 3

2
r3 þ 3

2
r4

� �
� cb �9þ 21

2
rþ 2r2 � 9

2
r3 þ r4

� �� 

d1 ¼

1

D
�18þ 30r� 37

2
r2 þ 5r3 � 1

2
r4

� 

d2 ¼

1

D
f9� 24rþ 22r2 � 8r3 þ r4g

d3 ¼
1

D
�2þ 6r� 13

2
r2 þ 3r3 � 1

2
r4

� 

dA ¼

1

aþD
f11� 12rþ 3r2g

dB ¼ �
1

bþD
f�6þ 11r� 6r2 þ r3g

ð118Þ
where
D ¼ 1

6
fcbð�12� 14rþ 36r2 � r3 � 12r4 þ 3r5Þ � cað22rþ 9r2 � 19r3 � 3r4 þ 3r5Þg
For the case of C located on the left side of i (Fig. 3), the corresponding difference formulas can be derived by a
coordinate transformation. The details are not presented here.

A.2. Difference formulas at irregular points with eight-point stencil ðn ¼ m ¼ 4Þ

For the case shown in Fig. 2:
du
dx

� �
i

¼
P4

k¼�3dkuiþk þ dAAþ hdBB
ð11=3Þh þ 11ui � 18ui�1 þ 9ui�2 � 2ui�3

6h
þ Oðh4Þ ð119Þ
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d2u
dx2

� �
i

¼
P4

k¼�3dkuiþk þ dAAþ hdBB

h2
þ�ui�3 þ 4ui�2 � 5ui�1 þ 2ui

h2
þ Oðh3Þ ð120Þ
The coefficients in the equations above are:
d�3 ¼
1

D
ca

50

3
rþ 5

3
r2 � 50

3
r3 þ 2r4 þ 3r5 � 2

3
r6

� ��
�cb �8� 22

3
rþ 79

3
r2 � 20

3
r3 � 47

6
r4 þ 4r5 � 1

2
r6

� �

d�2 ¼

1

D
cað�75rþ 5r2 þ 70r3 � 19r4 � 7r5 þ 2r6Þ
�
�cb 36þ 21r� 223

2
r2 þ 50r3 þ 14r4 � 11r5 þ 3

2
r6

� �

d�1 ¼

1

D
cað150r� 85r2 � 60r3 þ 28r4 þ 5r5 � 2r6Þ
�
�cb �72þ 30rþ 109r2 � 70r3 � 11

2
r4 þ 10r5 � 3

2
r6

� �

d0 ¼

1

D
ca �50� 65

3
rþ 145

3
r2 þ 32

3
r3 � 11r4 � r5 þ 2

3
r6

� ��
�cb 44� 131

3
r� 143

6
r2 þ 80

3
r3 � 2

3
r4 � 3r5 þ 1

2
r6

� �

d1 ¼

1

D
96� 208rþ 554

3
r2 � 86r3 þ 133

6
r4 � 3r5 þ 1

6
r6

� 

d2 ¼

1

D
�72þ 228r� 553

2
r2 þ 164r3 � 51r4 þ 8r5 � 1

2
r6

� 

d3 ¼

1

D
32� 112rþ 154r2 � 106r3 þ 77

2
r4 � 7r5 þ 1

2
r6

� 

d4 ¼

1

D
�6þ 22r� 193

6
r2 þ 24r3 � 29

3
r4 þ 2r5 � 1

6
r6

� 

dA ¼

1

aþD
f�50þ 70r� 30r2 þ 4r3g

dB ¼ �
1

bþD
f24� 50rþ 35r2 � 10r3 þ r4g

ð121Þ
where
D ¼ 1

22
fcbð144þ 228r� 458r2 � 94r3 þ 216r4 � 18r5 � 22r6 þ 4r7Þ � cað�300r� 130r2 þ 290r3

þ 64r4 � 66r5 � 6r6 þ 4r7Þg
A.3. Difference formulas at irregular points with 10-point stencil ðn ¼ m ¼ 5Þ

For the case shown in Fig. 2:
du
dx

� �
i

¼
P5

k¼�4dkuiþk þ dAAþ hdBB
25
6

h
þ 25ui � 48ui�1 þ 36ui�2 � 16ui�3 þ 3ui�4

12h
þ Oðh5Þ ð122Þ

d2u
dx2

� �
i

¼
P5

k¼�4dkuiþk þ dAAþ hdBB

h2
þ 11ui�4 � 56ui�3 þ 114ui�2 � 104ui�1 þ 35ui

12h2
þ Oðh4Þ ð123Þ
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The coefficients in the equations above are:
d�4 ¼
1

D
ca

137

2
rþ 157

12
r2 � 74r3 þ 19

24
r4 þ 75

4
r5 � 25

12
r6 � 5

4
r7 þ 5

24
r8

� ��
�cb �30� 83

2
rþ 1259

12
r2 þ 1

2
r3 � 587

12
r4 þ 51

4
r5 þ 23

6
r6 � 7

4
r7 þ 1

6
r8

� �

d�3 ¼

1

D
ca �

1096

3
r� 118

3
r2 þ 1171

3
r3 � 107

3
r4 � 535

6
r5 þ 95

6
r6 þ 25

6
r7 � 5

6
r8

� ��
�cb 160þ 584

3
r� 1676

3
r2 þ 173

3
r3 þ 1369

6
r4 � 473

6
r5 � 53

6
r6 þ 13

2
r7 � 2

3
r8

� �

d�2 ¼

1

D
ca 822r� 97

2
r2 � 1649

2
r3 þ 799

4
r4 þ 255

2
r5 � 65

2
r6 � 5r7 þ 5

4
r8

� ��
�cb �360� 318rþ 1208r2 � 717

2
r3 � 627

2
r4 þ 219

2
r5 þ 9

2
r6 � 9r7 þ r8

� �

d�1 ¼

1

D
ca �1096rþ 1838

3
r2 þ 5

9
r3 � 707

3
r4 � 135

2
r5 þ 155

6
r6 þ 5

2
r7 � 5

6
r8

� ��
�cb 480� 56r� 2804

3
r2 þ 457r3 þ 919

6
r4 � 213

2
r5 þ 13

6
r6 þ 11

2
r7 � 2

3
r8

� �

d0 ¼

1

D
ca 274þ 725

6
r� 3395

12
r2 � 425

6
r3 þ 1819

24
r4 þ 125

12
r5 � 85

12
r6 � 5

12
r7 þ 5

24
r8

� ��
�cb �250� 1325

6
rþ 2165

12
r2 � 470

3
r3 � 227

12
r4 þ 325

12
r5 � 5

3
r6 � 5

4
r7 þ 1

6
r8

� �

d1 ¼

1

D
�600þ 1540r� 10189

6
r2 þ 6307

6
r3 � 9593

24
r4 þ 287

3
r5 � 169

12
r6 þ 7

6
r7 � 1

24
r8

� 

ð124Þ

d2 ¼
1

D
600� 2140rþ 18529

6
r2 � 7093

3
r3 þ 6383

6
r4 � 874

3
r5 þ 287

6
r6 � 13

3
r7 þ 1

6
r8

� 

d3 ¼

1

D
�400þ 1560r� 2501r2 þ 2151r3 � 4353

4
r4 þ 333r5 � 605r6 þ 6r7 � 1

4
r8

� 

d4 ¼

1

D
150� 610rþ 6181

6
r2 � 2831

3
r3 þ 3083

6
r4 � 512

3
r5 þ 203

6
r6 � 11

3
r7 þ 1

6
r8

� 

d5 ¼

1

D
�24þ 100r� 1045

6
r2 þ 995

6
r3 � 2273

24
r4 þ 100

3
r5 � 85

12
r6 þ 5

6
r7 � 1

24
r8

� 

dA ¼

1

aþD
f274� 450rþ 255r2 � 60r3 þ 5r4g

dB ¼ �
1

bþD
f�120þ 274r� 225r2 þ 85r3 � 15r4 þ r5g
where
D ¼ 1

100
fcbð�2880� 5424rþ 9400r2 þ 3510r3 � 5125r4 � 181r5 þ 800r6 � 70r7 � 35r8 þ 5r9Þ

� cað6576rþ 2900r2 � 6790r3 � 1700r4 þ 1819r5 þ 250r6 � 170r7 � 10r8 þ 5r9Þg
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