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A linear stability analysis is conducted to investigate hypersonic flows over blunt circular 
cones with a Mach 5.5 free-stream. The flow conditions are chosen to be the same as those 
of Stetson’s boundary layer transition experiments performed in 1967. The transition 
reversal phenomenon with respect to the nose bluntness was first observed by Stetson in 
these experiments. Therefore, the purpose of this study is to investigate the effects of nose 
bluntness on the linear stability of the boundary layer. For the case that transition reversal 
was observed experimentally, the second mode N factor is found to be too small to trigger 
the transition at the location reported in the experiment. The results show no bluntness 
induced reversal effects based on the second mode growth. In addition, another case 
adapted to Stetson’s Mach 8 experiment in 1984 is studied to investigate the second mode 
characteristics under different flow conditions. 
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1. INTRODUCTION 
 

 Extensive wind-tunnel and flight-test experiments on boundary layer transition and a number 
of stability experiments have been conducted for hypersonic flows over circular cones [1,2] in 
the last fifty years. Recently, Schneider [1,2] did a comprehensive review on the existing 
experiments and flight-testing reports. Though many of these experiments did not measure the 
transition mechanisms and were conducted in noisy wind tunnels, these experiments have led to 
better understanding of the effects on transition of many parameters, including nose bluntness, 
Mach number, surface and stagnation temperatures, freestream unit Reynold numbers, cone half 
angle and angle of attack, etc. Nevertheless, so far, the influences from these parameters on 
transition still remain unclear. 
 
 Stetson et al. [5, 6] carried out boundary-layer stability experiments on an axisymmetric blunt 
cone in a Mach 7.99 free stream. Detailed fluctuation spectra of the disturbance waves 
developing along the body surface were measured. It was found that the disturbances in the 
boundary layer were dominated by the second mode instability. Significant super harmonic 
components of the second modes were observed after the second mode became dominant. 
Compared with similar hypersonic flow over sharp cone, the second mode instability of the blunt 
cone appeared in much further downstream location. This indicates a stabilization of the 
boundary layer by slight nose bluntness. Stetson et al. [3] also carried out shock tunnel 
investigation of boundary layer transition at Mach 5.5. The half angle of the cones is 8 degrees. 
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A number of nose radii were used in the test ranging from 0.03125 inch to 0.5 inch as shown in 
fig.1. If arranging those transition data reported by Stetson [3] for a number of cones with 
different nose radiuses and flow conditions, one can generate a plot of free-stream transition 
Reynolds number versus free-stream Reynolds number based on nose radius as shown in fig.2. 
The figure shows clearly the transition reversal start from free-stream Reynolds number based on 
nose radius about 53 10× , which falls into the category of “large” nose bluntness. No DNS or 

Ne calculations have been done on this case to confirm the reversal effects. The nose bluntness 
effects was further studied by Stetson in [5]. Stability experiments of hypersonic flows over 
sharp or blunt cones have also been carried out by other researchers. Demetriades [7, 8] did 
extensive stability experiments on hypersonic boundary layers over axisymmetric cones. 
Recently, Maslov and his colleagues [9, 10] reported their stability experiments on supersonic 
and hypersonic flows over sharp and blunt cones.  
 

The normal mode linear stability characteristics of the boundary-layer flow over the same 
blunt cone as Stetson et al.'s experiments [6] have been studied by a number of researchers: 
imcluding Malik et al. [11], Herbert et al. [12], Kufner et al. [13, 14], Rosenboom et al. [15], 
Lyttle et al. [16], and Zhong [17].  Malik et al. [11] computed the neutral stability curve and 
compared the growth rates obtained by LST with the experimental results. The steady base flow 
solution was computed by using the parabolized Navier-Stokes equations. They found that the 
nose bluntness stabilizes the boundary layer. The growth rates predicted by the LST were 
compared with Stetson et al.'s experimental results at the surface location of s = 175 nose radii 
(0.667 m). The linear stability analyses predicted slightly lower frequency for the dominant 
second mode, but much higher amplification rates than the experimental results. 

 
Rosenboom et al. [15] did further study on the effect of nose bluntness on the linear stability 

of hypersonic flow over Stetson's blunt cone. In their studies, the cone geometry and freestream 
conditions were adapted to the Stetson's experiments. Three cases of blunt cones of different 
nose radius, which cover both ``small'' and ``large'' bluntness, were considered. The purpose was 
to investigate, by linear stability analysis, the transition reversal phenomenon observed in 
experiments at ``large'' bluntness [4]. By a linear stability analysis, Rosenboom et al. confirmed a 
monotonic downstream movement of the second mode critical Reynolds number as nose radius 
increases. However, their linear stability analysis still cannot explain the transition reversal 
phenomena observed in experiment at ``large'' bluntness.  Their results indicated that there is a 
need for better understanding of boundary layer receptivity as well as nonlinear transition 
phenomena for engineering transition predication. 

 
 The linear stability theory has been used and proven successful in analyzing the instability of 

hypersonic boundary layer. In this paper, the focus is placed on the hypersonic flow over the 
blunted cones.  By far, many researchers have studied the laminar-turbulent transition on blunted 
cones through experiments and numerical analysis. Some general trends on the effect of nose 
bluntness had been understood based on their studies. As concluded by Malik et al. [11] and 
Rosenboom et al. [15], the nose bluntness effect substantially stabilized the flow fluctuation and 
delayed the transition compared with the sharp cones. Moreover, as the nose bluntness increase, 
the initiation of transition will move further downstream until some critical bluntness is reached.  
A further increment in nose bluntness after reaching the critical value of nose bluntness will lead 
to a phenomenon called “transition reversal’. The mechanism of the transition reversal is 
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mysterious and has not been completely understood.  Different researchers proposed different 
theories to explain this reversal, but none of them have been fully accredited.  

 
 Even though lots of experiments have been conducted on hypersonic flow over blunt cones, 

most of them lack essential information to interpret the instability mechanism and flow behavior. 
Through the numerical study and linear stability analysis, we believe we can have a better 
understanding on the missing pieces of information.  In order to have a more complete picture on 
the study of laminar-turbulent transition of hypersonic flow over blunt cone, in the current report, 
we will mainly study the hypersonic flow over blunt circular cone with the flow conditions 
adapted to those of Stetson’s experiment reported in 1967. The effect of nose bluntness, free-
stream Mach number, surface temperature treatment, unit Reynolds number and cone half-angle 
will be investigated. The linear stability theory (LST) will be applied to analyze the second mode 
instability of disturbance waves inside the boundary layer. The N factor of the semi-empirical 

Ne method will also be carried out to correlate with the experimental transition data. Also, 
another case with flow conditions adapted to Stetson’s experiment in 1984 is studied to 
understand the influence of flow conditions to the stability characteristics.  

 
 

2. GOVERNING EQUATIONS AND NUMERICAL METHODS 
 
2.1 The Base Flow  
     The governing equations and numerical method for the base flow computation are briefly 
stated in this section. Details derivation and numerical method for three-dimensional 
axisymmetric flow had been described in previous papers (Zhong [31,32] ). The governing 
equations are the unsteady three-dimensional Navier-Stokes equations written in the following 
conservative form: 
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  where * * * * * * * *

1 2 3* ( , , , , )U u u u eρ ρ ρ ρ= , and superscript “*” represents dimensional variables. The 
Cartesian coordinates are denoted by * * *

1 2 3( , , )x x x  in tensor notation. In the current simulation of 
axisymmetric flow over blunt cones, *x  is along the centerline of the cone toward the 
downstream direction. The origin of coordinate is located at the center of spherical nose. The 
flow velocities are non-dimensionlized by the free-stream velocity *U ∞

, similarly, the length, 
density, pressure, temperature and time are non-dimensionlized by * * * *, , ,nr p Tρ∞ ∞ ∞  and * *

nr U ∞ , etc.  
The dimensionless variables are presented by dropping the superscript “*”. 
 
       A fifth-order shock-fitting method by Zhong [28] is used to compute the flow field bounded 
by the bow shock and cone surface. The flow variables behind the shock are determined by 
Rakine-Hugoniot relations across the shock and a characteristic compatibility equation behind 
the shock.  
 
2.2 The Linear Stability of Axisymmetric Disturbance 



 - 4 -  

     The linear stability theory (LST) is applied to study the instability of hypersonic flow over 
blunt cones in this report.  Based on the LST, the disturbances are limited to small amplitude. In 
hypersonic regime, the dominant instabilities, the Mack’s second mode is found to be most 
amplified along the stream-wise direction. Hence, the normal mode of disturbances is assumed to 
have the following form: 
 
                                                         ( )ˆ' ( ) i t s

nq q y e ω α− +=                                                                 (2)   
                                                 
In the above equation, 'q  can be any flow variable such as velocity, temperature, density and 
pressure. And q̂  is the eigenfunction of the variable representing the complex amplitude of the 
disturbance. In the spatial stability theory,ω , the dimensionless angular frequency of a normal 
disturbance mode , is a real number.  r iα α α= +  is the stream-wise direction wave number, 
which is a complex value. The imaginary part of wave number is the spatial growth rate of a 
specific disturbance mode. When iα  turns negative, the disturbance becomes unstable. The real 
part of wave number rα represents the spatial wave number of disturbance. An important 
quantity that can be derived from it is the non-dimensional phase velocity, which is defined as: 
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In the above equation, the dimensionless phase velocity is normalized by the free-stream velocity. 
F is dimensionless frequency such that 
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R is local Reynolds number based on the length scale of boundary layer thickness: 
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And *s is the curvilinear coordinate along the cone surface measuring from the nose tip. 
       
     Similarly, the dimensional wave number and growth rate are related to their corresponding 
dimensionless quantities by the following equations: 
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       One of the most common applications of LST analysis in predicting the laminar-turbulent is 
the N factor calculation based on a semi-empirical method called Ne  method.  According to this 
method, the transition will occur when the amplification of amplitude of the disturbances reach 
certain critical level. The ratio of the change amplitude of disturbance with fixed frequency can 
be calculated as they travel downstream. Since the growth rate is not a constant, the amplitude 
ratio between two locations can be expressed as an integral:  
 

                                                                           
*
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Or, just for the N factor, 
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In the integral, *

0s corresponds to the location that the disturbance just turns neutrally stable. By 
the integration, the amplification in amplitude of a specific disturbance as it moves downstream 
can be evaluated. On the other hand, the N factor leading to transition is determined from the 
experimental measurement. The transition N factor is not fixed for all the cases. It does depend 
on the flow conditions, object geometry and other unknown parameters.  Even under the same 
flow conditions, the N factor differs when different unstable modes are considered. Here, the 
different unstable modes refer to the Mack’s first mode and second mode. In general, the N 
factor of first mode is smaller than the one of second mode. For high Mach number flow (Ma>4), 
the second mode is most dominant unstable mode, so the N factor calculated in this paper is 
reported sorely for second mode instability waves. 
 

3. TEST CASES and FLOW CONDITIONS 
 
Many wind tunnel and flight tests have been conducted on hypersonic boundary layer transition 
over blunt circular cones [1, 2]. We will conduct further studies on two of the cases shown in 
table 1 [3, 6].  
 
 

Case 1: (Stetson's 1984 experiment) 
7.99M∞ =                6 1Re 8.78 10 m−

∞ = ×  

Cone half angle : 7  
* 64 10tP Pa= ×      * 750tT K=       

Wall temperature: adiabatic wall temperature 
nose radius: r= 3.81 mm,  r=42.67 mm 
Case 2: (Stetson's 1967 experiment) 

      5.468M∞ =              6 1Re 18.95 10 m−
∞ = ×

Cone half angle : 8   
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 * 7756.56P Pa∞ =             * 1227.88tT K=      
Wall temperature:    296wT K=  

Nose radius: r=3.969 mm, r=12.7 mm, r=38.1mm 
 

Table 1. Test Cases in the Study of Hypersonic Flow over Blunt Cones   
 

       For both the numerical simulation and LST analysis, the ideal gas model is adapted 
with 1.4γ = , Prandtl number 0.72Pr = and gas constant 286.94R Nm / kgK= . Sutherland’s law 
is used to evaluate the viscosity based upon the local temperature. 
 
     Case 1 is investigated primarily in the purpose of validation. Also, the effect of nose bluntness 
is observed by increasing the nose radius with the same flow condition. Case 2 is the major study 
case of current paper. The transition locations were measured and the transition reversal 
phenomenon was first reported. The stability study on this specific case helps to gain further 
understand in the transition process. 

 
4. RESULTS and DISCUSSION 

 
4.1 The Base Flow Computation 
     The base flows for all the study cases are obtained from the direct numerical simulation 
performed by Zhong using the method stated in section 2. The CFD code had been tested and 
validated on many different flow conditions. For all cases, the highly accurate base flow profiles 
were resulted.  The detail discussion of the base flow results are provided by Zhong[33]. Here,  
sample non-dimensional flow field profiles of case 2 (Stetson’s Mach 5.5 case) with nose radius 
of 3.969 mm are presented. In fig. 3-5, the η  is the distance from the body surface normalized by 
the nose radius. 
 

One feature of hypersonic flow over blunt cone is the presence of entropy layer which will be 
swallowed further downstream. In Fig. 5, the generalized inflection point due to the entropy 
layer effect is observed at the location upstream of the transition. The generalized inflection 
point is the essential condition for the appearance of instability. However, even reported by some 
researchers [32], the entropy layer instability is not found in the current study. 

 
4.2 LST results of  Case 1: 
     For the validation purpose, the LST calculation was first performed on case 1 which 
corresponds to the Stetson’s experiment in 1984 with 3.81 mm nose radius [6]. The results are 
compared with those from other researchers. 
 
     In fig. 6, the dimensionless growth rates of unstable second mode obtained by current LST 
calculation at s=175 are shown. In the same figure, the numerical results reported by Malik et al. 
[11] and Herbert and Esfahanian et al. [12] are also provided for comparison. All three results 
agreed rather well in the second mode region. The small discrepancies are mainly due to the fact 
that the LST calculations are very sensitive to the base flow field. Kufner et al. [14] provided a 
very good discussion on the sensitivity of LST results to the accuracy of the base flow. However, 
when comparing the first mode behavior, Malik’s result predicts a  
significantly higher growth rate than the current calculations. It is because in the current 
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calculations, the disturbance waves are restricted to be axisymmetric, while in Malik’s 
calculations, the three-dimensional (asymmetric) waves were taken into account. Therefore, in 
Malik’s results, the first mode growth rates reflected the oblique waves with most unstable 
growth rates. Since it is believed that for hypersonic flow, the dominant unstable modes are the 
Mack’s second mode, the LST study in this paper mainly focuses on understanding the second 
mode mechanism. 
 
     Other than the unstable second mode, some stable modes were also found. The growth rates 
and phase velocities of Mack modes together with the stable modes at surface location s=175 
were plotted in fig. 7 and fig. 8. For simplicity, the stable modes were named mode I, mode II 
and mode III, respectively.  As shown in Fig. 6, the mode I, mode II and mode III were always 
stable. It seems that they have nothing to do with the unstable mode at all. However, if their 
corresponding phase velocities are calculated, as shown in Fig. 7, it is found that whenever the 
stable and unstable mode intersect, it causes an abrupt change of growth rates for both stable and 
unstable modes. It turns out that Fig. 7 and Fig. 8 were very useful in understanding the 
receptivity mechanism of hypersonic boundary layer. Since, receptivity is not the subject of this 
paper; the detail will be discussed in a separate report by Zhong [33]. 
 
      By evaluating the growth rates at different locations, a neutral stability curve (fig. 9), can be 
generated. From this curve, one can clearly identify the disturbance wave at which frequency 
will become unstable first, and at which Reynolds number it will start to turn unstable. And the 
Reynolds number just mentioned is called the critical Reynolds number. In this case, the critical 
Reynolds number is about 1550 and has a frequency corresponding to second mode disturbance. 
In the study of Rosenboom et al. [15], the neutral curve for the three-dimensional disturbance 
waves is considered. The critical number for first mode and second mode were almost coincided. 
The critical Reynolds number is correlated to the transition Reynolds number with the latter one 
further downstream. Therefore, the neutral stability curve can be used to roughly estimate the 
transition location. But this is not reliable for most engineering applications because it only 
indicates where the disturbance waves start to grow but not how much they grow.  
 

 A more reliable method in predicting the transition is the semi-empirical Ne  method. As 
mentioned in earlier section, in order to perform the calculation using Ne  method, the N factor 
for each fixed frequency can be found by carrying the integration (Eq. 9). In fig. 10, the second 
mode dimensionless growth rates are plotted against the local Reynolds number. The 
calculations by Malik et al. [11] on the maximum growth rates at each local Reynolds number 
was compared with the current results. And the current result predicts a slightly higher growth 
rate than Malik’s. 
 

 Fig. 10 shows the N factor result for the cone with 3.81mm nose radius. As shown, not all the 
disturbance frequencies are amplified to the same level. Only some selected frequencies are 
responsible to the onset of transition. If the empirical N factor for transition is provided, from 
Fig.10, the range of frequency within which the disturbances will lead to transition can be 
identified. From the fig. 11, one at least gains some ideas about which range of disturbance 
frequency is more likely to be responsible for the transition to turbulence. Since Stetson et al. [6] 
did not provided the transition N factor for the current test case, Rosenboom et al. [15] assumed 
it was the same as the sharp cone, which N equals to 4.5. Based on this N factor, the transition 
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should occur at *s =0.8 m. However, in the experimental measurement, no transition was 
observed in this case. It means that the actual transition N factor from experimental measurement 
is needed in order to interpret the N factor calculations correctly.  
 

 Other than the test case with 3.81 mm nose radius, an artificial test case with nose radius of 
42.67mm (with no experimental data) is also computed to observe the influence of nose 
bluntness. For this case, the second mode instability does not emerge until much further 
downstream.  In fig. 12, the second mode dimensional growth rate is found to be barely unstable 
at location s about 6.0 m. Since the base flow is calculated only up to about 6.3 m along the 
stream-wise direction, no further growth rate data can be obtained. Nonetheless, the result is in a 
reasonable agreement with Rosenboom’s result [15]. The N factor calculation is not performed 
here due to the insufficiency of data. 

 
4.3 LST Results of Case 2: 

  Case 2 is the primary study case in this report. The flow conditions of this case are adapted to 
Stetson’s shock tube experiment in 1967 [3]. The LST results of three different nose bluntness 
are presented, which are r=3.969 mm, r=12.7 mm and r=38.1 mm respectively.  

  
   In fig.13-15, the growth rates are plotted versus the downstream location s. Some common 

characteristics are observed in these study cases.  The disturbance with higher frequency turns 
unstable at location closer to the nose tip. As the frequency of the disturbance decrease, the peak 
of second mode growth rate reaches a maximum value. After that, the peak value gradually 
decreases. This trend is not observed in fig. 13 because the instabilities spread out in a wide 
range of surface distance which is not covered in this calculation, but it is clearly showed in the 
other two cases. For example, on the cone with nose radius of 12.7 mm (fig. 14), the maximum 
growth rate is about 37 1 m  with frequency about 526 KHz.  

 
 Another important observation on the influence of bluntness is that blunting the nose forces 

the second mode instability to squeeze toward the nose tip, as shown in fig. 14 and fig.15. For 
these two blunter cones, due to the strong non-parallel effect in the region very close to the nose 
tip, the LST analysis is no longer applicable. Therefore, in the natural stability curve of the 
second mode (fig.19), the critical Reynolds numbers cannot be determined for the two blunter 
cones. 
 

  Comparing the ranges of frequencies of the unstable second mode of all three cones, it is 
found that the unstable frequency spectrum shifts toward the lower end as the nose radius 
increase. In other words, the range of unstable frequencies is selected by the nose radius of cone. 
Therefore, when conducting the direct numerical simulation studies on each of the above case, 
different range of disturbance frequencies need to be imposed to effectively simulate the 
instability mechanism inside the boundary layer of hypersonic flow. An improper choice of 
disturbance frequencies would produce results reflecting a completely unrealistic model.  Hence, 
the LST analysis is a very powerful tool in identifying the unstable frequency spectrum that is 
more likely to become dominant in the process of transition. The wave numbers for all the cones 
studied in Case 2 are presented in fig. 16-18 in order to compare with the DNS results, which 
will be provided in a separate paper by Zhong [33]. 
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  In Stetson’s experiment [3], the transition locations were recorded. The transition N factor 
can be determined by correlating the N factor calculation based on LST analysis with the 
location of transition from the experiment. Fig. 20-22 show the N factor for three different nose 
bluntness versus the downstream location. According to the experimental data, for the cone with 
nose radius of 3.969 mm, the transition occurred at s ≈ 0.406 m. Matching this number on the N 
factor diagram (fig. 20) gives an N factor about 3. Table 2 lists the transition location from 
experiment and the corresponding predicted N factor for each of the three cones with different 
bluntness. 

 
 
 
 
 

 
 

 
 

Table 2.  Transition Locations and transition N factors of Case 2 
 
The N factor for the first two cones with r = 3.969 mm and r = 12.7 mm are comparable, while 

the N factor of the bluntest cone, which the transition reversal occurred, appear to be much 
smaller. The N factor values for all three cones are lower than the conventionally accepted value 
of the eN method. The method usually predicts transition with an N factor between 5 and 10. In 
spite of the inconsistency in the transition N factor, the transition local Reynolds numbers of all 
blunt cones do not vary dramatically.  

 
4.4 Interaction of Modes for Case 2 

  It has been understood that the second mode instability is generated by synchronization of a 
discrete normal mode originates from the fast acoustics wave – mode F and a discrete mode 
originates from the slow acoustics wave – mode S. Most of the LST studies show that the mode 
S becomes unstable second mode after the resonance interaction between mode F and mode S.  
However, in current study, the mode F becomes the second mode instead. Fig. 23 shows the 
phase speed of mode F and mode S for the cone with nose radius of 3.969 mm at a fixed surface 
location s=120, it is clearly indicated that, the mode F is coming off the fast acoustic wave with 
wave speed 1 1 M+ . Also, the mode S detaches from the slow acoustics wave with wave 
speed 1 1 M− . These two modes synchronize at about 0.27ω = . In the vicinity of 
synchronization, the growth rate of mode F abruptly drops to unstable, while mode S becomes 
more stable (fig. 24).  Away from the synchronization point, the mode F recovers and becomes 
stable again. The same pattern is observed on the blunter cones. Also, in fig. 25 and 26, the non-
dimensional eigenfunctions of unstable second mode at the synchronization point are shown. All 
the fluctuation structures are clustered at location very close to the surface of the cone body.   

 
4.5 Second mode characteristics under different flow conditions 

  In the LST analysis, different behaviors of the second mode instabilities are observed on case 
1 and case 2. For case 1, as the nose bluntness increases, the appearance of unstable second mode 
get further delayed. The critical Reynolds number changes from 1550 to about 7000 when the 
nose radius changes from 3.81mm to 42.67 mm.  While, for case 2, increasing the nose radius 
forces the unstable second mode getting closer and closer toward the nose tip of the cone as 

 
rn 

Free stream Re 
based on  rn 

transition 
location 

Experimental 
N factor  R,tr

3.969 mm  75213  0.406 m  3  2770 

12.7 mm  240665  0.421 m  3.2  2823 

38.1 mm  721995  0.243 m  1.1  2146 
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shown in fig. 19.  It is believed that the different behaviors on the second mode instabilities are 
due to the differences of the flow conditions. The obvious difference in these two cases is the 
wall temperature condition. The wall temperature in case 1 is set to the adiabatic condition. And 
the wall temperature of case 2 is fixed at 296K, which is much cooler than the wall temperature 
of case 1. The wall cooling effect will stabilize the first mode and destabilize the second mode. 
Also, removing heat from flow will cause the boundary layer become thinner. Another important 
difference is the free stream unit Reynolds number. The case 2 has a unit Reynolds number more 
than 2 times of the one for the case 1. The implication between the unit Reynolds number and the 
second mode behavior still remains unclear. However, the LST results imply that the unit 
Reynolds number might play a crucial role in the transition process. 

 
   

5. CONCLUSIONS 
 
   The Stetson’s experiments with a free-stream Mach 5.5 conducted in 1967 are investigated 
using LST analysis. The growth rate and N factors for a wide range of free stream disturbance 
frequencies are calculated. The transition N factors are determined by correlating the current N 
factor calculations with the experimental transition location data. For the case in which the 
transition reversal was observed, the N factor based upon the second mode growth is found to be 
about 1.1. The second mode transition N factor is too weak to be the dominant mechanism 
causing the transition. This implies some other unknown factors that lead to transition reversal 
are still waiting to be identified.  
 
     In addition, by comparing the second mode instabilities in case1 and case 2, it is found that 
different flow conditions also alter the second mode instabilities significantly. The wall 
temperature conditions and the free-stream unit Reynolds number are shown to be important in 
controlling the behavior of second mode.  
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Figure 1. Sharp and blunt cones with an 8 degree half 
angle used in Stetson’s transition experiments in a 

Mach 5.5 shock tunnel [3].  
 

 
Figure 2. Free-stream transition Reynolds number vs. 

Reynolds number based on nose radius for Stetson's 
Mach 5.5 experiments (from Table 2 of [3]). 
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Figure 3. Non-dimensional U velocity profiles at 
different surface locations, case 2, r=3.969mm 
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Figure 4. Non-dimensional temperature profiles at 

different surface locations, case 2, r=3.969mm 
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Figure 5. Non-dimensional u yρ∂ ∂  distributions at 

different surface locations, case 2, r=3.969mm 
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Figure 6. Growth rates of Mack modes for case 1 with 

rn3.81mm at s=175 
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Figure 7. Growth rates of different normal modes for 

case 1 with rn=3.81mm at s=175 
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Figure 8. Phase speed of different normal modes for 

case 1 with rn=3.81mm at s=175 
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Figure 9. Neutral stability curve for case 1 with rn=3.81 
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Figure 10. Second mode non-dimensional growth rates 

for case 1 with rn=3.81mm 
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Figure 11. Second modes N factors for case 1 with 

rn=3.81mm 
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Figure 12. Second mode dimensional growth rates 

for case 1 with rn=42.67mm 
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Figure 13. Second mode dimensional growth rates 

for case 2 with rn=3.969mm 
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Figure 14. Second mode dimensional growth rate for 

case 2 with rn=12.7mm 
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Figure 15. Second mode dimensional growth rate for 

case 2 with rn=38.1mm 
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Figure 16. Second Mode dimensional wave number 

for Case 2 with rn=3.969 mm 
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Figure 17. Second mode dimensional wave number 

for case 2 with rn=12.7mm 
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Figure 18. Second Mode dimensional wave number  

for Case 2 with rn=38.1mm 
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Figure 19. Second mode neutral stability lines for 

different nose bluntness of Case 2 
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     Figure 20. Second Mode N factor for Case 2 with 
rn=3.969mm 
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Figure 21. Second Mode N factor for Case 2 with 

rn=12.7mm 
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Figure 22. Second Mode N factor for Case 2 with 

rn=38.1mm 
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Figure 23. Phase speeds of mode F and mode S at 

s=120 (0.4763 m), case2, r=3.969 mm 
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Figure 24.  Non-dimensional growth rates of mode F 

and mode S at s=120 (0.4763 m), case2, r=3.969 mm 
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Figure 25. Temperature eigenfunction of second 
mode at synchronization, case 2, r=3.969 mm 
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Figure 26. Pressure and u velocity eigenfunction of 

second mode at synchronization, case 2, r=3.969 mm 
 

 
 
 
 


