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The laminar—turbulent transition of hypersonic boundary layers has a significant effect on drag calculation and
aerothermal design of hypersonic vehicles. Recent research has shown that one possible explanation to roughness-
induced bypass transition is transient growth theory. However, it is not known how to generate the optimal
disturbances computed by transient growth theory. Furthermore, there has not been any direct numerical
simulation study on transient growth in hypersonic boundary layers. The objectives of this paper are to study the
receptivity of a Mach 5.92 flow over a flat plate to three-dimensional surface roughness and the effect of spanwise
wave number on the receptivity. Steady base flow is computed by solving compressible Navier—Stokes equations with
a combination of a fifth-order shock-fitting method and a second-order total variation diminishing scheme. In
receptivity simulations, small surface roughness is introduced on the plate. The numerical results show that counter-
rotating streamwise vortices and transient growth are induced by surface roughness, however, transient growth is
generally weak due to the small height of roughness. For the six cases considered, surface roughness with the
spanwise wave number being 0.0101 has the strongest excitation of transient growth.

L

HE laminar—turbulent transition of hypersonic boundary-layer

flows has a significant effect on the drag calculation and
aerothermal design of hypersonic vehicles. To predict and control
boundary-layer transition, extensive studies have been carried out to
investigate transition mechanisms [1-5]. It is recognized that the
transition process of a boundary-layer flow strongly depends on the
amplitude level of environmental perturbations [6], which is
schematically shown in Fig. 1. According to Reshotko’s analysis [7],
only the first three paths had relevance to external flows. In an
environment of small amplitude perturbations, transition of the
boundary-layer flow over a smooth surface generally consists of
three steps (path 1): 1) receptivity process during which small
amplitude environmental disturbances enter the boundary layer and
excite boundary-layer wave modes; 2) linear development or growth
of unstable boundary-layer wave modes which can be predicted by
solving the eigenproblem of the homogeneous linearized stability
equations; 3) boundary-layer transition caused by nonlinear
breakdown and three-dimensional effects when the unstable wave
modes reach certain amplitudes. For high-amplitude perturbations,
transient growth provides a higher initial amplitude to eigenmode
growth (path 2). On a nonsmooth surface with stationary roughness
elements, the strong transient growth of boundary-layer wave modes
may directly lead to transition (path 3). In the current paper, only
small surface roughness is considered. The undergoing path in this
particular case configuration is path 3. However, the transient growth
is too weak to lead to transition.

The study of receptivity process is of critical importance to the
prediction of transition because it provides initial conditions of
amplitude, frequency, and phase angle for boundary-layer wave
modes [8]. Recently, theoretical, experimental, and numerical
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simulation studies on the receptivity of two- and three-dimensional
boundary layers have been carried out by many researchers [5,9-12].

Mack [2] was the first to carry out extensive computations on the
linear stability characteristics of compressible boundary layers. He
used compressible linear stability theory (LST) to calculate the
amplitude ratio (A/Ay) of constant-frequency disturbances as a
function of Reynolds number, where A and A, were local disturbance
amplitude and initial disturbance amplitude. The transition Reynolds
number was determined by an amplitude-ratio criterion. For a
cooled-wall flat-plate supersonic boundary layer, it was found that
calculated transition Reynolds number increased much faster than
the experimental measurements. Such results indicated that LST
alone was insufficient to accurately determine the transition
Reynolds number. It was necessary to consider the properties of the
environmental disturbances and the initial excitations of boundary-
layer wave modes. By solving the nonlinear parabolized stability
equations (PSE), Bertolotti [13] studied the amplification of vortices
over a plate generated by surface roughness, blowing suction, or
both. The results showed that the growth of vorticity could be much
larger with the presence of both wall inhomogeneities. Choudhari
[14] studied the roughness-induced generation of stationary and
nonstationary vortices in three-dimensional boundary layers over a
sweep wing, where nonstationary vortices were induced with the
presence of freestream acoustic disturbances. The effects of acoustic-
wave orientation and different types of roughness geometries were
considered. It was found that maximum receptivity occurred when
the velocity fluctuation of an acoustic disturbance was aligned with
the wave number vector of a nonstationary vortex mode. Hanifi et al.
[15] investigated temporal transient growth phenomena of
boundary-layer flows at a series of Mach numbers from 0.1 to 4.5
using the spectral collocation method. They found that maximum
transient growth increased with Mach number and could be scaled
with Re?, where Re is the Reynolds number defined by using
freestream flow variables and Blasius boundary-layer thickness
(V ix/ piout,). In addition, the time at which the maximum
transient growth was reached could be scaled with Re. Andersson
et al. [16] numerically calculated the maximum transient growth for
steady disturbances and concluded that optimal disturbances
consisted of streamwise vortices. They also found that maximum
transient growth scaled linearly with the distance from the leading
edge. Recently, Tumin [17] solved the receptivity problem of
compressible boundary layers to three-dimensional wall perturba-
tions by using a biorthogonal eigenfunction system. In case of
receptivity to surface roughness, a small-height hump was
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Fig. 1 Paths of boundary-layer transition process with respect to
disturbance amplitude [6].

considered. The results showed that there were counter-rotating
streamwise vortices, streaks at both sides of the hump, and a wake
region downstream from the hump. Outside of the boundary layer,
there existed large amplitude perturbations near the Mach waves
generated by the hump.

Because of the difficulties in carrying out supersonic and
hypersonic receptivity experiments, very few experimental studies
on receptivity, stability, and transient growth have been reported.
Kendall [3] experimentally studied the origin and growth of natural
fluctuations in zero pressure-gradient boundary layers at several
Mach numbers ranging from 1.6 to 8.5. Substantial growths of flow
fluctuations were observed within the laminar boundary layer in the
early region where the boundary layer was predicted to be linearly
stable. These fluctuations were related to the acoustic noise for
hypersonic flows. The growth rates of these fluctuations in the region
downstream of the initial growth were in a reasonable agreement
with the LST results of Mack [2]. Maslov and Semenov [18]
experimentally investigated the receptivity of a supersonic boundary
layer to artificial acoustic waves by using two parallel flat plates. The
acoustic waves generated by an electric discharge system on the
lower plate radiated into the external flow and penetrated into the
boundary layer of the upper plate as freestream acoustic
disturbances. It was found that the acoustic disturbances were
converted into boundary-layer wave modes most efficiently at the
leading edge and in the neighborhood of lower and upper branches of
the neutral curve. A similar experiment was carried out at a
Mach 5.92 flow by Maslov et al. [5] to study the leading-edge
receptivity of the hypersonic boundary layer. It was observed that
Tollmien—Schlichting waves were generated by the acoustic waves
impinging on the leading edge. They also found that the receptivity
coefficients depended on wave inclination angles. White [19]
investigated the transient growth of a flat-plate boundary layer to
controlled stationary disturbances generated by using spanwise
roughness array. The results showed quantitative differences
between experimental measurements and theoretical predictions,
which did indicate that realistic stationary disturbances could exhibit
significant nonoptimal behavior. White and Ergin [20] further
studied the receptivity and transient growth of a Blasius boundary
layer to roughness-induced disturbances, where the initial
disturbances were generated by a spanwise array of roughness
elements. In experiments, detailed information on the disturbances
and the transient growth was measured using hot-wire instruments.
The results indicated that energy associated with the roughness-
induced disturbances scaled with the roughness-based Reynolds
number. Fransson and Brandt [21] experimentally and theoretically

investigated the transient growth of stationary streamwise streaksin a
flat-plate boundary layer. The stable laminar streaks were periodic in
the spanwise direction and were generated by a spanwise periodic
array of small cylindrical roughness elements. The results showed
that the maximum transient growth was mainly determined by the
height of roughness elements. Recently, White et al. [22]
investigated the effects of the amplitude and diameter of cylindrical
roughness elements on transient growth features. Their experimental
results showed that energy of stationary disturbances varied as Re?,
the square of roughness-based Reynolds number, and the qualitative
nature of transient growth strongly depended on the roughness
diameter.

Recently, there are many numerical simulation studies in
supersonic and hypersonic boundary-layer receptivity. Bottaro and
Zebib [23] numerically investigated the formation and growth of
spatial Gortler vortices induced by wall roughness. In all naturally
developing cases, the average spanwise wavelengths of vortices
were close to those of optimal disturbances predicted by LST. Collis
and Lele [24] numerically investigated the formation of stationary
crossflow vortices in a three-dimensional boundary layer due to
surface roughness near the leading edge of a swept wing. The results
showed that convex surface curvature enhanced receptivity, whereas
nonparallel effects strongly reduced the initial amplitude of
stationary crossflow vortices. Malik et al. [4] investigated the
responses of a Mach 8 flow over a sharp wedge of a half-angle of
5.3 deg to three types of external forcing: a planar freestream acoustic
wave, a narrow acoustic beam enforced on the bow shock near the
leading edge, and a blowing-suction slot on the wedge surface. They
concluded that these three types of forcing eventually result in the
same type of instability waves in the boundary layer. Zhong [25]
studied the acoustic receptivity of a hypersonic flow over a parabola
by solving full Navier—Stokes equations. It was concluded that the
generations of boundary-layer wave modes were mainly owing to the
interaction of the boundary layer with the transmitted acoustic waves
instead of entropy and vorticity waves. In a series of papers, Ma and
Zhong [11,12,26] studied the receptivity of a supersonic boundary
layer to various freestream disturbances by a combination of
numerical simulation and linear stability theory. It was found that, in
addition to the conventional first and second Mack modes, there
existed a family of stable modes that played an important role in the
excitation of unstable modes. Egorov et al. [27] simulated unsteady
two-dimensional flows relevant to receptivity of supersonic and
hypersonic boundary layers by using a total variation diminishing
(TVD) scheme. For small forcing amplitudes, the second-mode
growth rates obtained by numerical simulation agreed well with
those predicted by LST, including the nonparallel effects. The results
of their simulations showed a nonlinear saturation of fundamental
harmonic and rapid growth of higher harmonics. Fischer and
Choudhari [28,29] examined the roughness-induced transient
growth in a laminar boundary layer due to a spanwise periodic array
of circular disks at the surface. The effects of roughness height, size,
and shape on the transient growth were also explored. Their
numerical simulation results indicated that energy levels of the
dominant stationary disturbances were consistent with the Re?
scaling of White et al. [22]. Spontaneous vortex shedding behind the
roughness array was identified for sufficiently large roughness
heights. Wang and Zhong [30] studied the receptivity of the same
flow as in Malik et al.’s [4] investigation to periodic blowing-suction
disturbances introduced in a narrow region on the wall. The effects of
frequency, location, and length of the blowing-suction actuator on
the receptivity process were also investigated based on a series of
numerical simulations. The numerical results showed that mode F,
mode S, and acoustic modes were excited by the blowing-suction
disturbances. Far downstream of the forcing region, mode S became
the dominant mode in the boundary layer. All cases of numerical
simulations consistently showed that the synchronization point of
mode F and mode S played an important role in the excitation of
mode S by wall blowing-suction. A concurrent theoretical study had
been carried out by Tumin et al. [10] to compare the theoretical and
numerical results of receptivity coefficients and to analyze the
receptivity characteristics. The perturbation flowfield downstream of
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the blowing-suction actuator was decomposed into boundary-layer
wave modes with the help of the biorthogonal eigenfunction system.
It was found that there was a good agreement between normal-mode
amplitudes calculated with the help of the theoretical receptivity
model and those obtained by projecting the numerical results onto the
normal modes.

Recent research has shown that one possible explanation to
roughness-induced bypass transition is the transient growth theory
pioneered by Reshotko and Tumin [31]. According to their theory,
transient growth arose through the coupling between slightly
damped Orr—Sommerfeld and Squire modes. They defined an energy
norm in the form of a production of density and squared velocity,
where the roughness-induced velocity is assumed proportional to the
roughness height. The energy norm at transition was related to the
initial energy norm through a transient growth factor. As a result, a
correlated transient growth factor could be used to predict the
transition location. Furthermore, the optimal disturbance was defined
as the disturbance to achieve the maximum energy growth at the
specific downstream coordinate. However, it is noticed that there has
not been any direct numerical simulation study on transient growth in
hypersonic boundary layers. Furthermore, it is not known how the
optimal disturbances computed by the transient growth theory are
generated by surface roughness. These are important issues related to
the receptivity of transient growth, which need to be resolved. In this
paper, the receptivity of a hypersonic flat-plate boundary layer to
three-dimensional surface roughness is studied by a series of
numerical simulations. The freestream flow conditions are the same
as those of Maslov et al.’s [5] leading-edge receptivity experiments.
Steady base flow is first computed by solving compressible Navier—
Stokes equations with a combination of a fifth-order shock-fitting
method and a second-order TVD scheme. The accuracy of the
numerical steady base flow is validated by comparisons with the
theoretical self-similar boundary-layer solution and Maslov et al.’s
experimental measurements. In receptivity simulations, small
surface roughness, periodic in the spanwise direction, is introduced
on the flat plate. The subsequent responses of the hypersonic
boundary layer are simulated by solving three-dimensional Navier—
Stokes equations with a fifth-order shock-fitting method and a
Fourier collocation method. Because of the small height of
roughness element, boundary conditions of temperature and
velocities on the rough surface are transferred to the original smooth
surface by linear extrapolation. The effect of spanwise wave number
on the receptivity is studied by considering six cases of receptivity
simulations.

II. Governing Equations and Numerical Methods

In the current numerical study, a Mach 5.92 flow over a flat plate,
as shown in Fig. 2, is considered. The flow is assumed to be thermally
and calorically perfect. The governing equations for the simulation
are the full Navier—Stokes equations in the conservative form, that s,

ou* 0 0 0
— Fi, + F; — (F3;, + F; —— F5+F;)=0
9t + 8XT( 1i + lv) + axg( 2i + 21)) + 3x§ ( 3i + 3v)

M

where the superscript “*” represents dimensional variables. U* is a
vector containing the conservative variables of mass, momentum,
and energy, that is,

U ={p", p*ui, p*u3, p*u3, "} @

The flux vector in Eq. (1) is divided into its inviscid and viscous
components, because the two components are discretized with
different schemes. The components F};, F5;, F3; are inviscid flux
vectors, whereas Fj, F; , and F}, are viscous flux vectors. The flux
vectors can be expressed as
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Fig. 2 Schematic of the receptivity of the Mach 5.92 flow to three-
dimensional surface roughness.
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with j € {1,2,3}. In Eq. (3), §;; (i = 1, 2, 3) is the Kronecker delta
function. In the perfect gas assumption, pressure and energy are
given by

P =pRT @

.
e* = p*ciT* + %(ui‘z + uz? + up?) (©)

where ¢} is the specific heat at constant volume. For compressible
Newtonian flow, the viscous stress tensor can be written as

* a * * * *
=0 (a”’ + u’) —%u*(au‘ L gZi)Si_/ (©)

oxt  Ox} 3 oxt  0x} 3

with i, j € {1,2,3}. In the simulation, the viscosity coefficient p*
and the heat conductivity coefficient k* are calculated using
Sutherland’s law together with a constant Prandtl number Pr. They
are both functions of temperature only:

e (TP AT

we= T T+ T (N
. /'L*C*
k= Prl7 ®

where  uf=1.7894 x 10 Ns/m?, T:=288.0K, Ti=
110.33 K, and ¢, is the specific heat at constant pressure. In this
paper, the dimensional flow variables are nondimensionalized by
freestream parameters. Specifically, density p*, temperature T+,
velocities u7, u3, u, and pressure p* are nondimensionalized by p%,,
T%, ul,, and pZuz?. Furthermore, x} and x are nondimensionalized
by unit length in meters, whereas xj is nondimensionalized by
Blasius boundary-layer thickness, /i, x/ pi ul,. Referring to the
coordinate system shown in Fig. 2, x}, x3, and x} are x*, y*, and z*,
respectively. The three variables u}, u3, and uj are velocities in
streamwise, wall-normal, and spanwise directions.

The high-order shock-fitting finite difference method of Zhong
[32] is used to solve the governing equations in a domain bounded
by the bow shock and the flat plate. In other words, the bow
shock is treated as a boundary of the computational domain. The
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Rankine—Hugoniot relation across the shock and a characteristic
compatibility relation coming from the downstream flowfield are
combined to solve the flow variables behind the shock. The shock-
fitting method makes it possible for the Navier-Stokes equations to
be spatially discretized by high-order finite difference methods.
Specifically, a fifth-order upwind scheme is used to discretize the
inviscid flux derivatives. Meanwhile, a sixth-order central scheme is
used to discretize the viscous flux derivatives. For three-dimensional
simulations, flux derivatives of F3; and F3, in the spanwise direction
are calculated by the Fourier collocation method to achieve high
accuracy. By using the shock-fitting method, the interaction between
the bow shock and perturbations induced by wall disturbances is
solved as a part of the solution, with the position and velocity of the
shock front being taken as dependent flow variables. In the leading-
edge region, there exists a singular point at the tip of the flat plate that
introduces numerical instability if the fifth-order shock-fitting
method is used to simulate the flow. Therefore, the computational
domain for the shock-fitting simulation starts from a very short
distance downstream of the leading edge. A second-order TVD
scheme used by Zhong and Lee [33] is used to simulate the steady
base flow in a small region including the leading edge to supply inlet
conditions for the shock-fitting simulation. For receptivity
simulations, three-dimensional small-scale roughness elements are
introduced in a downstream region where the shock-fitting method
is used.

The same numerical method has been used by Ma and Zhong in
their receptivity studies of supersonic and hypersonic boundary
layers over a flat plate and a sharp wedge to various freestream
disturbances [11,12,26,34]. The good agreement between numerical
and LST results indicates that the high-order shock-fitting finite
difference method is accurate to simulate the receptivity problems of
high-speed boundary-layer flows. The numerical method has also
been validated in the theoretical study and comparison with
numerical simulation by Tumin et al. [35]. The numerical
perturbation field downstream of the blowing-suction actuator is
decomposed into boundary-layer wave modes with the help of the
biorthogonal eigenfunction system. The filtered-out amplitudes of
mode S and mode F agree well with the theoretical solutions of the
linear receptivity problem. The Fourier collocation method has been
tested by Zhong [36] to study the receptivity of a Mach 6 flow over a
flared cone to freestream disturbances. The numerical results are
compared with published experiment results. It is found that the
steady base flow solutions agree very well with the experiment
results. The wave numbers and growth rates of numerical solutions
are reasonably similar to the LST results.

III. Flow Conditions and Boundary Condition
Transfer

Freestream flow conditions of the currently studied flow are the
same as those of Maslov et al.’s experiment [35], that is,

M, =5.92,
Pr=0.72,

T% = 48.69 K,
Rel, =13 x10°/m

pi =742.76 Pa,

The dimensional streamwise coordinate x*, as shown in Fig. 2, can
be converted to the local Reynolds number by

Re, = Rel x* 9)
where Re}, is the unit Reynolds number defined as
Re3, = piul/pi (10

In LST studies of boundary-layer flows, the Reynolds number based
on Blasius boundary-layer thickness L* is generally used. They are
expressed as

* * L* * *
Re="Pxtx2 o [Bot (11

Hence, the relation between Re and local Reynolds number Re, is
given by

Re = /Re, (12)

For the simulation of base flow, the wall is adiabatic, and the
physical boundary condition of velocity on the flat plate is the nonslip
condition. When small surface roughness is introduced on the flat
plate, boundary conditions of temperature and velocities on the
rough surface are transferred to the original smooth surface by linear
extrapolation due to the small height of the roughness element.
Figure 3 schematically shows the linear boundary condition transfer
of streamwise velocity, where the bold arrows on the undisturbed
surface stand for the streamwise velocity boundary conditions for
points A and B on original smooth surface. Therefore, the
computational domain and grid structure of receptivity simulation
are the same as those of base flow simulation. In the smooth region,
the adiabatic thermal condition and nonslip condition are used,
because the flow in receptivity simulation is still steady flow. Inlet
conditions are specified, whereas high-order extrapolation is used for
outlet conditions because the flow is hypersonic at the exit boundary
except for a small region near the flat plate.

Because of the existence of small roughness, the wall surface
changes from y* =0 to y* = eh*(x*, z*), where y* = 0 stands for
the original smooth surface. The function #*(x*, z*) represents the
profile of roughness elements. The parameter € is used to adjust the
height. The physical nonslip conditions of velocity on the rough
surface are

u*(x*, en* (x*,z%),2*) =0
v*(x*, eh* (x*,2%),7") =0 (13)
w*(x*, e (x*,2%),2") =0

Under the assumption of small-height roughness elements, boundary

conditions on the rough wall can be transferred to the original smooth
surface by linear extrapolation, that is,

u*(x*,0,z") = —eh*(x*, z%) 31“* | =0
v*(x*,0,z%) = —eh*(x*, 2) 3% |y =0 (14)

w*(x*, 0, 2%) = —eh* (x*. 2*) 2|« g

From our previous study [37], it was found that the roughness
element on an adiabatic flat plate was more efficient in the excitations
of streamwise vortices and transient growth. Therefore, the adiabatic
temperature condition is used on the rough surface, which is
expressed as

oT* (x*, eh* (x*, z*), 2%)
ay*

=0 (15)

Similarly, the temperature condition can be transferred to the original
smooth surface as follows:

rough surface

original smooth surface

Fig. 3 Schematic of linear boundary condition transfer of streamwise
velocity for points A and B on original smooth surface.
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oT*(x*,0,z%) e e e 0T
= eh*(x*, z )By*z - (16)

¥
In Eqgs. (14) and (16), all derivatives on the right-hand side of the
equations are calculated from the base flow.

With the linear extrapolations of velocities and temperature, the
authors still use the original grids for receptivity simulations. This
treatment is widely used in theoretical analysis and numerical
simulations for small surface roughness. In transient growth theory,
Reshotko and Tumin [31] assumed that the roughness-induced
velocity is proportional to the roughness height. Recently, Tumin
[17] solved the receptivity problem of compressible boundary layers
to three-dimensional wall perturbations by using the biorthogonal
eigenfunction system. In his analysis, linear extrapolation of velocity
was used to model the hump.

For the roughness elements considered in the current paper, the
function of #* (x*, z*) is defined as

A (x*, z7) = (1) cos(B*z") a7

where B* is the spanwise wave number. The function 7* (/) and the
variable / are defined as

h* () = (20.2515 — 35.437514 + 15.187503)/2.45688  (18)

2(x* — xF)/(xf —x7) if x* <4.28125 mm
2(xr — x*)/(xr —x¥) if x* > 4.28125 mm
(19)

1 =0.620287 x {

The coordinates of the leading and trailing edges of the roughness
elements in the streamwise direction x; and x are equal to 3.3125
and 5.25 mm, corresponding to Re =216.31 and Re =272.32,
respectively. The constant 2.45688 is the value of #*(I) at
| =0.620287, which is used to normalize the profile function.

IV. Results and Discussions
A. Steady Base Flow

Steady base flow over the flat plate is first computed by solving the
compressible Navier—Stokes equations with a combination of a fifth-
order shock-fitting finite difference method and a second-order TVD
scheme. In the leading-edge region, there exists a singular point at the
tip of the flat plate that will introduce numerical instability if the fifth-
order shock-fitting method is used to simulate the flow. A second-
order TVD scheme used by Zhong and Lee [33] is applied to simulate
the steady base flow in a small region including the leading edge. The
computational domain for the fifth-order shock-fitting method starts
atx* = 0.0025 mand ends at x* = 0.879 m, corresponding to Re =
180.28 and Re = 3380.38, respectively. In actual shock-fitting
simulations, the computational domain is divided into 19 zones with
atotal of 3746 grid points in the streamwise direction. The number of
grid points in the wall-normal direction is 121 before the position of
x* = 0.309 m, and 176 after that position. Forty-one points are used
in the overlap region between two neighboring zones, which is
proved to be sufficient to make the solution accurate and smooth
within the whole domain. An exponential stretching function is used
in the wall-normal direction to cluster more points inside the
boundary layer. On the other hand, the grid points are uniformly
distributed in the streamwise direction. The spatial convergence of
the results based on this grid structure has been evaluated by grid
refinement studies to ensure the grid independence of the fifth-order
shock-fitting simulations.

For shock-fitting simulation in the first zone, the inlet conditions
are obtained from the results of the second-order TVD shock-
capturing scheme, which is used to simulate the steady base flow in a
small region including the leading edge. For other zones, inlet
conditions are interpolated from the results of the previous zone. The
computational domain for the second-order TVD scheme starts at
x* = —0.0005 m and ends at x* = 0.0035 m (Re = 213.31). The
combination of the fifth-order shock-fitting method and second-

order TVD scheme has also been validated in cases of supersonic and
hypersonic steady base flows by Ma and Zhong [38] and Wang and
Zhong [30].

Figure 4 shows the pressure contours of the steady base flow
simulated by the fifth-order shock-fitting finite difference method.
The upper boundary of the flowfield represents the bow shock
induced by the displacement thickness of the boundary layer. The
lower boundary is the surface of the flat plate. The left inlet of the
flowfield starts at x* = 0.0025 m, where the shock has very small,
but nonzero, height. A part of the pressure field from x* = 0.03 mto
x* =0.08 m(Re = 624.50 to Re = 1019.80) is amplified to clearly
show the pressure contours within the boundary layer. It is noticed
that pressure is approximately constant across the boundary layer and
along the Mach lines, which is consistent with the theories of
boundary-layer flow and inviscid supersonic aerodynamics. At a
fixed location of constant x*, pressure behind the shock is higher than
that on the flat plate due to the existence of the bow shock. More
results of the two-dimensional steady base flow can be found in our
previous papers [37,39].

To validate the accuracy of numerical simulation, the steady base
flow simulated by the fifth-order shock-fitting method is compared
with the theoretical self-similar boundary-layer solution and Maslov
et al.’s [5] experimental measurements. Figure 5 shows the
distributions of dimensionless streamwise velocity across the
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Fig. 4 Pressure contours of the base flow simulated by the fifth-order
shock-fitting method.
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Fig. 5 Distributions of dimensionless streamwise velocity across the
boundary layer of the numerical base flow at three different locations.
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boundary layer at three different locations. It shows that the thickness
of the boundary layer increases with the location shifting
downstream. At x* =96, 121, and 138 mm (Re = 1134.46,
1254.19, 1329.66), the thicknesses of the boundary layer are
approximately equal to 1.84, 2.04, and 2.20 mm, which has a good
agreement with Maslov et al.’s experimental results of about 1.8, 2.0,
and 2.2 mm, respectively.

Figures 6 and 7 compare normalized Mach number M/M, and
dimensionless streamwise velocity u*/u’, distributions across the
boundary-layer at three different locations of x* = 96 mm, 121 mm,
and 138 mm. In these figures, 7 is defined as n = y*/L*. The solid
lines represent distributions of M/M,, and u*/u’, obtained by
solving the compressible boundary-layer equations. Because of the
fact that the solution of boundary-layer equations is self-similar, the
distributions of M /M, and u* /u?, at different locations are exactly
the same for the boundary-layer solution. The unfilled symbols
represent experimental results of Maslov et al. [5], whereas the other
three lines stand for numerical results simulated by the shock-fitting
method. The good agreement between the simulation results indicate
that an approximate gradientless flow is obtained over the flat plate,
which is evaluated in Maslov et al.’s paper by comparing the
experimental results. Figures 6 and 7 show that the numerical results
agree well with the experimental results and the boundary-layer
solution near the plate. However, in the region of n>5, the

= 25 ion of p! ible boundary-layer equations
@ ® ® N numerical solution atx =96 mm i
- == numerical solution at x_ = 121 mm
- numerical atx =138 mm
L o experimental result at x, = 96 mm
20 u] experimental result at x =121 mm
| A experimental result at x =138 mm
15
10
5k
0111111111111111111111111]
0 0.2 0.4 0.6 0.8 1

M/M_

Fig. 6 Comparison of normalized Mach number distributions across
the boundary layer at three different locations.

= 5 ot of p! ible b dary-layer equations
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- = numerical solution at x = 121 mm
- numerical atx =138 mm
L O experimental result at x, = 96 mm
20 u] experimental result at x =121 mm
| a experimental result at x = 138 mm
15
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5
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Fig. 7 Comparison of dimensionless streamwise velocity distributions
across the boundary layer at three different locations.

numerical results have a better agreement with the experimental
results. The difference between the numerical results and the
boundary-layer solution is mainly caused by viscous—inviscid
interaction, because the effect of the bow shock is neglected in the
calculation of the compressible boundary-layer equations. The
analysis of Figs. 5-7 indicates that the fifth-order shock-fitting
method is accurate to simulate the hypersonic flow considered in the
current study.

B. Receptivity to Three-Dimensional Small Surface Roughness

In compressible boundary layers, Tumin and Reshotko [40] used
energy norm to measure the strength of transient growth. The energy
norm was defined as

E, =(q.q), = A q"Mqdy (20)

where the perturbation amplitude vector q and the diagonal matrix M
are expressed as

q = (@,9,p,T,0)" @1

M = diag{p, p. T/(ypMe*), p/[y(y — DTMe?], p} (22)

In the current paper, the same energy norm is used to evaluate the
transient growth. The integral in Eq. (20) is numerically calculated
across the boundary layer using a midpoint rule.

For receptivity simulations, boundary conditions of temperature
and velocities on a rough surface are linearly transferred to the
original smooth surface according to Eqs. (14) and (16). To evaluate
the linear extrapolation, numerical simulations are carried out on
different height surface roughness. Tables 1 and 2 list the heights of
roughness elements with the spanwise wave number f being 0.3021
and 0.1511, respectively. The spanwise wave number f is
nondimensionalized by Blasius boundary-layer thickness at the
center of the roughness element as

p=pL* (23)

Specifically, seven cases of numerical simulations on different height
roughness are considered for 8 = 0.3021, whereas four cases of
numerical simulations on different height roughness are considered
for §=0.1511. In these two tables, the dimensional heights are
nondimensionalized by Blasius boundary-layer thickness at the
center of roughness element, that is, x* = 4.28125 mm.

Table 1 Heights of surface roughness with the spanwise wave number
being 0.3021 for the seven cases of numerical simulations

n € Dimensional height, m Dimensionless height
1 1.0x10°¢ 1.0x 107 0.05785
2 3.0x 107 3.0x 107° 0.17355
3 5.0x 107 5.0x 107 0.28925
4 8.0 x107° 8.0x107° 0.46280
5 1.0x 1075 1.0 x 1073 0.57850
6 5.0x107° 5.0 x 1073 2.89251
7 1.0x 107 1.0x 1074 5.78502

Table 2 Heights of surface roughness with the spanwise wave number
being 0.1511 for the four cases of numerical simulations

n € Dimensional height, m Dimensionless height
1 1.0 x 1076 1.0 x 107 0.05785
2 1.0 x 1073 1.0 x 107 0.57850
3 5.0 1073 5.0 x 1073 2.89251
4 1.0x 107 1.0x 107 5.78502
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If linear boundary condition transfer is valid, the perturbation
variables are linear to roughness height, and the energy norm in
Eq. (20) is proportional to the square of roughness height. Figure §
compares the energy norms for the seven cases of numerical
simulations on different height roughness with the spanwise wave
number being 0.3021. Furthermore, Fig. 9 compares the energy
norms for the four cases of numerical simulations on different height
roughness with the spanwise wave number being 0.1511. In each
figure, the energy norm plotted by circular symbols is equal to the
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product of the original norm for the case of “height = 1 x 107® m”
and the square of roughness height ratio (>1) between the two cases.
Forexample, in Fig. 8a, the ratio of roughness height between the two
cases is three, the energy norm plotted by circular symbols is 9 times
the original norm for the case of height = 1 x 10~® m. The good
agreements between the two sets of energy norms in Figs. 8a—8d
indicate that the linear extrapolation of the boundary condition is
valid for roughness height up to 1 x 10~ m. Nonlinear effect
becomes important when surface roughness is higher than
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Fig. 8 Energy norm comparisons for the seven cases of numerical simulations on different height roughness with the spanwise wave number being

0.3021.
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1 x 107 m. The corresponding limitation of dimensionless
roughness height for surface roughness is equal to 0.57850, as
listed in Table 1. In Fig. 9a, the ratio of roughness height between the
two cases is 10, the energy norm plotted by circular symbols is
100 times the original norm for the case of height = 1 x 107% m. The
agreement between the two sets of energy norms in Fig. 9a indicates
that the linear extrapolation of the boundary condition is valid for a
roughness height of 1x 1075 m. Such results prove that the
technique of linear boundary condition transfer is valid as long as the
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Fig. 9 Energy norm comparisons for the four cases of numerical
simulations on different height roughness with the spanwise wave
number being 0.1511.

height of surface roughness is smaller than 1 x 107 m,
approximately % of the boundary-layer thickness. In the current
study, the height of surface roughness is chosen to be 1 x 10™° m.

To study the transient growth induced by surface roughness, one
case of the receptivity of the hypersonic boundary layer to surface
roughness is investigated. For this case, the parameters of surface
roughness are as follows:

e=1.0x10"° and B*=1.7355x 10* m™! (24)

The dimensional wave number can be nondimensionalized by
Blasius boundary-layer thickness at the center of the roughness
element as

B = B*L* =0.3021 25)

Figure 10 plots the vector of w’ and v’ perturbations in the (y*, z*)
plane at a location of x* = 5.4375 mm (Re = 277.14), 0.1875 mm
downstream of the trailing edge of the roughness element. It clearly
shows that there is a pair of counter-rotating streamwise vortices
induced by the surface roughness. Figure 11 shows energy norm
distribution along the flat plate. It is noticed that the energy norm only
has a small growth in the wake at the location of x* = 0.028 m. The
small energy norm increase may be caused by the small height of
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Fig. 10 Vector plot of w’ and v’ perturbations in the (y*, z*) plane at the
location of x* = 5.4375 mm for the case of surface roughness with
B =0.3021.
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surface roughness with g = 0.3021.
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Fig. 12 Streamwise and wall-normal velocity perturbations in wall-
normal direction at the location of x* = 0.028 m.

surface roughness. Figure 12 shows the distributions of streamwise
and wall-normal velocity perturbations in the wall-normal direction
at the location of x* = 0.028 mm. The strong oscillations of velocity
perturbations outside the boundary layer (40 < y*/L* < 100) are
related to the acoustic waves propagating along the Mach lines.
Profiles of the two velocity perturbations in the boundary layer
indicate the existence of vorticity modes in the boundary layer, which
is shown in Fig. 10. With the streamwise vortices, momentum
transfers from inviscid outer flow to the boundary layer, increases the
momentum in the boundary layer. Correspondingly, the energy norm
of the disturbance increases, which stands for transient growth.
According to transient growth theory, the maximum energy norm
depends on the parameters of disturbances. We do not know which
spanwise wave number corresponds to the optimal disturbance. To
achieve maximum transient growth, a range of spanwise wave
numbers is covered. In the current paper, six cases of surface
roughness with different spanwise wave numbers are considered. For
all cases, the height of roughness is fixed to 1 x 107 m. Table 3 lists
the spanwise wave numbers of surface roughness for the six cases,
where the dimensional spanwise wave numbers are nondimension-
alized by Blasius boundary-layer thickness at the center of roughness
element (x* =4.28125 mm). Figure 13 compares energy norm
distributions along the flat plate near the roughness element for the
six cases of surface roughness with different spanwise wave
numbers. It shows the initial energy norm increases with the increase
of the spanwise wave number. In our simulations, surface roughness
with even higher spanwise wave numbers has been tested. However,
they are not included in current paper, because the initial energy
norm for even higher spanwise wave numbers is quite similar to that
of B = 0.0010. Figure 14 compares energy norm distributions along
the flat plate further downstream of the roughness element for the six
cases of surface roughness with different spanwise wave numbers. It
shows that the energy norm initially increases with the increase of the
spanwise wave number, however, the energy norm of the case with
B =0.0010 is smaller than that of the case with § = 0.0101. Both
Figs. 13 and 14 show that the spanwise wave number has a strong
effect on transient growth. For the six cases considered in the current

Fig. 13 Energy norm distributions along the flat plate near the
roughness element for the six cases of surface roughness with different
spanwise wave numbers.
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Fig. 14 Energy norm distributions along the flat plate further

downstream of the roughness element for the six cases of surface
roughness with different spanwise wave numbers.

study, surface roughness with the spanwise wave number being
0.0101 has the strongest excitation of transient growth.

To summarize, the numerical results show that streamwise
vortices are induced by surface roughness. Surface roughness with
the spanwise wave number being 0.0101 has the strongest excitation
of transient growth. In the current study, all numerical simulations
are carefully configured and the accuracy of numerical steady base
flow has been validated by comparisons with Maslov et al.’s [3]
experimental measurements. The results of receptivity simulations
are reliable. However, numerical results do not show very strong
transient growth, which may be due to the small height of surface

Table 3 Spanwise wave numbers of surface roughness for the six cases of receptivity simulations

Dimensional spanwise wave number, m~

1

Dimensionless spanwise wave number

1.73550 x 10*
8.67752 x 10
5.78502 x 103
2.89251 x 10°
5.78502 x 102
57.85016

ANk W =3

0.3021
0.1511
0.1007
0.0504
0.0101
0.0010
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roughness. The strong transient growth reported in previous
experimental studies [19,20,22] was induced by finite height
roughness.

V. Conclusions

The receptivity of a hypersonic flat-plate boundary layer to three-
dimensional surface roughness is investigated by a series of
numerical simulations. The freestream flow conditions are the same
as those of Maslov et al.’s leading-edge receptivity experiment [5].
The accuracy of the numerical steady base flow is validated by
comparisons with the theoretical self-similar boundary-layer
solution and Maslov et al.’s experimental measurements. In
receptivity simulations, small surface roughness, periodic in the
spanwise direction, is introduced on the flat plate. The subsequent
responses of the hypersonic boundary layer are simulated by solving
three-dimensional Navier—Stokes equations with a fifth-order shock-
fitting method and a Fourier collocation method. Because of the
small height of surface roughness, boundary conditions of
temperature and velocities on the rough surface are transferred to
the original smooth surface by linear extrapolation. The technique of
linear boundary condition transfer is proved to be valid as long as the
height of surface roughness is smaller than approximately % of the
boundary-layer thickness. The effect of spanwise wave number on
the receptivity is studied by considering six cases of receptivity
simulations. The numerical results show that counter-rotating
streamwise vortices and transient growth are induced by surface
roughness. The spanwise wave number has a strong effect on the
excitation of transient growth. For the six cases considered in the
current study, surface roughness with the spanwise wave number
being 0.0101 has the strongest excitation of transient growth. In the
current study, no very strong transient growth is induced by surface
roughness, which may be due to the small height of surface
roughness.
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