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Numerical Simulations of Strong Shock and Disturbance 
Interactions Using High-Order Shock-Fitting Algorithms 

Pradeep S. Rawat1 and  Xiaolin Zhong2  
University of California, Los Angeles, CA, 90095 

High order methods that can solve flows involving interactions of flow-disturbances with 
shock waves are critical for reliable numerical simulation of strong-shock and turbulence 
interaction problems. Such problems are not well understood due to limitations of numerical 
methods. For numerical simulation of compressible flows, shock capturing schemes have 
been the most popular choice. However, most of such methods are inherently dissipative and 
may incur numerical oscillations near the shock. Present paper focuses on developing and 
implementing new algorithms based on shock-fitting and front-tracking methodology which 
can solve the flow with high-order accuracy near as well as away from the shocks. The 
shock-fitting algorithm avoids dissipation and possible numerical oscillations incurred in 
shock-capturing methods by treating shocks sharply. We explore two ways for shock-fitting: 
conventional moving grid set-up and a new fixed grid set-up with front tracking. 
Conventionally, shock fitting is implemented on moving grid while shock forms a boundary 
of the computational domain. However, shock-fitted grid generation can be tedious for large 
and complex motions of the shock-front. Hence, we have also worked on developing a fixed 
grid set-up for shock-fitting method where shock is tracked using Lagrangian points and is 
free to move across underlying fixed grid. Using these shock-fitting algorithms we have 
solved one and two dimensional interactions of shock and vorticity/entropy disturbance 
waves and results have been found to be very satisfactory. We have also carried out a rate of 
convergence study to establish that, unlike shock-capturing schemes, the shock-fitting 
methods are high-order accurate near the shock. Although problems considered in this 
paper are relatively simple, the quality of results obtained from shock-fitting method 
provides good motivation to pursue it further for the problems of shock-turbulence 
interactions. In future, fixed grid shock-fitting methodology will be further developed with 
Immersed interface method of Zhong [1, 2] and more robust front-tracking algorithms so 
that more complex shock-turbulence interaction problems can be considered. 

NOMENCLATURE  

 c= local speed of sound   Cv = constant volume specific heat 
 e= total energy of fluid      J= Jacobian of grid transformation    
 M= Mach number    p= pressure 
         Pr = Prandtl number                         P0= stagnation pressure of inlet flow. 
         q= heat flux vector     t = time    
 T= temperature                   Tr= reference temperature  
 T∞= sonic temperature    To= stagnation temperature  
 U∞  = sonic velocity at lab conditions   u,v,w = Cartesian velocity components 
 x,y,z= Cartesian coordinates   ρ= density of fluid 
 γ = ratio of specific heats   µ= dynamic viscosity 

            τ = viscous stress tensor                                  
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1 INTRODUCTION 

Many important scientific and engineering applications involve complex interactions 
between turbulent flows and strong shocks. Such interactions are part of a number of explosive 
processes such as volcanic eruptions, detonations, shock wave lithotripsy to break up kidney 
stones, supernova explosion, as well as the implosion of a cryogenic fuel capsule for inertial 
confinement fusion (ICF). Numerical simulation of such complex problems warrants very high-
order numerical methods. However, popular shock-capturing schemes are not very accurate in 
this regard as they use dissipation near the shock. Moreover, spurious numerical oscillations 
have also been observed when solving strong-shock and flow interaction problems with shock-
capturing schemes [3]. In the present study, we investigate shock-fitting algorithms for shock 
and disturbance interaction studies. Problem of interaction of normal shock and disturbances is 
fundamental for better understanding of the aforementioned complex phenomena. To this end, 
shock-fitting methods developed in current effort can be very useful to find high-order solutions 
of some simple shock and turbulence interaction problems such as shown in Fig. 1. Various 
researchers have considered such shock and disturbance/turbulence interaction problems in past. 
A brief summary is presented in ensuing sections for previous works in the field, followed by the 
scope of current study.  

1.1 Theoretical Studies 
Theoretical studies in this field have been attempted mostly through linear interaction 

analysis (LIA) where small perturbations in flow are considered. Kovasznay [4] showed that for 
weak fluctuations of density, pressure, and entropy, the turbulent fluctuations about mean 
uniform flow can be decomposed into the vorticity, acoustic, and entropy modes. It was shown 
that for first order approximation, each of these modes evolve independently in the inviscid limit 
for mean uniform flow. However, in second order approximation of fluctuations, interaction of 
these modes is possible and one mode can be generated from interaction of other two modes [5]. 

 
Ribner [6-8] and Moore [9] were among the earliest workers to consider theoretically the 

passing of a turbulent field through a shock wave. Ribner [6] analyzed interaction of a plane 
sinusoidal disturbance in velocity (shear wave) passing through a shock as a boundary value 
problem. In his analysis the shock was kept steady by solving the equations in a moving 
reference frame. It was found that initial shear wave is amplified and refracted by the shock due 
to the changes in thermodynamic properties and therefore emerges at a different angle from the 
incident. He later generalized this result from single wave to obtain shock-interaction effects of a 
completely turbulent velocity field [7] and obtained significant turbulent amplification due to 
shock turbulence interaction. The results were further extended [8] to provide the flux of acoustic 
energy emanating from unit area on the downstream of the shock. Moore [9] performed unsteady 
analysis of interaction of obliquely traveling weak plane disturbances of arbitrary profile with a 
plane normal shock. Unlike Ribner's analysis, unsteady shock was considered for linear analysis 
the interaction of sound and vorticity waves with an unsteady shock. It was found that 
amplification of disturbances depends on impingement angle and Mach number of the shock. 
Kerrebrock [10] considered modifications of random small fluctuations of pressure, entropy and 
vorticity in passing through shock or flame. It was found that all modes of disturbances are 
generated in the downstream flow if any of the modes is present in the upstream flow. McKenzie 
and Westphal [11] derived formulas for amplification and Snell's Laws for refraction and 
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reflection of acoustic, vorticity and entropy waves interacting with shock and applied the results 
to the amplification of small disturbances in the solar wind on a passage through the bow shock 
of earth. More recent theoretical studies of shock and turbulence interaction are by Goldstein 
[12], Lee et al. [13-15], Mahesh et al. [16-18] and Fabre et al. [19, 20]. It was found in these 
studies that different components of the turbulent kinetic energy, as well as root mean square 
values of the fluctuating pressure, temperature and density are amplified across the shocks. 
Despite several assumptions, Linear Interaction Analysis (LIA) provides accurate description of 
the essential characteristics of the interaction. 

1.2 Numerical Studies 
Since the early 80s, various attempts have been made towards numerical simulation of 

shock and disturbance/turbulence interaction. Initial efforts in this regard considered interaction 
of shock with simple waves. In 1981, Pao and Salas [21] fitted the shock at inflow boundary and 
solved Euler equation with finite difference discretization for study of shock/vortex interaction. 
Shock fitting computations with pseudo-spectral (Zang et. al [22]) and spectral techniques 
(Hussaini et al [23, 24]) were later used to treat the problems in which a single vortex, a vortex 
sheet, an entropy spot or acoustic wave interacts with the shock. The results obtained from these 
numerical efforts confirmed the linear theory in the regime of weak shocks. With the advent of 
essentially non-oscillatory (ENO) and related schemes, shock-capturing methods gained 
popularity for simulations of compressible flows. A number of new schemes for compressible 
flows has since been tested for interaction of shock with small disturbances against the results 
obtained from linear theory [24-26]. Although limited to low Mach numbers, these studies 
mostly confirm the LIA results. 

 
The numerical studies of fully turbulent field interacting with shocks are more recent. For 

the simulation of the turbulent field DNS methods and large eddy simulations (LES) have been 
used. However these different types of methods give different results when interaction with 
shock is considered [27]. Most of the recent direct numerical simulation (DNS) studies have 
been on various aspects of interaction of a normal shock with freestream turbulence for relatively 
weak shock of small Mach numbers. For example, Mahesh et al. [16, 18] did extensive direct 
numerical simulation (DNS) study of the interaction of a normal shock with an isotropic 
turbulence. The mean shock Mach numbers were in the range of 1.29 to 1.8. They found that the 
upstream correlation between the vorticity and entropy fluctuations has strong influence on the 
evolution of the turbulence across the shock. They also used linear analysis to analyze the 
simulation results. Other shock/turbulence interaction studies have been conducted by the same 
group of workers [13, 14]. Lee et al. [14] investigated the effect of Mach number on isotropic 
vertical turbulence interacting with a shock wave. The range of Mach numbers was in the range 
from 1.5 to 3.0. A shock-capturing scheme was developed to accurately simulate the unsteady 
interaction of turbulence with shock waves. It was found that turbulence kinetic energy is 
amplified across the shock wave, and this amplification tends to saturate beyond Mach 3. 
Hannapel et al. [28] computed interaction of a Mach 2 shock with a third order in space shock-
capturing scheme based on the essentially non-oscillatory ENO algorithm of Harten together 
with an approximate Riemann solver. Jamme et al. [29] carried out a Direct Numerical 
Simulation (DNS) to study the interaction between normal shock waves of moderate strength 
(Mach 1.2 and Mach 1.5) and isotropic turbulence. Adams and Shariff [30, 31] proposed a class 
of upwind-biased finite-difference schemes with a compact stencil for shock/turbulence 
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interaction simulation. They used this nonconservative upwind scheme in smooth region while a 
shock-capturing ENO scheme was turned on around discontinuities. This idea of hybrid 
formulation was improved by Pirozzoli [32] who used similar hybrid formulation for a compact 
weighted essentially non-oscillatory (WENO) scheme with conservative formulation for 
simulation of shock turbulence interaction. Ducros et al. [33] developed larger-eddy 
simulation(LES) on the shock/turbulence interaction by using a second-order finite volume 
scheme. The method was then used to simulate the interaction of a Mach 1.2 shock with 
homogeneous turbulence. 

 
Yee et al. [34] proposed characteristic-type filters, which add the dissipative part of 

traditional shock capture schemes to non-dissipative central based schemes in order to damp out 
numerical instabilities. Due to this feature, characteristic filters are very suitable to incorporate 
into existing LES codes based on high-order methods, and they allow the codes to have shock 
capturing capability. This scheme was used by Sjogreen and Yee [35] for shock disturbance 
interaction. Recently, Cook and Cabot [36, 37] developed  artificial viscosity formulations for 
shock-turbulence simulations. It functions as an effective subgrid-scale model for both high and 
low Mach number flows. The model employs a bulk viscosity for treating shocks and a shear 
viscosity for treating turbulence and has been used for the basic shock disturbance interaction. 

 
It is observed that most of the studies in field of shock-turbulence interaction have 

considered weak shocks only. Recently, more efforts have been directed towards investigating 
turbulent flows with stronger shocks which is relevant for a lot of high-speed compressible flows. 
Main issue with shock-capturing schemes is spurious numerical oscillations around the shock 
and loss of accuracy with dissipation needed to suppress these oscillations. Moreover, with 
stronger shocks, shock-thickness reduces which requires a finer resolution with shock-capturing 
schemes. Shock-fitting method offers a good alternative for strong shocks with simple 
geometries as shock is considered a sharp discontinuity. As mentioned before, one of the earliest 
numerical methods considered for shock-disturbance interactions were based on shock-fitting 
methodology. Shock-fitting methods have also been very successful for high-order simulations 
for freestream disturbances interacting with shock on blunt body [38-41] . Recently, Sesterhenn 
et al. [42] revisited shock-fitting schemes and applied them for solving Navier-Stokes equations 
in non-conservative form for problem of interaction of Mach 3 shock with isotropic turbulence 
with encouraging results. Shock-fitting considers the shock as a sharp discontinuity and is well 
equipped to consider even stronger shocks without any need for grid refinements. However, grid 
generation for conventional shock-fitting can become tedious if there are large and complex 
changes in shock-geometry. Hence, to take advantage of high-order accuracy of shock-fitting 
algorithms for more general problems, there is need for implementation of a front-tracking based 
shock-fitting methodology where shock can move across the fixed grids. 

1.3 Motivation and Scope of Current Study 
A study of the literature in the field of shock interactions with disturbances and 

turbulence shows that these complex configurations are part of a number of important 
phenomena including supernova explosions and inertial confinement fusion. However, the 
current scientific understanding of shock-turbulence interactions in complex configurations and 
the ability to reliably predict these strongly nonlinear flows remains limited. Most of the popular 
methods for solving compressible flow involve shock-capturing algorithms for treatment of 
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shock. However, it has been observed that even high-order shock capturing methods give low 
accuracy at the shock [43] and might lead to spurious oscillations [3]. Many shock capturing 
methods introduce some dissipation to avoid spurious oscillations which, however, is not 
accurate enough for simulation of turbulent flow. On the other hand, conventional high-order 
methods generally used for DNS studies have numerical problems due to strong gradients around 
shock. Due to such problems, DNS of shock and isotropic turbulence interaction has not been 
possible for stronger than Mach 3 shocks due to limitations of computational resources for the 
used shock capturing algorithms.  

 
In present study, we develop and use shock-fitting algorithms along with high order 

schemes to gain knowledge about nonlinear phenomena involving interaction of strong shocks 
and flow disturbances. Shock fitting algorithms treat the shock-interface sharply without any 
dissipation hence they are compatible with low dissipation schemes used for DNS of turbulent 
flow. Shock/interface fitting methods are ideally suited for the cases where there is a clearly 
demarcated interface such as observed in the problems involving disturbances coming towards 
the normal shock.  Some of canonical problems in one and two dimensional space have been 
considered in this paper and results obtained point to the superiority of the shock-fitting methods 
for such problems.  

 
Conventionally, shock is treated as boundary in shock-fitting methods and grids follow 

the shock during the computations. This, however, might not be feasible if shape of the shock 
becomes complex or there are large movements in shock. For such situations, it is more 
appropriate to extend high-order shock-fitting idea to use it with fixed grids where shock moves 
independent of grids. To this end, we are developing a fixed grid shock-fitting solver. This solver 
intends to solve the flow on a fixed Cartesian or curvilinear grid while shock is tracked using a 
front tracking algorithm (e.g. [44]) . Current implementation of the code use one-sided finite 
differences near the shock points and works well for the simple shock-disturbance interaction 
problems. We intend to work on the fixed grid shock-fitting method further and include our new 
high-order immersed interface method [1, 2] with a robust front tracking algorithm. Such high-
order implementation, if successful, will be very helpful in solving other multi-phase problems 
as well.  

  
Thus main thrust of current study includes (a) asses the efficiency and results of 

conventional shock-fitting algorithm for some canonical problems (b) implementing shock-
fitting algorithm with a fixed grid solver and (c) ensure high order accuracy by carrying out order 
of convergence analysis. 

 
In remaining part of this paper we briefly present the governing equations and numerical 

method followed by solutions for the cases of 1-D and 2-D disturbances interacting with shock.  

2 GOVERNING EQUATIONS 

The governing equations are compressible Navier-Stokes equations which are given as follows: 

 .( ) 0
t
ρ ρ∂
+∇ =

∂
u  (1) 
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viscous stress and the heat flux are given by the usual constitutive equations in Newtonian fluid 
as follows 
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where µ is the viscosity coefficient determined by the Sutherland law, 
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where Tr = 288K, Ts = 110K, and rµ  = 0.17894 ×  10-4 kg/m/s for air. The thermal conductivity k 
is computed from the Prandtl number, which is assumed constant and it takes the value of 0.72 in 
this paper. 

3 NUMERICAL METHOD: CONVENTIONAL HIGH-ORDER SHOCK-
FITTING 

For conventional moving-grid shock-fitting approach, shock forms a boundary of the 
computational domain and fifth-order shock-fitting method of Zhong [45] is used for solving the 
flow between shock and exit boundary (Fig. 1). The flow variables just behind the shock are 
determined by Rankine-Hugoniot relations across the main shock and a characteristic 
compatibility relation from behind the shock. The velocity and location of the shock are solved 
as part of the solutions and grid is modified to follow motions of the shock.  In the interior, 
solution of conservative compressible Navier-Stokes equations is carried out using the numerical 
method described in this section. 

 
In numerical simulation, the compressible Navier-Stokes equations (2) to (4) are written 

in the following conservative form, 
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where U is the solution vector given by  
 
 { , , , , }U u v w eρ ρ ρ ρ=  (8) 
 
E, F, G are the inviscid flux terms, and Ev, Fv, Gv are the viscous terms. They are written as 
follows 
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In the conservative equation (7), the inviscid fluxes and the viscous fluxes have the same 

forms as those of the Navier-Stokes equations. Before discretizing the governing equations by a 
finite difference method, equation (7) in the physical domain is transformed to the shock and 
boundary fitted computational domain by the following transformation relations, 
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and the transformed governing equation in the computational domain is expressed as follows 
 

 

1
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An explicit finite difference scheme is used for spatial discretization of the governing 

equation (18), the inviscid flux terms are discretized by a fifth-order upwind scheme, and the 
viscous flux terms are discretized by a sixth-order central scheme. For the inviscid flux vectors, 
the flux Jacobians contain both positive and negative eigenvalues. A simple local Lax-Friedrichs 
scheme is used to split vectors into negative and positive wave fields. For example, the flux term 
F′ in Eq (18) can be split into two terms of pure positive and negative eigenvalues as follows 
 
 F F F+ −′ ′ ′= +  (17) 
 

where ( )UFF λ+′=′+ 2
1 and ( )UFF λ−′=′+ 2

1  and λ is chosen to be larger than the local 

maximum eigenvalue of F′.  
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The parameter ε is a small positive constant added to adjust the smoothness of the splitting. The 
fluxes F′+ and F′- contain only positive and negative eigenvalues respectively.  Therefore, in the 
spatial discretization of Eq. (7), the derivative of the flux F is split into two terms 
 

 F F F
η η η

+ −′ ′ ′∂ ∂ ∂
= +

∂ ∂ ∂
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where the first term on the right hand side is discretized by the upwind scheme and the second 
term by the downwind scheme. 

 
The fifth-order explicit scheme utilizes a 7-point stencil and has an adjustable parameter 

α as follows 
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where 3 2 1
1 1 5 51 ,  9 ,  45 ,  

12 2 4 3i i i iα α α α α α α α± ± ±= ± + = − = ± + = −∓ and 60=ib . The scheme is 

upwind when α <  0 and downwind when α > 0. It becomes a 6-order central scheme when α = 0 
which is used for discretizing viscous terms. 

4 NEW FRONT-TRACKING BASED FIXED-GRID HIGH-ORDER SHOCK-
FITTING METHOD 

Conventional shock-fitting methodology, as described in previous sections, assumes the 
shock to be the boundary of the domain and flow is solved on moving grids. However, this 
approach becomes very difficult to apply for a problem where shock geometry becomes complex 
or the shock performs large motions. Hence, it is useful to develop a methodology that can 
implement ideas of shock-fitting algorithm on fixed grids. We have explored a fixed grid shock-
fitting method where shock is treated as an interface and can move across the fixed grid points. 
Thus the method is along the lines of fixed grid Cartesian grid methods like Immersed Boundary 
Method (IBM), Immersed Interface Method (IIM), Ghost fluid methods etc. coupled with 
methods to track the front (shock). The methodology is presented here in brief for two 
dimensional problems. 

4.1 Finite difference scheme  
Similar to the conventional shock-fitting, governing equations are solved in the 

conservation form of equations and physical domain is transformed to computational domain and 



 10

flux splitting is performed for application of upwind finite-difference schemes. Thus i.e. Eqs. (1) 
-(20) are still applicable in this formulation except fixed grids used making Jacobian of grid-
transformation constant. The 5th order upwind method given by (21) can be used on the points 
where finite-difference stencil does not cross the front. However, special treatment is needed for 
the “irregular” points where the stencil requires points on both sides of the shock. An example of 
irregular points on a grid line in X-direction is shown as the highlighted points shown in Fig.2 
for 7 point 5th order scheme. Similar irregular grid points can also be found for Y-direction grid 
line.   

 
To avoid crossing the shock-front with our stencils we use one-sided finite differencing 

on irregular points. Interface point is included in the stencil along with interior points and we use 
one sided Lagrange interpolation to find derivative of any variable u at point as follows: 
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where subscript Γ indicates interface point, ix  is the nearest point to the interface that is  taken in 
the one sided difference stencil and Lagrane coefficients kl ’s and lΓ are given as 
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It should be noted that when using one-sided derivatives there might be issues with 

stability of the method if one of the grid-point is too close to the interface. Hence for one-sided 
approximation (using Lagrange interpolations), we should have two different cases 

 
(a) When marker point and interface have reasonable separation (as shown in Fig. 3(a) then 

include in the stencil, the marker point as well as the closest point and store all the 
coefficients (as shown in the figure 3(a)). 

(b)  When  marker point and one of the interface point are too close, we will include the 
marker point but leave out the closest grid point and include a grid point on other end 
instead (as shown in Fig. 3(b)). 

 
We use one-sided finite difference scheme to avoid finite difference stencils crossing the 

shock-front. However, if appropriate jump conditions are known at the shock-front, one can use 
schemes like Immersed interface methods (IIM) that find the finite differences at irregular grid 
points using regular stencil and correction terms based on jump conditions. Such methods allow 
flow of information across the shocks and can be more accurate as accurate jump conditions are 
enforced. Recently, Zhong [1, 2] developed a new immersed interface algorithm that requires 
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jumps only in values of flow variables and their first derivatives while showing arbitrarily high-
order accuracy. Since upto first order jump conditions can be derived from physics of the 
problem, this method is more suitable for high-order computations of real problems than other 
IIM schemes which need higher order derivatives of flow variables to obtain higher order of 
accuracy. Hence, we intend to explore new IIM method of  Zhong [1, 2] in future for finite 
differencing in the computational domain.  

4.2 Representation of the front 
In our methodology, the shock-front is assumed to be sharp and is represented using 

Lagrangian marker points. The marker points connect segments of 5th order polynomial curves. 
or convenience in taking finite differences across the shock front, intersection points of the front 
with the grid lines are chosen as marker points. Figure 4 shows typical marker points ( iS , 1iS + etc.) 
for a shock-front moving across a two-dimensional grid. These marker points are stored in a 
sequenced list. The order in list indicates the immediate neighboring markers of a marker as 
shown in the Fig. 4. The notation used here is such that as we move along the markers by 
incrementing in this sequenced list, the low pressure side of the shock should be on the left. With 
each marker point, information regarding geometry of the front, flow properties corresponding to 
the marker points and relation of marker point with the fixed grid is also needed to be saved. 
Some important points about treatment of front are as follows:  

 
Shock geometry: 
 

With each marker point, coordinates of the marker points is computed and saved.  A 
critical part of information regarding shock-geometry for shock-fitting method is shock shape, 
specifically shock normal and shock tangents which are obtained using the coordinates. We use 
following parametric representation for the marker points to obtain shock normal and shock 
tangents:  

 

 
( )
( )

x x s
y y s
=
=

 (24) 

 
where s represents the arc-length on the interface. Arc-length is chosen as the parameter to 
represent the surface since value of arc-length monotonically increases along the surface and 
each value of arc-length coordinate correspond to a unique point on the interface. Moreover, arc-
length represents the value of body-fitted coordinate in the tangential direction which can be 
readily used to obtain tangential derivatives of various flow variables where needed. Using arc-
length as parameter we use following definition for normal and tangent in 2-D. 
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 (25) 

 
This way of taking normal ensures that normal goes from high-pressure side towards low-

pressure side. Thus using the direction of normal at any marker point we are able to determine 
orientation of high pressure side and low pressure side with respect to the given marker point. It 
should be noted, however, that arc-length is not directly known from the coordinate points. To 
obtain arclength and values of normal and tangents, we use an iterative procedure, where initial 
value of arclength is approximated as summed distance between the marker points. Using this 
approximate value as parameter we find coefficients of 5th order polynomial segments and 
corresponding values of corrected arc length. The process is repeated till the values of arc-length 
are sufficiently converged.  

 
Communication between the front and the grid  
 

It can be observed that for two dimensional grid, there are two types of marker points: 
those at the intersection with Y=const line ( ξ -grid line) and those at the intersection with 
X=const (η -grid line). Since each marker point is an intersection point, relation between grid 
and marker point is established by storing type of intersection point (intersecting with ξ -line or 
η -line) and indices for intersecting grid-line for each marker point. Indices of irregular grid 
points associated with marker points are also stored with each marker for efficient 
implementation of one-sided finite difference. Moreover, at each grid point, an indicator value is 
saved to associate the grid point with high pressure or low pressure side as appropriate. Shock 
velocity is obtained using the same shock fitting methodology as used for conventional shock-
fitting with appropriate interpolations. Based on the shock velocity, marker points are moved to 
new locations and shock geometry and its relation with the grid is updated after each time step. 

5 RESULTS: SHU-OSHER PROBLEM 

For shock and disturbance interaction problems, validation of codes can be performed by 
comparing against standard results for relatively simple cases of one-dimensional and two-
dimensional interactions of shock and disturbances. We have computed one-dimensional 
interaction of finite entropy wave and shock and compared it with available results from 
literature as presented in this section.  
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Shu-Osher problem, proposed by Shu and Osher in 1989 [46], presents a one-dimensional 
model of shock and turbulence interaction. The problem involves finite density variations 
(entropy disturbances) interacting with a moving normal shock for one dimensional inviscid 
configurations. The problem has strong nonlinear and fine scale features along with smooth 
regions. Hence, it has become a standard test case for shock capturing schemes (e.g. Visbal et al. 
[47] and Pirozzoli et al. [32] ). Initial conditions of the problem are defined as follows:   
 

 At 0t =  for 4x ≤ −  we have 
 

 

( ) ( )

( ) ( )

( ) ( )

2 2

1 2 2

2

1 1 2

2 1 1

1 2 1 1

M M

u M M

p M

ρ γ γ

γ γ

γ γ

⎡ ⎤= + − +⎣ ⎦

= − +⎡ ⎤⎣ ⎦

= + − +

 (26) 

 
while for 4x > −  , we have 
 

 
1.0 sin5
0.0
1.0

x
u
p

ρ ε= +
=
=

 (27) 

 
where ρ , γ , u , M and p  represent density, ratio of specific heats for the gas, velocity, Mach 
number and pressure respectively. 
 

If 0.0ε = , we have a pure shock located at 4x = −  at 0t =  and moving towards right 
with a constant velocity. If ε  is small the problem remains linear and comparisons can be made 
with the results of Westphall and Mckenzie [11]. Validation of codes can be performed for 
capturing nonlinear phenomena by using a significantly large value of disturbance amplitude. 
This problem was solved by Shu and Osher for 3.0M = , 1.4γ =  and 0.2ε =  until 1.8t = . Since 
there is no analytic solution available for the non-linear problem, general practice for validation 
of shock capturing codes is to compute the problem with the parameters used by Shu and Osher 
and compare the result against a very fine grid solution. It should be noted, however, that strong 
nonlinearities in the problem can lead to spurious oscillations in shock capturing solutions even 
for fine grids. 

5.1 Conventional shock-fitting with moving grids 
We solved the Euler equations (Eq.(7) with zero viscosity) with the initial conditions 

given in Eqs.(26) and (27) using our two-dimensional fifth-order upwind method with shock-
fitted moving grids using RK-3 time integration. The problem is computed in a reference frame 
moving with the steady state shock velocity so as to minimize the motion of shock for better 
shock fitting computations. It should be noted that flow upstream of the shock is supersonic 
relative to it; hence no effects of interaction will propagate upstream in shock reference frame. 
Thus, only the flow downstream of the shock constitutes region of interest. Therefore, with the 
conventional shock-fitted grids, it is viable to use the region bounded between the shock and the 
downstream boundary as computational domain for efficient shock-fitting computations as 
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shown in Fig. 5(a). Initial flow conditions are also shown in Fig. 5(a) which indicate use of a 
moving reference frame by our algorithm. The flow properties at streamwise boundaries remain 
unchanged throughout the solution procedure. Since we solve this one-dimensional problem in 
two-dimensional setting, we use periodic conditions at lateral boundaries. The initial density 
profile for the problem is shown in Fig. 5(b). Figure 5(c) shows the solution at non-dimensional 
time, 1.8t = . It can be seen from the figure that the density-disturbance amplifies after passing 
through the shock and causes nonlinear waves downstream. An enlarged view of the density 
variation downstream of the shock is shown in Fig. 6. As the shock propagates into the varying 
density field, an oscillatory solution develops behind the shock. A contact discontinuity develops 
in the middle of the flow downstream of the shock separating region immediately behind the 
shock from the small shocklets further downstream. Due to presence of small discontinuities 
behind the main-shock we need to use fourth-order artificial dissipation while computing the 
flow with very fine grids. Figures 5(c) and 6 also compare our results with those results obtained 
by Visbal et al.[47]. They used a hybrid scheme, having a five-point 6th order compact spatial 
scheme with 10th order spatial filter coupled with ROE scheme, to obtain the solution of Shu-
Osher problem. They treated a very fine grid solution as the exact solution to investigate 
accuracy of results on coarser grids (See Fig. 6 of Ref. [47]). This reference solution is compared 
with fine-grid results obtained from our shock-fitting algorithm in Fig. 6. It can be seen that fine-
grid results from two computations agree well in the region of interest. It can be noted, however, 
that the shock-fitting algorithm shows more prominent jump in density across the shock which 
can be attributed to shock not aligning with any grid point in shock capturing scheme.  

5.2 Front-tracking based fixed-grid adaptation of shock-fitting 
Fixed grid shock-fitting method, as described in section 4, can handle the large movements 

of the shock-front while keeping the grid-spacing constant. Hence, the problem defined by 
Eqs.(26) and (27) can be solved in the lab reference frame i.e. a Mach 3 shock moving into a still 
fluid having a spatially sinusoidal perturbation in the density. In this method, flow is solved 
upstream as well as downstream of the surface. In streamwise direction, unchanged boundary 
conditions are used at both ends while in lateral direction periodic conditions are used. Since 
problem is essentially same as the moving grid case, initial conditions shown in Fig. 5(b) are still 
valid. Motion of shock is tracked using marker points that can move across underlying fixed grid. 
Initial location of the marker points in our 2-D computational setting is shown in Fig. 7(a). The 
solution obtained after t=1.8 using the fixed grid method is compared to that obtained from the 
moving grid set-up in Fig 7(b), 7(c) and 7(d) for a coarse grid (grid spacing 0.05dx = ). It is 
observed that the solution from the new fixed-grid shock-fitting method matches well to that 
obtained from the conventional moving grid set-up and small discontinuities in the post-shock 
flows are observed. With the coarse grids used for Fig. 7, the solution is stable without artificial 
dissipation but small wiggles are observed in flow-profiles in the region where discontinuities 
become strong in post-shock flow. These numerical wiggles also cause small differences 
between fixed-grid and moving-grid results around the point where expansion fan develops 
downstream of the flow (Fig. 7(b)). Accuracy and convergence of the front tracking based fixed-
grid shock-fitting method is again assessed later in section 7.  

5.3 Analysis of results 
Since analytical results are not available for the Shu-Osher problem, we use a very fine 

grid solution with 3200N =  grid-points (on domain length of non-dimensional length 10 i.e grid 
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spacing, 33.125 10dx −= × ) as reference to study quality of the solutions obtained from coarser 
grids. As already shown in section 5.1, this fine grid solution matches well to reference solutions 
used in literature. A comparison of density profiles obtained with various set of grids is shown in 
Fig. 8. It can be noted that with the coarsest grid considered ( 200N = , 0.05dx = ), the solution 
shows dissipation away from the main shock especially around the contact discontinuity. 
However, around the main fitted shock the solution shows very good agreement with the 
reference values even for the coarse ( 200N = ) grid. It should be appreciated that main shock 
represents the strongest nonlinearity in the solution. Hence, shock capturing schemes are 
expected to be most dissipative around main shock. On the other hand, shock-fitting code seems 
give accurate results around fitted shock even for a coarse grid which shows that a remarkable 
efficiency can be obtained from shock-fitting codes. As grid spacing is reduced to a half of the 
coarsest grid case, the solution greatly improves even in the regions away from fitted shock. It 
shows that, apart from the main shock, which is fitted, the weak discontinuities are effectively 
captured by our shock-fitting algorithm since we solve conservation form of Euler equations. 

 
Incident density perturbations cause oscillations in the velocity behind the shock, even in 

absence of the velocity perturbations in upstream flow. The velocity perturbations at 1.8t =  are 
compared in Fig. 9 for solutions obtained at various grid-spacings. It can be noticed that the 
velocity perturbations travel behind the shock without significant changes in waveform while 
density values may encounter sharp changes which confirms presence of a contact discontinuity 
downstream of the shock. These oscillations in velocity steepen further downstream of the main 
shock forming small shocklets. Since discontinuities in velocity profiles are not as strong as 
those observed in density profiles, the coarse grid ( 200N = ) solution in Fig. 9 shows better 
agreement with the reference solution. However, significant errors are observed around the 
shocklets for coarse grid ( 200N = ) which reduce significantly with reduction in grid-spacing. 
Similar results are observed for profiles of other variables as well. A good estimate of the 
accuracy of results can be made by considering entropy solutions behind the shock. 
Nondimensional entropy of the fluid at pressure, p  and density ( ρ ) can be defined as follows: 
 

 ln ln
p

s p
C

ρ
γ

∆
= −  (28) 

 
where pC  is isobaric specific heat of the fluid. Thus, incoming density perturbations correspond 
to a 1-D entropy wave and leads to an entropy wave of a different amplitude and wavelength 
downstream of the shock. Figure 10 shows computed oscillations in nondimensionalized entropy 
for various grid resolutions. Finest grid solution, corresponding to 3200N = , shows a constant 
amplitude of entropy wave downstream of the shock. It is also observed that amplitude of 
entropy perturbation is actually reduced after interacting with shock. The coarser grid solutions 
corresponding to 800N = , 400N =  and 200N =  show increasingly dissipative characteristics. 
The amplitude of refracted entropy wave is reduced continuously as distance from main shock 
increase. However, it is important to note that near the fitted shock, results are very good and 
almost similar for all the grid resolutions used. 
 

All in all, the problem of one dimensional interaction of shock and density disturbance 
solved by high-order shock fitting algorithm matches well to the results available in the literature. 
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Moreover, the results were found to be remarkably good near the main shock even for very 
coarse grid. This is in contrast to shock capturing schemes which suffer most dissipation around 
strong discontinuity. 

6 TWO-DIMENSIONAL SHOCK AND TURBULENCE INTERACTION 
PROBLEM 

In the literature, results are available for small two-dimensional vorticity and entropy 
disturbances interacting with a shock which we have used for assessing utility of our shock-
fitting algorithm for shock-turbulence interactions. Mahesh [17] carried out linear interaction 
analysis for two-dimensional problem of a normal Mach 1.5 shock interacting with weak plane 
vorticity-entropy waves traveling at varying angles of incidence. For this problem, the domain is 
assumed to contain an ideal gas with specific heat ratio 1.4. Fluctuations are superposed over 
steady Mach 1.5 normal shock solutions (obtained from the Rankine-Hugoniot relations) for the 
gas. In a shock capturing setting, disturbances propagate downstream from the inflow boundary 
and interact with the normal shock as shown Fig. 11(a). The interactions of normal shock and 
disturbances cause time-periodic shock distortions and disturbance amplifications. 

 
A typical study with shock-capturing requires solving for flow upstream as well as 

downstream of the shock. However, our conventional shock-fitting algorithm can find effect of 
given upstream disturbances on downstream flow without solving for flow coming into the shock. 
Hence, we solve only for the flow which has passed through shock as was actually done by 
Mahesh for linear analysis. The computational domain used for this study is shown in Fig 11 (b). 
To use conventional moving-grid shock-fitting algorithm, a stationary Mach 1.5 shock wave is 
perturbed at 0.0t =  by a small amplitude disturbance field of the incident plane wave that makes 
angle 1ψ  with the X- axis. The incident field has the following form: 

 

 

1 1 1

1 1 1

1 1 1

' sin cos( )
' cos cos( )

' cos cos( )
' 0.0

v x y x

v x y x

v x y x

u U A k x k y U k t
v U A k x k y U k t

A k x k y U k t
p

ψ

ψ

ρ ρ ψ

= + −

= − + −

= + −

=

 (29) 

 
where variables U and ρ denote the mean velocity and density respectively and The variables 'u , 

'v , 'p and 'ρ represent fluctuations in velocities, pressure and density respectively. Subscripts 1 
and 2 denote the upstream and downstream steady states. For the computations presented here, 

1sin 1yk k ψ= =  and 1cosxk k ψ= is used. Length of domain in y direction, 2yL π= ensures that 
each x location the flow is periodic over the computation domain in Y direction. The variables 
used here were non-dimensionalized by appropriate combinations of reference length *

0L , 
reference speed of sound *

0c  and reference density *
0ρ . Here *

0c  and *
0ρ  correspond to the 

unperturbed free-stream values. For the present study we used 0.025v eA A= = , i.e. vorticity and 
entropy waves in same phase were considered. 
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The problem was computed by solving Euler equations with our conventional moving-
grid two-dimensional shock-fitting algorithm. Periodic boundary conditions were used in Y-
irection. In streamwise direction (X), the shock forms the inflow boundary which is solved by 
the shock-fitting algorithm. As computations are started, large oscillations in flow properties are 
observed downstream of the shock along all values of Y coordinates. These disturbances 
propagate downstream followed by an oscillating field. Figure 12 shows transients in vorticity 
profiles moving downstream of the flow. The exit boundary presents a problem for computation 
since flow is subsonic at the exit. Boundary conditions at the exit need to be chosen such that 
vorticity, acoustic and entropy perturbation in the domain are allowed to propagate properly 
otherwise such disturbances might reflect and contaminate the solution. We use approximately 
non-reflecting boundary conditions of Poinsot and Lele [48] at the outflow boundary and found 
that vorticity waves leave the domain and we obtain time periodic vorticity downstream of the 
shock. Figure 13 shows vorticity profile after the transients leave the domain. It can be seen that 
a sinusoidal vorticity profile is obtained along X direction at all locations. 

 
Validation of the results obtained for the problem considered can be done against the 

theoretical and numerical studies performed by Mahesh [17]. Mahesh considered linearized 
Euler equations (linearized about the uniform flow) behind the shock and solved a boundary-
value problem for the shock displacement and the flow behind the shock wave. It was found that 
the solution behind the shock wave has two different regimes that differ in nature of the pressure 
field. For a given Mach number, the two regimes are demarcated by a critical angle of incidence 
denoted by cψ . If angle of incidence is less than critical angle of incidence, the pressure field is a 
plane wave. However, if 1 / 2cψ ψ π< <  the pressure field behind the shock wave decays 
exponentially. Linear analysis of Mahesh predicts a value of 61.36˚ for critical incidence angle 
for Mach 1.5 flow. Linear theory also predicts that velocity and entropy fields behind the shock 
waves should be plane waves over both the regimes. This information from linear theory was 
used to qualitatively validate our results. Figure 14 shows pressure in X direction along the mid-
plane of the domain for various angles of incidence. It can be seen that pressure profile is 
sinusoidal for 1 15ψ = ° and 1 45ψ = ° . Also, the wavelength for oscillation in X direction is 
significantly larger for the case of 1 45ψ = ° as compared to solutions corresponding to 1 15ψ = ° . 
This is also confirmed by the linear theory results of Mahesh as wavenumber in X direction is 
proportional to 1cosψ  for a fixed Mach number of the incoming flow. It is also observed by our 
studies (Figs. 14(c) and 10(d)) that pressure goes towards an asymptotic value (which is the 
mean downstream value) and thus perturbation decreases exponentially. Figure 15 shows 
variation of vorticity in X-direction along midplane of domain, Y= π . It can be seen that all the 
profiles show sinusoidal variations. Similar to the pressure waves, for the cases of less than 
critical incident angle the wavelength of X direction oscillations should increase with increase in 
incidence angle which is indeed the case here. Apart from vorticity disturbances, entropy 
disturbances also interact with the shock in present case. Linear study predicts a plane wave 
structure for disturbance waves. Figure 16 presents variation of entropy as defined in Eq. (28) 
along streamwise direction at mid-plane of the domain. It is clearly seen that entropy 
perturbation downstream of the shock is a plane wave for all incident angles. Thus, while the 
pressure perturbations show different behaviors in the two regimes, vorticity and entropy 
perturbations remain sinusoidal. This behavior is predicted by the linear theory as well and thus 
qualitatively confirms the validity of the results obtained from shock-fitting computations. 
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Linear theory by Mahesh [17] provides the amplification factors for perturbation in 

vorticities, 2 2
2 1' 'ω ω . As shown in Fig. 16, vorticity perturbations downstream of the flow are 

plane waves for all angles of incidence. After the initial transient left the domain, statistics 
gathered over a period of inflow disturbance 12 / xU kπ were analyzed for amplification of 

disturbance in vorticity. Table 1 compares the amplification factors, 2 2
2 1' 'ω ω  obtained from 

our shock-fitting solution to the numerical and theoretical solution given by Mahesh. 
 

Table 1: Comparison of amplifications in vorticity fluctuations 2 2
2 1' 'ω ω  as obtained from 

different methods. 

Angle 
Shock 
Fitting 

Mahesh 
(Computational)

Linear 
Theory

    
0˚ 3.47 3.43 3.45 
15˚ 4.06 4.05 4.07 
45˚ 5.27 5.22 5.26 

61.36˚ 8.1 6.89 8.5 
75˚ 4.52 4.6 4.53 
85˚ 3.85 - 3.8 

 
The tabulated results are also plotted against the linear theory results provided by Mahesh 

in Fig. 17. It is observed that for most of the cases, our results show great agreement with the 
linear theory solutions.  

 
Thus we see that for two-dimensional calculations our results from conventional shock-

fitting are in qualitative and quantitative agreement with linear theory results. Moreover, the 
shock-fitting results behind the shock for all the incidence angles of disturbances are free from 
any spurious numerical oscillations. This is significant considering that shock capturing schemes 
may incur such oscillations in presence of shock as shown by Lee and Zhong [3].  

7 CONVERGENCE OF THE 5TH ORDER SHOCK-FITTING METHOD 

The focus of this study is on the high-order shock-fitting methodology for disturbance 
interactions with shock. In literature, generally design accuracy for the method is shown only 
with the simple and smooth problems. There are very few studies which consider convergence 
properties of schemes with non-linear discontinuities like shocks. Casper and Carpenter [43, 49] 
considered shock-disturbance interaction problems with shock capturing schemes and found only 
first order convergence in the smooth post-shock flow even with high order schemes. In general, 
shock-capturing methods suffer from reduction in accuracy in post-shock flow-fields. Hence, it is 
important to ensure that design accuracy is indeed achieved with high-order shock-fitting method 
for shock-disturbance interaction problems. Shu-Osher problem of section 5 is not a very good 
problem for convergence study as disturbance traveling towards shock creates a sudden jump in 
density at initial moment and small shocklets and expansion waves are formed behind the shock.  
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Suresh [50] used a variation of shock-fitting method (by adding grids instead of moving the grid) 
to show 3rd order accuracy of a shock-disturbance problem. This problem is a modified form of 
Shu-Osher problem and has smooth profile behind the main shock. We also consider the same 
problem with our shock-fitting schemes that use 5th order upwind method in interior with 4th 
order at the shock-boundary. Problem is one dimensional interaction of shock with a density 
disturbance which is defined as follows: 

 
At 0t =  for 0.4x <  we have 
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  (30) 

while for 0.4x > , we have 

 

41.0 sin (2.5 )
0.0
1.0

x
u
p

ρ ε π= +
=
=

 (31). 

 
Here we use a strong shock with M=3 , γ =1.4, ε =0.2 .  ρ , γ , u , M and p  represent density, 
ratio of specific heats for the gas, velocity, Mach number and pressure respectively. This 
problem is a modified form of more popular Shu-Osher problem and has been chosen since post 
shock flow for this problem have continuity in density as well as its first, second and third 
derivatives in space, thus making post-shock solution much smoother. The unsteady problem is 
computed till 0.32t =  so that shocklets are not formed behind the main shock. Thus the problem 
is expected to show true order of convergence for the shock-fitting method. To carry out the 
convergence analysis, we compute the unsteady problem for a number of grid-sets. Error from 
Richardson extrapolate is considered for finding the approximate order of convergence. Thus 
error for a grid spacing of / 2x∆  for a variable u is defined as,  
 

 / 2 / 2
1

2 1x x xne u u∆ ∆ ∆= −
−

, (32) 

where / 2xu∆ and xu∆  are solution for variable u  from grids of spacings of x∆ and / 2x∆  
respectively and n is expected order of accuracy (n = 5 in our case). The error values are 
obtained for different sets of grids and the approximate order of accuracy, n , is then defined as: 
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 (33). 

7.1 Convergence analysis for new front-tracking based fixed grid shock-fitting method 
For the conventional shock-fitting, it is advisable to solve the above problem in the 

reference frame where shock movements are nominal since large movements in the grid would 
affect the accuracy. However, when applying fixed grid shock fitting method described in 
section 4, we do not have such restriction. Hence the problem is solved in the reference frame 
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described by Eq. (30) and (31) i.e. a Mach 3 shock moves in still fluid with density disturbances. 
This method uses 5th order upwind finite difference scheme in interior with 4th order one-sided 
difference scheme around the shock. No additional dissipation is applied except that already 
present in original 5th order upwind scheme as given in (21). RK-1 time integration is used with 
small enough time-step so that temporal errors do not affect the overall accuracy significantly. 
We use our two-dimensional fixed grid shock-fitting code based on front tracking algorithm to 
solve this problem for 4 sets of grids:  
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2

-3
3

-
4

Grid-set 1: Spacing, = 5 10    (No of grids,  N=400)

Grid-set 2: Spacing, =2.5 10  (No of grids,  N=800)

Grid-set 3: Spacing, =1.25 10  (No of grids, N=1600)

Grid-set 4: Spacing, =6.25 10

dx

dx

dx

dx

×

×

×

× 4 (No of grids, N=3200)

 (34) 

Fig. 18 shows density profile at final time for three sets of grids (grid-set 2 to 4). In full 
view (Fig. 18(a)) the solutions look barely different from each other. However, as we zoom in on 
the solution we see small differences in the solutions (see Fig. 18(b) and 18(c)). It can be noticed 
that as we refine the grid, the solutions are obviously converging. Moreover, it can be also 
deduced from Fig. 18(b) and 18(c) that convergence rate is definitely better than 1st order. To 
investigate convergence, we find the error values from Richardson extrapolate as defined by Eq. 
(32) for different grid spacings. Spatial variations of point-wise errors obtained this way for grid-
spacings 3dx  and 4dx  are compared in Fig. 19 for density as well as velocity values. It can be 
observed that errors for finer grid are significantly less. Since log of error values on base 2 is 
plotted, one can deduce the local order of convergence, as defined in (33) , by taking difference 
between the two profiles in Fig. 19. It can be seen that both velocity and density results show is 
mostly 5th order rate of convergence at all spatial points. To quantify the global error, we take 2-
norm of local error values as defined by (32) and find the approximate error of convergence from 
Eq. (33) for different sets of grids. These values are tabulated in table 2. 

 
Table 2: Order of convergence using fixed grid shock-fitting for problem defined by (30)and (31) 

 
Error I: 

2dxe  

Error II: 

3dxe  

Error III: 

4dxe  
Order from 

I and II 
Order from 
II and III 

Density 3.48E-05 1.73E-06 9.16E-08 4.34 4.24 

Velocity 5.55E-07 1.81E-08 5.77E-10 4.94 4.97 

Pressure 4.29E-06 1.43E-07 4.68E-09 4.91 4.93 

Shock-location 2.81E-08 7.48E-10 4.48E-11 5.23 4.07 
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 From Table 2 it is observed that the method shows a convergence rate between 4th and 5th 
order. This is expected from our method which uses 5th order upwind scheme in the interior with 
4th order one-sided difference around the shock. Moreover, the shock-fitting solution does not 
incur spurious oscillations around the shock. This provides ample evidence of the advantages of 
using shock-fitting method for the problems where simple shock geometries are involved.  

7.2 Convergence properties using conventional moving- grid shock-fitting 
When shock-fitted grids are used for computations to solve the problem given by Eqs. (30) 

and (31), we solve the problem in the reference frame of steady shock moving with shock 
velocity, 1/ 2Mγ . The shock now forms boundary of the computational domain at 2x =  while 
conditions given by Eq. (31) are imposed as space and time depended freestream disturbances 
given by:  
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 (35) 

 
It is important to observe that by using freestream disturbances given by  Eq.(35), we are 

able to solve the same problem in mean-shock-reference frame as we solved with fixed grid 
front-tracking method in section 7.1. We solve this problem using conventional shock-fitting 
method till time, 0.32t = . With shock fitting we use 5th order upwind finite difference scheme in 
the interior while using one sided 4th order scheme at the boundary. There is no artificial 
dissipation use apart from the one inherent in the upwind scheme. An RK-2 method is used for 
time integration. Time step is taken very small so that there is no significant temporal error 
effects on accuracy of the problem. The results are presented in Fig. 20 for density variation 
using three sets of grids. It can be observed that results are fairly indistinguishable from each 
other in full view. As we zoom in on the different portions of the density profiles, it is observed 
that results are converging with grid refinement (20(b) and 20(c)).  
 
Table 3: Order of convergence using shock-fitted moving grid method for problem defined by (35) 

 

Error I: 

2dxe  

Error II: 

3dxe  Order from 
I and II 

Density 2.53E-05 8.77E-07 4.85 

Velocity 1.48E-06 4.87E-08 4.92 

Pressure 1.14E-05 3.74E-07 4.93 

Shock-location 3.15E-08 7.84E-10 5.33 
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As explained before, we take difference between results while successively refining the 
grids and find error values as defined by (32) for flow variables to assess convergence of the 
method. Such point-wise errors for density and velocity values are plotted as spatial variation in 
Fig. 21 for grid spacings -3

2 =2.5 10dx ×  and -3
3= 1.25 10dx × . Similar to Fig. 19, we plot log of 

error values on base 2. Hence, one can obtain local order at any point by just taking difference 
between the two curves corresponding to different grid spacings. It is observed that error values 
are definitely much smaller for the finer grid and local order is around 5 for most of the points. 
Global accuracy is obtained by taking 2-norm of these local errors for different grid-sets and 
finding convergence rates as defined in Eq.(33). These values are tabulated in Table 3.  
 

It is observed from Table 3 that design accuracy (5th order) is indeed achieved using the 
conventional moving-grid shock-fitting method. Comparing with same values from Table 2, we 
see that error values for both the methods is approximately of the same order, although 
conventional shock-fitting method shows slightly better results. The error values presented here 
are significantly smaller than those obtained from shock-capturing schemes presented by Suresh 
[50]. For example table 3 of Ref [50], shows an error of around 510−  (according to definition 
given by (32))in velocity values for 5th order shock-capturing scheme with grid spacing of 

-3
3= 1.25 10dx ×  while corresponding errors from shock-fitting results (table 2 and table 3) are 

around 810− . Thus significantly better results are obtained as compared to shock-capturing 
schemes for this canonical problem. 

 
Thus, our shock-fitting method shows high-order accuracy with conventional moving 

grids as well as new fixed-grid setting. Such result is very important considering the fact that the 
problem is actually strongly non-linear with a Mach-3 shock and shock capturing schemes suffer 
from reduction in accuracy for such problems as shown above. Thus shock-fitting methodology 
offers a high-order alternative for the cases where it can be applied. It is especially encouraging 
to obtain high-order accuracy from the shock-fitting in the fixed grid setting since it allows shock 
to move through the underlying grid; making it applicable to a lot of problems that are not 
suitable for conventional moving-grid shock-fitting method. 

8  SUMMARY AND FUTURE WORK 

 From the results in the current study, we observe that results produced from our high-
order shock fitting algorithm agrees well with those available in literature for simple cases of 
shock and disturbance interactions. For the Shu-Osher problem, very accurate results are 
obtained near the main shock even for a coarse grid which in contrast to dissipative solutions 
obtained from shock capturing for similar grids. For 2-D interactions of shock and vorticity-
entropy wave, results from shock-fitting algorithm agree well with the predictions of linear 
interaction analysis.  
 We have also shown the feasibility of using fixed grid algorithms with the shock-fitting 
algorithm. Moreover, 5th-order convergence of conventional as well as front-tracking based 
fixed-grid shock-fitting methods has also been established. This confirms a major advantage of 
using shock-fitting method over shock capturing methods to obtain high order accuracy as 
desired in numerical simulations of shock-turbulence interactions. 
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In future, we will further develop our fixed grid shock-fitting method to make it more 
robust and efficient. We intend to extend this shock-fitting method to include new immersed 
interface algorithm of Zhong [1, 2]. At shocks, this immersed interface algorithm requires jumps 
only in values of flow variables and their derivatives while giving arbitrarily high-order accuracy. 
Thus, compared to other Cartesian grid methods, this method is more suitable for high-order 
computations of physical problems. Such high-order implementation, if successful, will be very 
helpful in solving other multi-phase problems as well.  
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Fig. 1: A Schematic of typical setting of shock and disturbance/ turbulence interaction 
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Fig. 2: Irregular points for 5th order fixed grid shock-fitting based on front tracking. 
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Fig.3: (a) Non-uniform stencil used for one-sided difference scheme. (b) Derivatives are not 
computed at the point closest to interface and an extra point (green) is included in the stencil for  
one-sided difference. 
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Fig. 4. Schematic for arrangement of Marker Points and stencil for one-sided differentiation for 
the fixed-grid-shock-fitting methodology. 
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Fig. 5:  For computation of Shu-Osher Problem using conventional shock-fitting (a) 2D 
computational domain (b) Initial density profile (c) Density profile at t=1.8 (solid line) compared 

with shock-capturing solution (dots). 
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Fig. 6: A zoomed view of comparison of shock-fitted density profile (solid) at t = 1.8 against the 

fine-grid solution (dots) of Visbal et al.(2005). 
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Fig. 7: (a) A zoomed view of marker points (blue) and grids (red) at initial time step for 
computation of shu-osher problem with fixed grid shock-fitting method. Comparison of solutions 
obtained for front-tracking based fixed-grid shock-fitting and conventional moving-grid shock-
fitting for (b) Density (c) Pressure and (d) velocity. 
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Fig. 8: Effect of grid refinement on density profile at t = 1.8 using conventional shock-fitting 
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Fig. 9: Effect of grid refinement on velocity profile at t = 1.8 (using conventional shock-fitting). 
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Fig. 10: Effect of grid refinement on entropy profile at t = 1.8 (using conventional shock-fitting). 
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Fig. 11:  For the shock and vorticity-entropy wave interaction (a) Schematic of the problem and 
(b) Computational domain used for conventional shock-fitting algorithm. Shock forms the left 

boundary in (b) where oscillations in shock can be noticed. 
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Fig. 12:  Interaction of a vorticity-entropy wave at t = 5.0 after start (a) Contours of vorticity (b) 
Variation in X-direction at Y = π (centerline of domain) for 45˚ angle of incidence 
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Fig. 13: Interaction of a vorticity-entropy wave at t = 15.0 after start (a) Contours of vorticity (b) 
Variation in X-direction at Y = π (centerline of domain) for 45˚ angle of incidence. 
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Fig. 14:  Pressure profiles in X-direction along Y=π for disturbances coming at angle of 

inclination of (a) 15˚ (b) 45˚ (c) 75˚ (d) 85˚ with X-axis. 
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Fig. 15:  Vorticity profiles in X-direction along Y=π for disturbances coming at angle of 

inclination of (a) 15˚ (b) 45˚ (c) 75˚ (d) 85˚ with X-axis. 
 



 37

X

S
*

5 6 7 8 9

0

0.01

0.02

0.03

0.04

(a) X

S
*

5 6 7 8 9

0

0.02

0.04

(b)

X

S
*

5 6 7 8 9 10 110.015

0.02

0.025

0.03

0.035

0.04

0.045

(c) X

S
*

5 6 7 8 9 10 110.038

0.0385

0.039

0.0395

0.04

0.0405

0.041

0.0415

(d)  
Fig. 16:  Profiles of entropy *

pS s C= + in X-direction along Y=π for disturbances coming at 
angle of inclination of (a) 15˚ (b) 45˚ (c) 75˚ (d) 85˚ with X-axis. 

 

ψ1

⎯ω
' 22 /⎯

ω
' 12

0 20 40 60 80

4

5

6

7

8

Linear Theory, Mahesh(1996)
Shock-Fit

 
Fig. 17:  Comparison between theoretical results (solid) and computational results (dots) from 

shock-fitting algorithm. 
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Fig. 18: (a) Density variation for the smoother version of the Shu-Osher problem for different 
grid sets. (b) and (c) are zoomed versions of the profile showing convergence.  
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Fig. 19: Comparison of point-wise errors, 3dxe  and 4dxe  (defined in Eqs. (32) and (34)) for (a) 
density and (b) velocity obtained from the front tracking based fixed grid shock-fitting scheme 
for modified Shu-Osher problem of Suresh [50]. 
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Fig. 20: (a) Density variation for the smoother version of the Shu-Osher problem obtained from 
shock-fitting algorithm for different grid sets. Zoomed views of the density profiles are shown (b) 
away from the shock and (c) near the shock which forms boundary of the domain. 
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Fig. 21: Comparison of point-wise errors, 3dxe  and 4dxe  (defined in Eqs. (32) and (34)) for (a) 
density and (b) velocity obtained from the front tracking based fixed grid shock-fitting scheme 
for modified Shu-Osher problem of Suresh [50]. 
 
 


