47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition AlAA 2009-1136
5 -8 January 2009, Orlando, Florida

A Hybrid WENO Scheme for Simulation of
Shock Wave-Boundary Layer Interaction

Maher Lagha 7 Xiaolin Zhong, Jeff Eldredge, John Kim
Mechanical and Aerospace Engineering Department, University of California, Los Angeles
420 Westwood Plaza, Los Angeles CA 90095-1597, USA

The ultimate goal of this study is to develop a robust and accurate numerical method for
simulation of hypersonic turbulent boundary layers. A hybrid numerical method, coupling
a fifth-order weighted essentially non-oscillatory (WENO) scheme for shock capturing and
a centered fourth-order finite difference scheme for computing turbulence away from the
shock, is considered. It is applied, in this paper, to a benchmark problem in which shock-
shock and shock-vortex interactions are present. It is shown that this method captures
the shocks robustly and computes the flow away from the shocks accurately. Then, a
spatially evolving turbulent boundary layer at Mach number 2.5 is considered. The issue
of turbulent inflow generation, using rescaling/recycling method, is addressed.

I. Introduction

A critical issue in computational hypersonic aerodynamics is to find a robust and accurate way of calcu-
lating shock-boundary layer interactions. Toward this end, several numerical techniques for shock capturing
have been developed over the past several decades. Examples include, but not limited to, the shock capturing
total variation diminishing (TVD) schemes (e.g. Daru & Tenaud (2001)!) and WENO schemes (e.g. Shu &
Osher (1989),2 Jiang & Shu (1996)3).

TVD schemes are suitable for simulations of supersonic flows with a small number of isolated shock
waves. However, near the shocks, the accuracy is reduced to first-order and solutions are degraded by
excessive numerical diffusion. Thus, problems involving multiple shocks and a large number of complex flow
structures away from shocks would require a more accurate numerical scheme.

WENO schemes have been proven to be efficient in some benchmark test cases, where the one-dimensional
Euler equation is considered. However, due to the way the Euler flux is evaluated, this scheme is compu-
tationally expensive and it is highly dissipative. Variants of WENO schemes, which are more suitable for
simulation of compressible turbulent flows, have been developed (e.g. Weirs & Candler (1997)* and Martn
et al. (2006)°). By modifying the standard strategy of computing the weights of the stencils in the WENO
scheme,® Wang & Chen (2001)% developed an optimized WENO scheme, by which short waves (waves with
wavelength of ~ 6 dz, where dx is the grid spacing) can be resolved better. However, their optimized scheme
was not tested in a benchmark problem relevant to simulation of compressible turbulent flows.

Conventional finite-difference schemes, high-order ones in particular, are more appropriate for accurately
resolving short waves. However, they are not suitable for flows with shock waves since they induce large
oscillations near discontinuities.

Hybrid approaches, which use a WENO scheme near discontinuities and a less dissipative and more
efficient finite-difference scheme away from discontinuities, have been proposed. In general, a hybrid scheme
is computationally more efficient since it limits the expensive flux evaluation of a WENO scheme near
discontinuities only.

Adams & Shariff (1996),” who used an essentially non oscillatory (ENO) scheme coupled with a compact
finite-difference scheme, were among the first to use a hybrid method. Their hybrid scheme was quite
successful in computing the interaction of a shock wave and divergence-free vortices. Adams®® used the
same hybrid methodology for simulation of a supersonic turbulent boundary layer along a compression
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ramp. Pirozolli (2002)% improved Adams & Shariff’s” method by replacing the ENO scheme with a WENO
scheme.

Ren et al.(2003)!! demonstrated that a sharp transition from one scheme to the other could cause spurious
oscillations, which could be avoided or minimized by using a weighted average of both schemes. Kim & Kwon
(2005)'? extended the work of Ren et al. by coupling the WENO scheme with a 6th-order central difference
scheme. By splitting the WENO scheme into two parts, a central flux part and a numerical dissipation part,
their scheme can be seen as a 6th-order central finite difference scheme, where its shock capturing ability
is guaranteed by adding a numerical dissipation, adaptively controlled by the weighting function. They
used the same weighting function as that used by Ren et al. Kim & Kwon’s scheme was better in terms of
computing time and resolution: it was nearly twice faster than the method by Ren et al. (the slowness of
the compact scheme of Ren et al. is due to the inversion of the tridiagonal matrix).

In spite of the much effort aimed at improving hybrid methods for simulation of aerodynamic problems,
there has been relatively few studies aiming at testing and improving hybrid methods for viscous boundary-
layer problems. The objective of the present work is to examine the capability of hybrid methods in simulating
complex viscous flows, involving the interaction between a shock wave and boundary layer. The ultimate
goal of our work is to develop a robust and accurate numerical method that can be used for simulation of
hypersonic turbulent boundary layers, where we have to accurately capture shocks and complex turbulence
structures.

II. A Benchmark Test Problem

The shock wave-boundary layer interaction is an important phenomena of supersonic and hypersonic
flows. It is observed in many internal and external flow problems relevant to hypersonic space vehicles.
Maximum fluctuating pressure levels and thermal loads, to which a structure is exposed, are generally found
in regions of shock-boundary layer interactions, and they can affect the structural integrity of the vehicle.!?
Despite a remarkable progress in computational capabilities, some flow features are still predicted with large
uncertainty (e.g. temperature peaks in strong interactions), and, more fundamentally, the fundamental
physical processes of turbulent hypersonic boundary layers are still not well understood.

As afirst step to test our numerical method in handling shock-boundary layer interactions, we investigated
the reflection of a shock wave at the end wall of a shock tube. This is the same test problem considered
by Weber et al. (1995),* who used a flux-corrected transport algorithm (FCT). Daru & Tenaud (2001)!
obtained better results by using a high resolution TVD scheme with a new family of limiters. They also
suggested that other approaches, such as a WENO scheme, would do a better job. Sjogreen & Yee (2003)'6
compared a WENO scheme with an improved TVD scheme, leading to results similar to those of Daru
& Tenaud. Neither of these investigators used a hybrid method. Our objective is to evaluate a hybrid
numerical method for capturing the shock and for computing the complicated shock-shock and shock-vortex
interactions in a viscous boundary layer as well as for computing smooth parts of the flow.

III. Hybrid WENO Schemes

We solved the compressible Navier-Stokes equations written in non-dimensional form as given in Daru &
Tenaud.! No slip boundary conditions were used at the adiabatic walls of a 2-D box = € [0,1] x y € [0,1],
filled initially with an ideal gas at rest and separated at = 0.5 by a membrane with a shock Mach number
equal to 2.37. The dimensionless initial states are:!

p=120,p =120/, for z < 0.5,

p=12p=12/v, for z > 0.5,

where p, p and v = 1.4 denote, respectively, density, pressure and the constant specific heat ratio. The
Prandtl number is 0.73 and the considered Reynolds number is 200. Following Daru & Tenaud,! the viscosity
is assumed to be constant and independent of the temperature.

We use a 4th-order central difference scheme for evaluating the spatial derivatives in the viscous fluxes
as follows. For simplification, we consider only one spatial dimension. First, we denote the Ny discretisation
points by x;, where i=1,2,.. Ny-2 for the interior points and ¢=0 or i=Nyx — 1 for the boundary points.
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Figure 1. Spatio-temporal evolution of the density (left) and the streamwise momentum (right) along the
centerline y=0.5. The shock is reflected at ¢ & 0.2. Results at ¢t = 1 are considered in the text.

Then, we have for any function f = f(z) represented in discrete form as f;=f(x;), the following 4th-order
scheme:

g 1

or|. %(S(f“rl — fic1) = (fir2 — fi—2)), i=2,.Nx—3,

U = L (180 = fo) = 9(f2 — fo) +2(fs — fo)

dx|,  6dx r=Jo 2= Jo 3 — fo)),

% L @@(ﬁ = fo) +6(f2 = f1) = (fs = 1)),
% N._2 = &%(Q(fo—l — fNe—2) + 6(fne—2 — fNe—3) — (fNe—2 — [Ne—a))s
g_i . = %(18”%—1 — fN—2) = I(fNuet — FN—2) + 2(f N1 — fN.—a)),

where dx is the spatial step (dz = 1/(Nx — 1)).
Around the shocks, the Euler fluxes are computed using a 5th-order WENO decomposition /reconstruction.?
For the evaluation of these Euler fluxes, a characteristic-based approach is applied, which uses the Roe-type
approximate Riemann solver. We also consider the global Lax-Friedrichs flux, which is less time consuming
than the former method and simpler to implement. For the time marching we use the standard 4th-order
Runge-Kutta algorithm. The CFL number is set to 0.1 for all the considered resolutions mentioned below.

Like other hybrid methods, the choice of using one scheme instead of the other for a given cell, is based
on the smoothness property of the solution. This smoothness can be measured, for example, by its gradients
as used by Adams & Shariff (7). In the present work, we have used the smoothness indicator used by Ren
et al.:

Tj+1/2 = min(rj, rj+1)

where

2Afj112Afj—1y2 t €
(Afjr12)? + (Afj_12)? + €

The € is a positive real number and A denotes the standard difference operator. Above a certain threshold
T'thres, the solution is considered as non-smooth and the WENO scheme has to be applied. Although we use
the same smoothness indicator as Ren et al. and Kim & Kwon, we do not use an average of both sub-schemes
in each computational cell. Only one sub-scheme is used, the WENO or the finite-difference scheme. Hence
our method is expected to be faster than the previous methods.

T =

3 of 11

American Institute of Aeronautics and Astronautics



[ T——

[' t
| 1
0.2 0.4 0.6 0.8 1
X
0.2 :

7Y
2 S ‘& &
. 0.2 04 06 rr
X

0 0.2 04 0.6 0.8 1 0

Figure 2. Temporal evolution of the density at time ¢{=0.6. (top-left), t=1 (top-right) and {=1.4 (bottom-left).
The points where the WENO scheme is applied are depicted by black points (bottom-right).

The performance of a smoothness indicator relies on its dependency on the threshold chosen by the user.
If this threshold is too high, the WENO scheme might not be used in some points of discontinuity, which are
interpreted as smooth points. This will ultimately lead to numerical instabilities. In contrast, if the threshold
is too low, the WENO scheme would be used in smooth regions, thus increasing the computational cost of
the hybrid method. The quality of the solution will be degraded due to the extra numerical dissipation
introduced by the WENO scheme. The choice of the threshold value, which is mainly based on trial and
errors, would be simplified if the value returned by the smoothness indicator is bounded. This is the case
since from the definition above, we have 7,1/, € [0;1].

IV. Numerical Results

The temporal evolution of the flow can be illustrated by one of its velocity components or by its density.
Following the numerical results in the literature, this evolution will be presented using the density and the
streamwise velocity. Their spatio-temporal evolutions are given in Fig. 1, while the spatial distribution of the
density is shown in Fig. 2 at three different instances. The resolution used in this figure is (Ny x Ny )=(400 x
400), where Ny and Ny denote the number of points in the z- and y-direction respectively. Because the
solution is symmetric with respect to the centerline y=0.5, only the half domain is shown.

First, a left-going expansion wave and right-going shock wave and a contact discontinuity are generated
(Fig. 1). A boundary layer is formed near the top and bottom walls behind the right traveling wave. After
t=0.2, the shock is reflected and a complex shock wave-boundary-layer interaction takes place. On one hand,
the bifurcated foot from the shock (x ~ 0.5, t=1) and tail shock (z =~ 0.6, t=1) merge with the main reflected
shock at a triple point, resulting in a A-shape shock pattern. A separated flow region “bubble” appears when
the static pressure behind the reflected shock is larger than the stagnation pressure in the boundary layer in
reflected shock fixed coordinates. On the other hand, after the passage of the shock, a shear layer is formed
with the triple point as its origin. It is unstable and rolls up to form discrete vortices at a later time (for
time ¢ >0.6). A detailed discussion of the flow structure near the A-shape pattern is presented, for example,
in Weber'* or Davies & Wilson.'®

In Figure 2, the points where the WENO scheme is used are shown with black points. In these points,
the solution was flagged as non smooth. We see that the shock is well captured by the hybrid method. Some
regions around the vortices are also considered as non-smooth. It is clear that this is related to the choice of
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Figure 3. Distribution of the y-momentum pv along the horizontal line y=0.05 (left) and the density p along
the bottom wall (right) using different resolutions (Nx X Ny) with the non-uniform meshes (denoted by NU)

and a uniform mesh (denoted by U).

the threshold in the smoothness indicator, that is defined by the user. Therefore, it is natural to check the
independence of the solution with respect to this threshold. We have checked that by decreasing ripyes from
Tehres=10"" t0 Tthres=10"2, the WENO scheme is applied in additional points which have been considered
smooth before. The solution however remains almost the same, especially the locations of the shock and of
the vortices.

In order to better resolve near-wall structures, we also used a non-uniform mesh (£, ) clustered near the
walls using the following hyperbolic tangent function with =1.2:

1/, tanh(B(2¢— 1))
y‘§<” tanh(9) >

where y € [0, 1] and & € [0,1] is the new coordinate. The same clustering is used in the other direction x.

Using this non-uniform mesh, three resolutions have been considered: (200 x 200), (400 x 400) and
(800 x 400). The last two resolutions are quite similar and hence the resolution (400 x 400) can be considered
a reference solution for this study. All the structures, especially the vortices on the right of the reflected
shocks, are well resolved.

For a more quantitative result, the distribution of the density along the bottom wall is shown in Fig. 3.
There are two peaks of density near the vortices. The magnitude of these picks depends on the resolution,
and it appears to be converged with the high resolution (400 x 400) using the non-uniform mesh, since its
distributions for (400 x 400) and (800 x 400) are indistinguishable. Regarding the vortices, the convergence
of the method can be attested for by considering the distribution of the y-momentum pv along the horizontal
line corresponding to y=0.05. First, the upwelling (pv > 0) and downwelling (pv < 0) motions associated
with these vortices can be easily identified from Fig. 3. Second, the magnitude of these peaks are almost the
same for high resolutions, from (400 x 400) to (800 x 400). Therefore, the solution has already converged
with a non-uniform resolution (400 x 400), which is lower than those used by Daru & Tenaud' (uniform
mesh with 3000 x 1500) .

Finally, it is worthy to examine the influence of the flux-splitting method. Figure 4 shows the density
distribution obtained with both flux-splitting methods mentioned above. The resolution used in both cases
is (400 x 400), and we used the same CFL number. From a qualitative point of view, these solutions are
similar. The solution obtained with the characteristic scheme introduces some noise, whereas it is smoothed
out with the more dissipative global Lax-Friedrichs scheme. We have remarked that at low resolution, the
characteristic scheme with the Roe average produces negative density on the right of the reflected shock. This
might be related to the main drawback of the standard Roe’s approximate Riemann solver in dealing with
high speed flow near low density regions.!” But in our case, it provides good results with higher resolution.
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Figure 4. The density contours at t=1 using two different flux types. Left: Lax-Friedrichs splitting. Right:
characteristic decomposition using Roe average.

V. Hypersonic Boundary Layer

The ultimate objective of our study is to investigate the fundamental physics of turbulence in hypersonic
boundary layers. In this section we report preliminary results obtained from a simulation of a spatially
developing turbulent boundary layer at a relatively low Mach number as a validation of our numerical
method described above as well as other numerical procedures in simulating spatially developing turbulent
boundary layers.

A. The governing equations

The compressible Navier-Stokes equations in conservative form are non-dimensionalized with the free-stream
quantities (poo, Toos Usos fioo)- The lengths are non-dimensionalized using the boundary-layer thickness at
the inlet 6%y and the time by 64g/Us. The ratio of specific heats, v, is assumed to be constant and equal to
1.4. The perfect-gas state equation reads under this normalization:

YMZp = pT.
The dynamic viscosity p obeys Sutherland’s law:

1+ 5

3
w(T)="T:> (T—|— S’) , S =1104K/T.

The free-stream Mach number is 2.5. The Reynolds number based on the free-stream velocity and the
inlet boundary-layer thickness is fixed to 9600. The computational domain length in the streamwise (x)
direction is 14.85%, and in the spanwise direction (z) is 465. The distance between the upper plane and the
adiabatic wall is 3.1659. The flow is assumed to be periodic in the spanwise direction. Sponge regions are
used at the outlet (x > 148,) and near the upper plane (y > 2.58}y). The downstream recycling station is
located at x, = 8.585,. We use 512 grid points in x, 128 in y and 256 in z. In terms of wall-unit (using the
friction velocity at the recycling location), the first grid point from the wall is located at y* = 0.7, A} = 5.46
and A} =2.9. The domain size in wall-units is L} x L;r X LF=2797 x 586 x T56.

B. Inflow generation

Different approaches to simulate turbulent boundary layers, including temporal boundary layer (TDNS),
extended TDNS (ETDNS) and spatial boundary layer (SDNS), have been reported in the literature. In the
latter case, the simulation generates its own inflow conditions by rescaling the flowfield at a downstream
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Figure 5. Left: Temporal evolution of boundary-layer thickness ratio 5
99

(dashed red), friction velocity ratio

(thin black) Z—% and momentum thickness (solid blue) Z—z Right: Mean-flow profiles of streamwise velocity w

(solid-blue), temperature T (dash-dotted red) and density 7 (dashed-black) at the recycling station.

station and prescribing it at the inlet. This method was applied by Lund et al.?° for incompressible boundary
layer and its extension to the compressible flow was developed by Urbin & Knight.'® Further development
of the method was carried out, among others, by Stolz & Adams,?! Sagaut et al.?® and Xu & Martin,?? who
minimized the empirical part of the recycling by using appropriate approximations. In most these studies,
the initial condition was already a turbulent state taken from another simulation. In this paper, we present
a systematic method to obtain a turbulent boundary layer starting from a laminar flow field. Our procedure
is outlined below.

The law-of-the-wall, well known in incompressible flow, can be extended to the compressible flow, provided
that the velocity is defined by a density-weighted transformation:

m _ 1/2
U,Vd —_ / (i) dﬂ7
0 Pw

where 1¥¢ denotes the van Driest velocity and p the density. The mean quantities (averaged in the spanwise
direction) are denoted by an overbar while the subscript “w” refers to wall quantities, which are also averaged
[19%2

in the spanwise direction. The script “i” (“r”) denotes quantities computed at the inlet (the recycling
station). Using this velocity, the two-layer similarity laws read:

qu(xiv y:r) _ U‘Vd(xrv y:r) (1)
Ur (.137) Ur (xr) ’
ur(x; ur(z;
v <xi) _ (1_ ( z))u£+ (@) v <xi) @)
99 Ur(ar) ur(r) 99
where uYd is the transformed free-stream velocity and u, is the friction velocity u, = %“, with the wall
shear stress 7, = (3—3) . Then, the mean flow at the inlet u; is obtained by using a smooth blending

between the two layers, using a suitable function (see e.g. Ref.?%). For the wall-normal velocity profile, we
assume that a scaling similar to the one described above can be applied, whereas the mean profile for the
spanwise velocity is zero. The mean temperature profile is derived using the Crocco-Busemann approximation
across the entire boundary layer:

— 2
T Tw - i
e M;@ ) r=0.82

Then, using the perfect-gas law, the mean density profile can be deduced since the pressure is nearly constant

7 of 11

American Institute of Aeronautics and Astronautics



18 T T T

14

12

10

vd

10 10° 10 10 10°

Figure 6. Van Driest transformed mean-velocity profile u,q in wall-units y*. Left (resp. right) quantity in
Eq. 4 in black (resp. blue) line. In solid red lines, the laws of the wall u™ =yt and ut = 1/(0.4)In(y*") + 2.5.

through the boundary layer:
P Tw
Poo T;

The perturbations, denoted with a prime and computed by subtracting the mean value from the flow
field, can be assumed to satisfy a similarity law across the boundary layer. Therefore, they are rescaled and

introduced at the inlet according to:

5

ui(y) = u’r(z—,y), (3)
99

where u’ represents the streamwise velocity perturbation. The same procedure is applied to the spanwise
w’ and wall-normal v’ perturbations. Then, by assuming that the pressure fluctuations are negligible, the
density perturbation are obtained from the temperature fluctuations, which are in turn, related to u’ through

the strong Reynolds analogy:
/ !/ /! /
0 T T U
==, ==-(-1)Mi—
pr TT TT uT
Note that the above assumptions do not have to be correct. For example, in Ref.,2? the pressure fluctuations
are not negligible compared to the density and temperature fluctuations.

C. Initial condition

For the initial condition, a parallel flow is prescribed using the power-law profile u|(—g = u(z,y,t = 0) =
min(1,y'/3). The two other velocity profiles are zero. The temperature is given by the Walz equation

2
T(%::O) = JTTLZ —r”T_lMDQO (%:0) . The initial temperature at the wall, T,,, is given by T}, = 1 —l—r’YT_lMgo

with the recovery factor r = 0.82. The initial density field is obtained through the state equation: pllf—=0 =

T
T|t=o0

are rescaled and re-introduced at the inlet. These initial disturbances grow in size and spread over the whole
domain, and a stationery turbulent state is quickly reached.

. Random noise perturbations are added to these mean quantities. As they convect downstream, they

D. Numerical results

Temporal evolutions of the ratios of different boundary-layer characteristics between the recycling station
2,=8.50g9 and near the inlet =0.16§4 are shown in Fig. 5. Useful quantities are the boundary-layer thickness
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Figure 7. Top to bottom: Streamwise momentum pu, spanwise momentum pw, density p and the points where
WENO is applied (depicted in black).

dg9, friction velocity u, and the momentum thickness . The last quantity is computed as:

9:/ PE_ =y gy,
0

PooUco Uoo

For ¢ > 140, the flow is considered to be a stationary state since different quantities oscillate around
their mean values. The temporal average of the ratio of the momentum thickness is 1.10 and of the ratio of
the boundary layer thickness is 1.12. These values are in good agreement with those given by the empirical
formula (see e.g. Ref.!9):

or ° Ty — T; 6 =1 5
v %9 r i 6,5 \2
5 s ~ (L+ ——02T° R )5
99 99
and .

ul (V 1

T 99\ -+

L (S2)

Uz 69
which gives the values of 1.2 and 1.01 for the ratios of the momentum thickness and friction velocity re-
spectively. The mean value of the momentum-thickness Reynolds number Ry = pooUsc8/ 1o is found to be
around 1200. The mean temperature, density and streamwise velocity profiles are shown in Fig. 5.

Since the mean pressure is constant across the boundary layer, we have £ ~ Zu. Therefore, the van

Driest transformed streamwise velocity profile can be defined by these two equqfvalent forms:

uly = /:+ \/@dﬁf, Uy = /OE+ \/@dﬁf. (4)

These profiles are shown in Fig. 6. They are both similar and collapse with the laws of the wall. In the
logarithmic region, they closely follow (1/0.4)In(y™) + 2.5.

Finally, contours of the streamwise and spanwise velocity momentum are shown in Fig. 7. As a thermo-
dynamic quantity, the density is considered and its contours are also shown. With the relatively low Mach
number, the WENO scheme is used in few locations. For an illustration purpose, we have decreased the
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Figure 8. Streamwise (top) and wall-normal (bottom) momentum for y* = 20 (y = 0.1).

threshold above which the flow is considered as non-smooth. Doing so, WENO is being applied in much
more points, as shown in Fig. 7 An instantaneous picture of the streamwise and wall-normal momentum at
y+T = 20 is shown in Fig. 8. Streamwise elongated structures are clearly evident, reminiscent of near-wall
turbulence structures in incompressible turbulent boundary layers.

VI. Conclusion and Future Work

In this paper, we first examined the capability of a hybrid method in computing the shock wave-boundary
layer interactions. The method conjugates the computational efficiency of a 4th-order finite difference scheme
with the shock capturing ability of a 5th-order WENO scheme. The presented results show many features
in close agreement with the results in the literature, hence supporting our numerical approach. Then, we
have simulated a spatially developing boundary layer at Mach number 2.5 and a momentum-thickness based
Reynolds number Ry = 1200. This boundary layer generates its own inflow by rescaling and re-introducing
the flow-field from a downstream location. Beyond the presented preliminary results, the study of the
influence of the domain size (and the resolution) on the mean profiles and the turbulence structures and
statistics is our next step. Regarding the rescaling method, it requires further improvements, and this will
be the subject of our future work.

As for the numerical approach, it is quite simple and efficient. Without any optimization, this hybrid
algorithm is nearly three times faster than a standard WENO scheme. For higher Reynolds numbers, higher
order hybrid methods could be needed. Modified finite difference or compact schemes, where the coefficients
are chosen to increase the range of resolved wavenumbers, can also be applied instead of the usual finite
difference scheme (e.g. Hill & Pullin'®). However, the time efficiency of the method may be degraded due
to the matrix inversion.
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