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High-Order Shock-Fitting and front-tracking Methods for 
Numerical Simulation of Shock-Disturbance Interactions 

Pradeep S. Rawat1 and  Xiaolin Zhong2  
University of California, Los Angeles, CA, 90095 

High-order methods that can resolve interactions of flow-disturbances with shock waves 
are critical for reliable numerical simulation of strong-shock and turbulence interaction 
problems. Such problems are not well understood due to limitations of numerical methods. 
Most of the popular shock-capturing methods are inherently dissipative and may incur 
numerical oscillations near the shock. Present paper is continuation of our previous work [1] 
on development and implementation of new algorithms based on shock-fitting and front-
tracking methodology which can solve the flow with high-order accuracy near as well as 
away from the shocks. The shock-fitting algorithm avoids dissipation and possible numerical 
oscillations incurred in shock-capturing methods by treating shocks sharply. We explore two 
ways for shock-fitting: conventional moving grid set-up and a new fixed grid set-up with 
front tracking. In conventional shock-fitting method, a moving grid is fitted to the shock 
while in the newly developed fixed grid set-up shock is tracked using Lagrangian points and 
is free to move across underlying fixed grid. High order front-tracking method gives 
satisfactory results for 2-D shock disturbance interaction problem. We also studied various 
methods to find shock velocity. It was found that conventional method of advancing the 
shock using characteristics based shock-acceleration relation gives more accurate results 
than other methods considered. Shock-turbulence interaction problems may produce 
nonlinearities like secondary shocks in the post-shock flow. Hence, we have combined our 
shock-fitting methodology with shock-capturing methods. Convergence analysis was carried 
out for combined shock-fitting and WENO methods for an unsteady shock disturbance 
problem and expected fifth order accuracy was achieved. It was found that, where 
applicable, shock-fitting algorithm provides superior results to those obtained from purely 
shock-capturing schemes. 

NOMENCLATURE  

 c= local speed of sound   Cv = constant volume specific heat 
 e= total energy of fluid      J= Jacobian of grid transformation    
 M= Mach number    p= pressure 
         Pr = Prandtl number                         P0= stagnation pressure of inlet flow. 
         q= heat flux vector     t = time    
 T= temperature                   Tr= reference temperature  
 T∞= sonic temperature    To= stagnation temperature  
 U∞  = sonic velocity at lab conditions   u,v,w = Cartesian velocity components 
 x,y,z= Cartesian coordinates   ρ= density of fluid 
 γ = ratio of specific heats   µ= dynamic viscosity 

            τ = viscous stress tensor                                  
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1 INTRODUCTION 

Many important scientific and engineering applications involve complex interactions 
between turbulent flows and strong shocks. Such interactions are part of a number of explosive 
processes such as volcanic eruptions, detonations, shock wave lithotripsy to break up kidney 
stones, supernova explosion, as well as the implosion of a cryogenic fuel capsule for inertial 
confinement fusion (ICF). Numerical simulation of such complex problems warrants very high-
order numerical methods. However, popular shock-capturing schemes are not very accurate in 
this regard as they use dissipation near the shock. Moreover, spurious numerical oscillations 
have also been observed when solving strong-shock and flow interaction problems with shock-
capturing schemes [2]. In the present study, we investigate shock-fitting algorithms for shock 
and disturbance interaction studies. Problem of interaction of normal shock and disturbances is 
fundamental for better understanding of the aforementioned complex phenomena. To this end, 
shock-fitting methods developed in current effort can be very useful to find high-order solutions 
of some simple shock and turbulence interaction problems such as shown in Fig. 1. Various 
researchers have considered such shock and disturbance/turbulence interaction problems in past. 
A brief summary is presented in ensuing sections for previous works in the field, followed by the 
scope of current study.  

1.1 Theoretical Studies 
Theoretical studies in this field have been attempted mostly through linear interaction 

analysis (LIA) where small perturbations in flow are considered. Kovasznay [3] showed that for 
weak fluctuations of density, pressure, and entropy, the turbulent fluctuations about mean 
uniform flow can be decomposed into the vorticity, acoustic, and entropy modes. It was shown 
that for first order approximation, each of these modes evolve independently in the inviscid limit 
for mean uniform flow. However, in second order approximation of fluctuations, interaction of 
these modes is possible and one mode can be generated from interaction of other two modes [4]. 

Ribner [5-7] and Moore [8] were among the earliest workers to consider theoretically the 
passing of a turbulent field through a shock wave. Ribner [5] analyzed interaction of a plane 
sinusoidal disturbance in velocity (shear wave) passing through a shock as a boundary value 
problem. In his analysis the shock was kept steady by solving the equations in a moving 
reference frame. It was found that initial shear wave is amplified and refracted by the shock due 
to the changes in thermodynamic properties and therefore emerges at a different angle from the 
incident. He later generalized this result from single wave to obtain shock-interaction effects of a 
completely turbulent velocity field [6] and obtained significant turbulent amplification due to 
shock turbulence interaction. The results were further extended [7] to provide the flux of acoustic 
energy emanating from unit area on the downstream of the shock. Moore [8] performed unsteady 
analysis of interaction of obliquely traveling weak plane disturbances of arbitrary profile with a 
plane normal shock. Unlike Ribner's analysis, unsteady shock was considered for linear analysis 
the interaction of sound and vorticity waves with an unsteady shock. It was found that 
amplification of disturbances depends on impingement angle and Mach number of the shock. 
Kerrebrock [9] considered modifications of random small fluctuations of pressure, entropy and 
vorticity in passing through shock or flame. It was found that all modes of disturbances are 
generated in the downstream flow if any of the modes is present in the upstream flow. McKenzie 
and Westphal [10] derived formulas for amplification and Snell's Laws for refraction and 
reflection of acoustic, vorticity and entropy waves interacting with shock and applied the results 
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to the amplification of small disturbances in the solar wind on a passage through the bow shock 
of earth. More recent theoretical studies of shock and turbulence interaction are by Goldstein 
[11], Lee et al. [12-14], Mahesh et al. [15-17] and Fabre et al. [18, 19]. It was found in these 
studies that different components of the turbulent kinetic energy, as well as root mean square 
values of the fluctuating pressure, temperature and density are amplified across the shocks. 
Despite several assumptions, Linear Interaction Analysis (LIA) provides accurate description of 
the essential characteristics of the interaction. 

1.2 Numerical Studies 
Since the early 80s, various attempts have been made towards numerical simulation of 

shock and disturbance/turbulence interaction. Initial efforts in this regard considered interaction 
of shock with simple waves. In 1981, Pao and Salas [20] fitted the shock at inflow boundary and 
solved Euler equation with finite difference discretization for study of shock/vortex interaction. 
Shock fitting computations with pseudo-spectral (Zang et. al [21]) and spectral techniques 
(Hussaini et al [22, 23]) were later used to treat the problems in which a single vortex, a vortex 
sheet, an entropy spot or acoustic wave interacts with the shock. The results obtained from these 
numerical efforts confirmed the linear theory in the regime of weak shocks. With the advent of 
essentially non-oscillatory (ENO) and related schemes, shock-capturing methods gained 
popularity for simulations of compressible flows. A number of new schemes for compressible 
flows has since been tested for interaction of shock with small disturbances against the results 
obtained from linear theory [23-25]. Although limited to low Mach numbers, these studies 
mostly confirm the LIA results. 

The numerical studies of fully turbulent field interacting with shocks are more recent. For 
the simulation of the turbulent field DNS methods and large eddy simulations (LES) have been 
used. However these different types of methods give different results when interaction with 
shock is considered [26]. Most of the recent direct numerical simulation (DNS) studies have 
been on various aspects of interaction of a normal shock with freestream turbulence for relatively 
weak shock of small Mach numbers. For example, Mahesh et al. [15, 17] did extensive direct 
numerical simulation (DNS) study of the interaction of a normal shock with an isotropic 
turbulence. The mean shock Mach numbers were in the range of 1.29 to 1.8. They found that the 
upstream correlation between the vorticity and entropy fluctuations has strong influence on the 
evolution of the turbulence across the shock. They also used linear analysis to analyze the 
simulation results. Other shock/turbulence interaction studies have been conducted by the same 
group of workers [12, 13]. Lee et al. [13] investigated the effect of Mach number on isotropic 
vertical turbulence interacting with a shock wave. The range of Mach numbers was in the range 
from 1.5 to 3.0. A shock-capturing scheme was developed to accurately simulate the unsteady 
interaction of turbulence with shock waves. It was found that turbulence kinetic energy is 
amplified across the shock wave, and this amplification tends to saturate beyond Mach 3. 
Hannapel et al. [27] computed interaction of a Mach 2 shock with a third order in space shock-
capturing scheme based on the essentially non-oscillatory ENO algorithm of Harten together 
with an approximate Riemann solver. Jamme et al. [28] carried out a Direct Numerical 
Simulation (DNS) to study the interaction between normal shock waves of moderate strength 
(Mach 1.2 and Mach 1.5) and isotropic turbulence. Adams and Shariff [29, 30] proposed a class 
of upwind-biased finite-difference schemes with a compact stencil for shock/turbulence 
interaction simulation. They used this nonconservative upwind scheme in smooth region while a 
shock-capturing ENO scheme was turned on around discontinuities. This idea of hybrid 
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formulation was improved by Pirozzoli [31] who used similar hybrid formulation for a compact 
weighted essentially non-oscillatory (WENO) scheme with conservative formulation for 
simulation of shock turbulence interaction. Ducros et al. [32] developed larger-eddy 
simulation(LES) on the shock/turbulence interaction by using a second-order finite volume 
scheme. The method was then used to simulate the interaction of a Mach 1.2 shock with 
homogeneous turbulence. 

Yee et al. [33] proposed characteristic-type filters, which add the dissipative part of 
traditional shock capture schemes to non-dissipative central based schemes in order to damp out 
numerical instabilities. Due to this feature, characteristic filters are very suitable to incorporate 
into existing LES codes based on high-order methods, and they allow the codes to have shock 
capturing capability. This scheme was used by Sjogreen and Yee [34] for shock disturbance 
interaction. Recently, Cook and Cabot [35] developed  artificial viscosity formulations for shock-
turbulence simulations. It functions as an effective subgrid-scale model for both high and low 
Mach number flows. The model employs a bulk viscosity for treating shocks and a shear 
viscosity for treating turbulence and has been used for the basic shock disturbance interaction. 

It is observed that most of the studies in field of shock-turbulence interaction have 
considered weak shocks only. Recently, more efforts have been directed towards investigating 
turbulent flows with stronger shocks which is relevant for a lot of high-speed compressible flows. 
Main issue with shock-capturing schemes is spurious numerical oscillations around the shock 
and loss of accuracy with dissipation needed to suppress these oscillations. Moreover, with 
stronger shocks, shock-thickness reduces which requires a finer resolution with shock-capturing 
schemes. Shock-fitting method offers a good alternative for strong shocks with simple 
geometries as shock is considered a sharp discontinuity. As mentioned before, one of the earliest 
numerical methods considered for shock-disturbance interactions were based on shock-fitting 
methodology. Shock-fitting methods have also been very successful for high-order simulations 
for freestream disturbances interacting with shock on blunt body [36-39] . Recently, Sesterhenn 
et al. [40] revisited shock-fitting schemes and applied them for solving Navier-Stokes equations 
in non-conservative form for problem of interaction of Mach 3 shock with isotropic turbulence 
with encouraging results. Shock-fitting considers the shock as a sharp discontinuity and is well 
equipped to consider even stronger shocks without any need for grid refinements. Shock-fitting 
algorithms can be even more useful in front-tracking methods where shock can move across the 
fixed grids avoid. Shock-fitting methods, however, can be really cumbersome for three 
dimensional problems and complex phenomena where shock merging and breaking takes place 
which is handled well by shock-capturing schemes. Moreover, even when we have a well 
defined strong shock that should be fitted, there could be nonlinear features like secondary 
shocks present in the flow which require shock-capturing schemes. Thus, there are there is need 
to use shock-fitting and shock-capturing schemes in a hybrid setting. 

1.3 Motivation and Scope of Current Study 

A study of the literature in the field of shock interactions with disturbances and 
turbulence shows that these complex configurations are part of a number of important 
phenomena including supernova explosions and inertial confinement fusion. However, the 
current scientific understanding of shock-turbulence interactions in complex configurations and 
the ability to reliably predict these strongly nonlinear flows remains limited. Most of the popular 
methods for solving compressible flow involve shock-capturing algorithms for treatment of 
shock. However, it has been observed that even high-order shock capturing methods give low 
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accuracy at the shock [41] and might lead to spurious oscillations [2]. Many shock capturing 
methods introduce some dissipation to avoid spurious oscillations which, however, is not 
accurate enough for simulation of turbulent flow. On the other hand, conventional high-order 
methods generally used for DNS studies have numerical problems due to strong gradients around 
shock. Due to such problems, DNS of shock and isotropic turbulence interaction has not been 
possible for stronger than Mach 3 shocks due to limitations of computational resources for the 
used shock capturing algorithms.  

Current work is continuation of our efforts presented in Ref. [1]. Here, underlying idea is 
to develop and use shock-fitting and interface fitting algorithms along with high order schemes 
to gain knowledge about nonlinear phenomena involving interaction of strong shocks and 
turbulent flows. Shock or interface fitting algorithms treat the interface sharply without any 
dissipation hence they are compatible with low dissipation schemes used for DNS of turbulent 
flow. Shock/interface fitting methods are ideally suited for the cases where there is a clearly 
demarcated interface which is indeed the case for the problem of turbulent flow incoming to a 
strong shock as shown in Fig. 1. In our previous work [1], we considered some simple canonical 
problems and established the high-order accuracy of the shock-fitting methods for such problems. 
All these factors provide ample motivation to further enhance and develop shock-fitting 
algorithms for solving shock-turbulence interaction problems.  

Conventionally, shock is treated as boundary in shock-fitting methods and grids follow 
the shock during the computations. This, however, might not be feasible if shape of the shock 
becomes complex or there are large movements in shock. For such situations, it is more useful to 
extend high-order shock-fitting idea to use with fixed grids where shock moves independent of 
grids.  Hence, an aim of current study is to develop new methods and algorithms to use idea of 
shock-fitting on fixed grids with the help of front-tracking method. We have developed a 2-D 
algorithm based on front-tracking where we use Lagrangian type marker points to track the 
shock-front. Shock velocity is obtained from a shock acceleration equation following 
conventional shock-fitting method used by Zhong [42]. Method is described in section 4 while 
results for two-dimensional shock-disturbance problems are presented in section 5. 

 We also realize that there can be several different ways to determine shock-movement. 
We explore some of these methods and assess the quality of results obtained for shock-
disturbance interaction problems. To this end, we carry out a convergence analysis with various 
methods for finding shock-velocity which is presented in section 6. 

Although, high order central difference schemes with shock-fitting algorithm are highly 
accurate, they are limited in scope. For the shock and isotropic turbulence interaction problems 
which we intend to solve, the main shock generally remains well defined which can be fitted but 
weak discontinuities like secondary shocks are generated in the post shock-flow. Hence, to take 
advantage of both shock-fitting and shock-capturing methods, we have combined them and 
convergence study for unsteady shock-disturbance interaction problem is carried out in section 7.  

Thus main thrust of current study includes (a) studying accuracy and results of 
conventional shock-fitting algorithm with high-order central scheme as well as shock-capturing 
schemes for some canonical problems (b) implementing shock-fitting algorithm with a fixed grid 
solver and (c) assess various methods for finding shock-velocity to use in shock-fitting 
algorithms. 

In remaining part of this paper we briefly present the governing equations and numerical 
method followed by solutions for the cases of 1-D and 2-D disturbances interacting with shock.  
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2 GOVERNING EQUATIONS 

The governing equations are compressible Navier-Stokes equations which are given as follows: 

 .( ) 0
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viscous stress and the heat flux are given by the usual constitutive equations in Newtonian fluid 
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where µ is the viscosity coefficient determined by the Sutherland law, 
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where Tr = 288K, Ts = 110K, and rµ  = 0.17894 ×  10-4 kg/m/s for air. The thermal conductivity k 
is computed from the Prandtl number, which is assumed constant and it takes the value of 0.72 in 
this paper. 

3 NUMERICAL METHOD: CONVENTIONAL HIGH-ORDER SHOCK-
FITTING 

For conventional moving-grid shock-fitting approach, shock forms a boundary of the 
computational domain and fifth-order shock-fitting method of Zhong [42] is used for solving the 
flow between shock and exit boundary (Fig. 1). The flow variables just behind the shock are 
determined by Rankine-Hugoniot relations across the main shock and a characteristic 
compatibility relation from behind the shock. The velocity and location of the shock are solved 
as part of the solutions and grid is modified to follow motions of the shock.  In the interior, 
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solution of conservative compressible Navier-Stokes equations is carried out using the numerical 
method described in this section. 

In numerical simulation, the compressible Navier-Stokes equations (2) to (4) are written 
in the following conservative form, 
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where U is the solution vector given by  
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E, F, G are the inviscid flux terms, and Ev, Fv, Gv are the viscous terms. They are written as 
follows 
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In the conservative equation (7), the inviscid fluxes and the viscous fluxes have the same 

forms as those of the Navier-Stokes equations. Before discretizing the governing equations by a 
finite difference method, equation (7) in the physical domain is transformed to the shock and 
boundary fitted computational domain by the following transformation relations, 
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and the transformed governing equation in the computational domain is expressed as follows 
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3.1 High Order Upwind Finite difference Scheme  

Shock-fitting methodology can be applied with any scheme. In current study we have used 
a 5th order upwind scheme and a 5th order WENO scheme for this purpose. An explicit finite 
difference scheme from Ref [42] is used for spatial discretization of the governing equation (16). 
The inviscid flux terms are discretized by a fifth-order upwind scheme, and the viscous flux 
terms are discretized by a sixth-order central scheme. For the inviscid flux vectors, the flux 
Jacobians contain both positive and negative eigenvalues. A simple local Lax-Friedrichs scheme 
is used to split vectors into negative and positive wave fields. For example, the flux term F′ in Eq 
(16) can be split into two terms of pure positive and negative eigenvalues as follows 
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The parameter ε is a small positive constant added to adjust the smoothness of the splitting. The 
fluxes F′+ and F′- contain only positive and negative eigenvalues respectively.  Therefore, in the 
spatial discretization of Eq. (7), the derivative of the flux F is split into two terms 
 

 F F F
η η η

+ −′ ′ ′∂ ∂ ∂
= +

∂ ∂ ∂
 (20) 

 
where the first term on the right hand side is discretized by the upwind scheme and the second 
term by the downwind scheme. 

The fifth-order explicit scheme utilizes a 7-point stencil and has an adjustable parameter 
α as follows 
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The scheme is upwind when α <  0 and downwind when α > 0. It becomes a 6-order central 
scheme when α = 0 which is used for discretizing viscous terms. 

3.2 Fifth Order WENO Schemes 

In the typical shock-turbulence interaction problem, as described in Fig. 1, the flow behind 
the main shock may encounter formation of weak secondary shocks. Hence, even as the main 
shock is fitted, a shock-capturing scheme is needed to solve the flow behind the fitted shock. We 
have combined the shock-fitting algorithm with a couple of 5th order weighted essentially non-
oscillatory (WENO) schemes. First WENO scheme is based on Jiang and Shu’s [43] 
formulations and, following the literature, will be referred in this paper as WENO5 scheme. 
Henrick et al [44] suggested an improvement over WENO5 to get more accurate solutions in the 
smooth region. This scheme will be referred in this study as WENO5M. 

In WENO5 scheme, spatial derivative of any scalar function f  is approximated as follows:  
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Where 1/ 2
ˆ

jf + is approximation to the numerical flux function which is constructed as weighted 
sum of fluxes from three different three point stencils as: 
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and iω are nonlinear weights given by 
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Here, iγ  represent the ideal weights, which give 5th order scheme with Eq.(23) and are given as  
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and the indicators of smoothness,  kβ  are given by:  
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*ε  is a constant used to keep the weights bounded. Equations. (23)-(27) describe WENO5 
scheme and generally * 1 6eε = −  is used to obtain fifth order accuracy in the smooth region 
while keeping the solution stable near the discontinuities. Henrick et al.[44] suggest that 
accuracy of the solution can be improved by mapping the weights in Eq. (25) to get the final 
weights as 
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So instead of equation (23) the WENO5M scheme uses 
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As detailed in Refs [43] and [44], for solution of Euler equations, a simple local Lax-

Friedrichs flux splitting is first carried out for flux terms in all directions following Eqs. (17)-(20) 
to divide the flux vector into negative and positive wave fields. The procedure for finding 
smoothness indicators kβ  and weights iω (for WENO5 scheme) or iω (for WENO5M schemes) 
is carried out in local characteristic fields. Thus we first find Roe average [45] of grid point 
values and based on eigenvectors of Jacobian, transform all the quantities needed for evaluating 
numerical flux to local characteristic fields. The numerical fluxes in each characteristic field are 
found by using the scalar procedure described above and then transformed back to original 
physical space.  

Our shock-fitting method [42] uses flux values at the shock points to find the shock-
acceleration which in turn is used to advance the shock. The WENO schemes described above 
need three points either side of any grid point, hence we use one-sided finite difference scheme 
for the grid points where WENO stencil may cross the shock. Figure 2 shows a schematic of the 
computational domain highlighting the points where one-sided should be used. Specifically, if 
the shock lies on the grid line represented as I IL= , one-sided finite differencing is used for 
points with 2,I IL IL= − . There are many choices available for one sided finite difference 
schemes for 3 points close to the boundary, which are considered for convergence study in 
section 7. 

4 NEW FRONT-TRACKING BASED HIGH-ORDER SHOCK-FITTING 

METHOD 

Conventional shock-fitting methodology, as described in previous sections, assumes the 
shock to be the boundary of the domain and flow is solved on moving grids. However, this 
approach becomes very difficult to apply for a problem where shock geometry becomes complex 
or the shock performs large motions. Hence, it is useful to develop a methodology that can 
implement ideas of shock-fitting algorithm on fixed grids. We have explored a fixed grid shock-
fitting method where shock is treated as an interface and can move across the fixed grid points. 
Thus the method is along the lines of fixed grid Cartesian grid methods like Immersed Boundary 
Method (IBM)[46] and Immersed Interface Method (IIM) [47] and Ghost-fluid method [48] 
coupled with methods to track the front (shock)[49]. The methodology is presented here in brief 
for two dimensional problems. 
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4.1 Finite Difference Scheme  
Similar to the conventional shock-fitting, governing equations are solved in the 

conservation form of equations and physical domain is transformed to computational domain and 
flux splitting is performed for application of upwind finite-difference schemes. Thus Eqs. (1) -
(20) are still applicable in this formulation except fixed grids are used with a constant Jacobian 
of grid-transformation. The 5th order upwind method given by (21) can be used on the points 
where finite-difference stencil does not cross the front. However, special treatment is needed for 
the “irregular” points where the stencil requires points on both sides of the shock. An example of 
irregular points on a grid line in X-direction is shown as the highlighted points shown in Fig.3 
for 7 point 5th order scheme. Similar irregular grid points can also be found for Y-direction grid 
line.   

To avoid crossing of shock-front by stencils we use one-sided finite differencing on 
irregular points. Interface point is included in the stencil along with interior points and we use 
one sided Lagrange interpolation to find derivative of any variable u at point jx as follows: 
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where subscript Γ indicates interface point, ix  is the nearest point to the interface that is  taken in 
the one sided difference stencil and Lagrange coefficients kl ’s and lΓ are given as 
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It should be noted that when using one-sided derivatives there might be issues with 

stability of the method if the stencil has one of the grid points very close to the interface. Hence 
choice of stencil is based on relative separation of interface point from nearest grid given by  
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i
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−
=

−
. (33) 

A critical value, *σ , of  this relative separation is used to decide the stencil taken for one-sided 
differencing. Two cases are possible: 

(a) *σ σ≥ : When marker point and interface have reasonable separation (as shown in Fig. 
4(a) then include in the stencil, the marker point as well as the closest point and store all 
the coefficients (as shown in the Fig. 4(a)). 
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(b) *σ σ< : When  marker point and one of the interface point are too close, we will include 
the marker point but leave out the closest grid point and include a grid point on other end 
instead (as shown in Fig. 4(b)). Values at closest grid-points are updated by high-order 
interpolations from other points of the stencil.  
It was found that as we increase *σ , the code becomes more and more stable. For the 

results presented in this paper we use * 1σ = . One-sided finite differencing is used to avoid finite 
difference stencils crossing the shock-front. However, if appropriate jump conditions are known 
at the shock-front, one can use schemes like Immersed interface methods (IIM) that find the 
finite differences at irregular grid points using regular stencil and correction terms based on jump 
conditions. Such methods allow flow of information across the shocks and can be more accurate 
as accurate jump conditions are enforced. Moreover, ad-hoc parameter *σ  would not be needed. 
Recently, Zhong [47, 50] developed a new immersed interface algorithm that requires jumps 
only in values of flow variables and their first derivatives while showing arbitrarily high-order 
accuracy. Since upto first order jump conditions can be derived from physics of the problem, this 
method is more suitable for high-order computations of real problems than other IIM schemes 
which need higher order derivatives of flow variables to obtain higher order of accuracy. Such 
IIM schemes should be considered in future as improvement on one-sided finite differencing 
scheme. 

4.2 Representation of the Front 
In our methodology, the shock-front is assumed to be sharp and is represented using 

Lagrangian marker points. The marker points connect segments of 5th order polynomial curves. 
For convenience in taking finite differences across the shock front, intersection points of the 
front with the grid lines are chosen as marker points. Figure 5 shows typical marker points 
( iS , 1iS + etc.) for a shock-front moving across a two-dimensional grid. These marker points are 
stored in a sequenced list. The order in list indicates the immediate neighboring markers of a 
marker as shown in the Fig. 5. The notation used here is such that as we move along the markers 
by incrementing in this sequenced list, the low pressure side of the shock should be on the left. 
With each marker point, information regarding geometry of the front, flow properties 
corresponding to the marker points and relation of marker point with the fixed grid is also needed 
to be saved. Some important points about treatment of front are as follows:  

 
Shock geometry: 

With each marker point, coordinates of the marker points are computed and saved.  A 
critical part of information regarding shock-geometry for shock-fitting method is shock shape, 
specifically, shock normal and shock tangents which are obtained using the coordinates. We use 
following parametric representation for the marker points to obtain shock normal and shock 
tangents:  

 

 
( )
( )

x x s
y y s
=
=

 (34) 

 
where s represents the arc-length on the interface. Arc-length is chosen as the parameter to 
represent the surface since value of arc-length monotonically increases along the surface and 
each value of arc-length coordinate correspond to a unique point on the interface. Moreover, arc-
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length represents the value of body-fitted coordinate in the tangential direction which can be 
readily used to obtain tangential derivatives of various flow variables where needed. Using arc-
length as parameter we use following definition for normal and tangent in 2-D. 
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 (35) 

 
This way of taking normal ensures that normal goes from high-pressure side towards low-

pressure side. Thus using the direction of normal at any marker point we are able to determine 
orientation of high pressure side and low pressure side with respect to the given marker point. It 
should be noted, however, that arc-length is not directly known from the coordinate points. To 
obtain arclength and values of normal and tangents, we use an iterative procedure, where initial 
value of arclength is approximated as summed distance between the marker points. Using this 
approximate value as parameter we find coefficients of 5th order polynomial segments and 
corresponding values of corrected arc length. The process is repeated till the values of arc-length 
are sufficiently converged.  

 
Communication between the front and the grid  
 It can be observed that for two dimensional grid, there are two types of marker points: 
those at the intersection with Y=const line ( ξ -grid line) and those at the intersection with 
X=const (η -grid line). Since each marker point is an intersection point, relation between grid 
and marker point is established by storing type of intersection point (intersecting with ξ -line or 
η -line) and indices for intersecting grid-line for each marker point. Indices of irregular grid 
points associated with marker points are also stored with each marker for efficient 
implementation of one-sided finite difference. Moreover, at each grid point, an indicator value,φ , 
is saved to associate the grid point with high pressure or low pressure side as appropriate. There 
could also be some grid points lying between interface points where one-sided differencing may 
not be applied as enough points are not available. Such points are “skipped” while taking fluxes 
and a unique value of indicator function is assigned to mark such points. Following value of 
indicator function is defined at every grid-point. 
 
 1φ =  for normal points on the low pressure side 
 1φ = −  for normal points on the high pressure side 
 2φ =  for skipped points on the low pressure side on a ξ -grid line 
 2φ = −  for skipped points on the high pressure side on a ξ -grid line 
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 3φ =  for skipped points on the low pressure side on an η -grid line 
 3φ = −  for skipped points on the high pressure side on an η -grid line 
 4φ = ± for points which do not have enough points in both directions.  

 
 For each marker point, indicator values at neighboring grid points are checked to see if 
there are any grid-points with 1φ > . Since flux values can not be computed at such grid points, 

these points are updated using interpolations. For 2φ =  points, we choose points along 
corresponding η -grid line and interpolate while ξ -grid line is use for interpolation at grid points 
with 3φ = . Figure 6 shows an example of 2φ = −  points and the points used for interpolations 
at such points. Other cases can be explained similarly. 
 
Shock Velocity based on Shock-acceleration. 

We use standard shock-fitting technique of finding the shock acceleration using Rankine-
Hugoniot jump conditions at the shock coupled with characteristic information from high-
pressure side of the flow. In the conventional shock-fitting method, the shock is represented as a 
moving grid-surface of the computational domain. Hence, shock velocity is related to the grid 
velocity and metrics of the grid transformation. Since the shock is represented by grid points, 
values of flow variables are readily available for use in finding shock-acceleration at the shock 
points. Method to find the shock acceleration in conventional shock-fitting is described in detail 
in Ref [42]. The conventional shock-fitting method for finding shock-velocity can be carried 
over to the Front-tracking method on a fixed grid by defining an imaginary grid associated with 
each marker point. Figure 7 shows a schematic of the real shock-front on a fixed grid (Fig. 7(a)) 
and associated imaginary grid-set used to find the shock-acceleration at thi  marker point (Fig. 
7(b)). The marker point iP  represents a grid point in this imaginary grid-set and there can be a 
number of choices for other grid points. We choose *η - grid line passing through iP  to be 
parallel to nG of shock-front so that shock-acceleration is obtained in the normal direction. The 
base *ξ -grid surface for this imaginary grid-set is chosen to be in parallel direction to tangent 
plane of the shock-front at iP .  Having established directions for this imaginary grid, we choose 
to define coordinates in the computational domain at particular moment of time by orthogonal 
transformation from physical space, i.e. 
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 (36) 

 
Here, n

G
 represents normal at the given point iP , 1τ

JJG
 and 2τ

JJG
 are tangent vectors. 1xτ  represents 

angle of vector 1τ
JJG

 with x-axis and similarly other terms in the matrix are direction cosines of 

vectors 1τ
JJG

, n
G

 and 2τ
JJG

.  ( )* * *, ,s s sξ η ζ  and ( ), ,s s sx y z  represent coordinates of shock-point iP  in 
computational and physical domain respectively. 
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Once appropriate relation is established between real fixed grid and imaginary set of 

moving grids, one can directly use the methodology of conventional shock-fitting. Following the 
relations given by Zhong [42] and noting that for the coordinate transformation given by (36)  we 
have  *η∇ =1 and  Jacobian of transformation at the given point of time *J = 1,  one obtains 
following relation for shock acceleration 
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Here, nv is the shock normal velocity, *τ is the time coordinate in imaginary computational 

domain with same value as physical time, i.e., *t τ= . nu  is the normal velocity and c  is the 
velocity of sound in the flow field corresponding to the high pressure side of the marker points.  
IN  is the eigenvector for the characteristic field approaching the shock from behind with velocity 
(eigenvalue) ( )n nu v c− + . Conservative flow-variables represented by U and flux vectors  

( ), ,E F G=F
JG

 have same form as given by Eqs.(8)-(11). Subscripts ‘s’ and ‘0’ are used to denote 
a marker point’s high pressure and low pressure sides respectively. The values of flow variables 
at the marker point are obtained by high-order interpolation. Thus along with Navier-Stokes 
equations, one needs to solve following system of equations to advance the front. 
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Based on the shock velocity, marker points are moved to new locations and shock 

geometry updated. New intersection points with the grid-lines are found using a Newton-
Raphson procedure and relation between grids and interface is updated. When shock-front moves, 
it can cross some grid points as shown Fig. 8. The solution at such grid points is no longer valid 
as they are on wrong side of the shock. Indicator values at such nodes are corrected and values of 
flow variables are obtained by interpolations from appropriate side of the shock. A simple Euler 
method of time stepping for this method will be as follows. 
 

0. Initial condition (flow field and interface data known) 
1. Find one-sided difference coefficients for irregular points 
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2. Find fluxes at all the grid points (regular as well irregular) 
3. Find shock-acceleration in normal direction (based on Zhong, JCP-98).  
4. Update values at all grid points from fluxes where they are calculated. 
5. Move shock-front and make adjustments due to marker movements 

a. Update grid points where *σ σ<  
b. Update grid points where 1φ >  
c. Update shock-velocity for all interface points and advance markers. 
d. Obtain new marker points as intersection with grid-lines. 
e. Identify and update the grid-points that are crossed by shock-movement. 
f. Establish new correlations between grid and markers. 

6. Advance time 1n nt t dt+ = +  
7. Obtain flow field values at low-pressure side of marker points from interpolation. 
8. Use Rankine-Hugoniot relations to obtain values on high-pressure side of marker points. 
9. Apply boundary conditions. 
10. If t<tend, go back to step 1. 

 

5 FRONT-TRACKING RESULTS FOR SHOCK AND DISTURBANCE 
INTERACTION PROBLEM 

In literature, results are available for small two-dimensional vorticity and entropy 
disturbances interacting with a shock which we have used for assessing utility of our shock-
fitting algorithms for shock-turbulence interactions. These results are presented in this section. 

Mahesh [16] carried out linear interaction analysis for two-dimensional problem of a 
normal Mach 1.5 shock interacting with weak plane vorticity-entropy waves traveling at varying 
angles of incidence. For this problem, the domain is assumed to contain an ideal gas with 
specific heat ratio 1.4. Fluctuations are superposed over steady Mach 1.5 normal shock solutions 
(obtained from the Rankine-Hugoniot relations) for the gas. Disturbances propagate downstream 
from the inflow boundary and interact with the normal shock as shown Fig. 9(a). The 
interactions of normal shock and disturbances cause time-periodic shock distortions and 
disturbance amplifications. We considered the post-shock solutions for this problem using 
conventional shock-fitting in past [1] and results were shown to be comparing really well with 
Linear Interaction Analysis results. In current study, we solve this problem by using our new 
front tracking based shock-fitting method and compare the result with conventional moving-grid 
shock-fitting results. 

A stationary Mach 1.5 shock wave is perturbed at 0.0t =  by a small amplitude 
disturbance field of the incident plane wave that makes angle 1ψ  with the X- axis. The incident 
field has the following form: 
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where variables U and ρ denote the mean velocity and density respectively and The variables 'u , 
ν ′ , p′and ρ′ represent fluctuations in velocities, pressure and density respectively. Subscripts 1 
and 2 denote the upstream and downstream steady states. For the computations presented here, 

1sin 1yk k ψ= =  and 1cosxk k ψ=  is used. Perturbation are introduced at 0 0.0x = while initially 
shock is located at 1.5x π= . Length of domain in y direction 2yL π=  ensures that at each x 
location the flow is periodic over the computation domain in Y direction. The variables used here 
were non-dimensionalized by appropriate combinations of reference length *

0L , reference speed 
of sound *

0c  and reference density *
0ρ  corresponding to the unperturbed free-stream values. For 

the present study we used 0.025v eA A= = , i.e. vorticity and entropy waves in same phase were 
considered.  

To implement the conventional moving-grid shock-fitting scheme, we divide the 
computational domain in two zones sharing the shock as common boundary as shown in Fig. 
9(b). Since the flow behind the shock is subsonic we use non-reflecting boundary conditions 
with a buffer-zone. Periodic boundary conditions were used in Y-direction. The problem was 
also computed on fixed grids by solving Euler equations with our two-dimensional front-tracking 
adaptation of shock-fitting algorithm described in section 4. Shock is represented using marker 
points which are defined as intersections of shock-front with the grid-points as shown in Fig. 9(c). 
The shock thus defined can freely move over the underlying grid-points. Movement of shock-
points is derived using the physics of problem. 

As computations are started, large oscillations in flow properties are observed 
downstream of the shock along all values of Y coordinates. These transient disturbances 
propagate downstream followed by an oscillating field. Figure 10 shows transients in vorticity 
profiles moving downstream of the flow. Although, the shock profile becomes sinusoidal (Fig. 
10(c)), the initial transients are still seen downstream of the shock (Figs. 10(a) and 10(b)). The 
exit boundary presents a problem for computation since flow is subsonic at the exit. Boundary 
conditions at the exit need to be chosen such that vorticity, acoustic and entropy perturbation in 
the domain are allowed to propagate properly otherwise such disturbances might reflect and 
contaminate the solution. We use approximately non-reflecting boundary conditions of Poinsot 
and Lele [51] at the outflow boundary and find that vorticity waves leave the domain and we 
obtain time periodic vorticity downstream of the shock. Figure 11 shows density contours and 
density profile after the transients leave the domain. It can be seen that a sinusoidal density 
profile is obtained along X direction. Moreover, the shock-interface itself is sinusoidal as 
expected from linear theory.  

As a benchmark for validation of front-tracking results, we use the conventional shock-
fitting algorithm but solve the flow-field ahead of the shock as well. For this, we use 
computational domain showed in Fig. 9(b). Both sides of shock are treated as separate zones 
with the shock as common boundary. Fifth-order upwind finite differencing is applied separately 
on both sides of the shock and shock-fitting algorithm is used to update the shock position. 
Results for post-shock flow obtained with moving grid shock-fitting algorithm were presented in 
our previous work [1] and were found to be very accurate when compared against the theoretical 
and numerical results obtained by Mahesh [16].  
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Figure 12 compares results from front-tracking and moving-grid based shock-fitting 
methods for 45˚ angle of incidence at 10t s= . We define nondimensional entropy *S of the fluid 
at pressure, p  and density ( ρ ) as follows: 

 

 * ln ln
p

s pS
C

ρ
γ

∆
= = −  (40) 

We see that front-tracking results match fairly well to those obtained from conventional 
shock-fitting results on moving-grids for all the variables in Fig. 12. Incoming waves of entropy 
(Fig. 12(a) and vorticity (Fig. 12(b)) remain sinusoidal even after crossing the shock. It should be 
noted that vorticity values use spatial derivatives in two directions and there may not be enough 
points for approximating spatial derivatives in both directions while using front-tracking method. 
Hence, some vorticity values around shock have not been plotted for front-tracking method in 
Fig. 12(b). Pressure profile in Fig. 12(c) also remain sinusoidal which is expected from linear 
theory as critical angle of incidence for this flow-field (66˚) is larger than actual angle of 
incidence. Amplitude of density fluctuation increases as shown in Fig. 12(d) which is in 
accordance with the linear theory. Figure 13 presents parameters relevant to interface geometry 
for the flow field corresponding to the results of Fig. 12. It can be seen from Fig. 13(a) that 
shock-profile is sinusoidal and shock moves through the underlying grid. Also, location and 
shape of shock from the front-tracking method agrees well to those obtained from the shock-
fitting method on moving grids. Normal to the shock is found using a high-order iterative 
procedure as described in section 4. Shock-points are moved using shock-acceleration relations 
obtained from physics of the problem. It can be noted that variation of Y-component of interface-
normal (Fig. 13(b)) and shock-velocity (Fig. 13(c)) are also sinusoidal as predicted by linear 
theory.  

Similar to Figs. 12 and 13, Figs. 14 and 15 show results for 75˚ angle of incidence case. 
From Fig. 14, it can be seen that variations in flow variables from front-tracking method agree 
reasonably well to those obtained from moving-grid shock-fitting method. As compared to 
results for 45˚ angle of incidence, we see that entropy wave (Fig. 14(a)) and vorticity wave (Fig. 
14(b)) have large wavelengths although they remain sinusoidal before and after the shock. 
Pressure (Fig. 14(c)), however, is an evanescent field as predicted by linear theory. Similarly, the 
interface data presented in Fig. 15 again shows that front-tracking method predicts location and 
geometry of the shock reasonably well.  

Although results obtained from 2-D front-tracking were found to be satisfactory for the 
problem considered here, the algorithm may still be improved. The front-tracking algorithm was 
found to be very tedious to implement with high-order approximations. High-order 
implementation was found to be more prone to spurious numerical oscillations. For example, we 
compare in Fig. 16, 5th order front-tracking results with 3rd order front-tracking results for 75˚ 
angle of incidence case with * 0.5σ =  instead of * 1.0σ =  as used for Fig. 13. One can observe 
that 5th order results show numerical oscillations in density as well as vorticity values while 3rd 
order results match well to the moving-grid shock-fitting results. Moreover, we found that as 
amplitude of incoming wave is increased, conventional shock-fitting method is much more 
robust as compared to those from front-tracking method. Hence, for isotropic shock and 
turbulence interaction problems, we expect conventional shock-fitting in multi-zone setting to be 
more useful than current implementation of front-tracking method. 
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6 ASSESSMENT OF METHODS TO FIND SHOCK VELOCITY  

An important part of the shock-fitting and shock-tracking methodology is to find accurate 
velocity of shock using the physics of the problem. Popular shock-fitting based methods derive a 
shock acceleration relation based on time derivative of Rankine-Hugoniot jump conditions and 
characteristic based flow-information from high-pressure side of the flow. We have previously 
shown this method to be fifth-order accurate in treating the flow behind the shock [1]. However, 
there can be several ways to find the shock velocity at a given point on interface. Since accurate 
computation of shock-location is of paramount importance to the shock-turbulence interaction 
problems, it is worthwhile to assess utilities of different methods of obtaining shock-velocities. 
To compare different methods, we choose a canonical problem involving one-dimensional 
interaction of shock and density disturbance and find the order of convergence. The problem was 
suggested by Suresh [52] and is given as:  
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while for 2.0x > ,  

 

( ){ }4 1/ 2

1/ 2

1.0 sin 2.5

1.0

x M t

u M
p

ρ ε π γ

γ

∞

∞

∞

= + +

= −
=

 (42) 

 
If there is no disturbance, these relations correspond to a standing shock. We use a strong 

shock with M=3 , γ =1.4, ε =0.2 .  ρ , γ , u , M and p  represent density, ratio of specific heats 
for the gas, velocity, Mach number and pressure respectively. This problem is a modified form of 
more popular Shu-Osher problem and has been chosen since post shock flow for this problem 
have continuity in density as well as its first, second and third derivatives in space, thus making 
post-shock solution much smoother. The unsteady problem is computed till 0.32t =  so that 
shocklets are not formed behind the main shock. Thus the problem is expected to show true order 
of convergence for the shock-fitting method. To carry out the convergence analysis, we compute 
the unsteady problem for a number of grid-sets. A very fine grid solution, ( 3.125 4dx e= − ) 
solution obtained with high order central difference scheme and conventional shock-acceleration 
method [1, 42] is taken as reference solution. The error values are obtained for different sets of 
grids and the approximate order of accuracy, n , is then defined as: 
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Where he  represents error from reference solution for grid-spacing h . The computational 
domain used for these calculations is shown in Fig. 17. The problem was solved for three sets of 
grids 

 

 

-3
1

-3
2

-4
3

Grid-set 1: Spacing, =2.5 10  (No of grids,  N=800)

Grid-set 2: Spacing, =1.25 10  (No of grids, N=1600)

Grid-set 3: Spacing, =6.25 10  (No of grids, N=3200)

dx

dx

dx

×

×

×

 (44)  

Various methods for finding shock-velocity were considered for the results in this section 
while a 5th-order upwind central differencing scheme of Zhong [42] is used with RK-3 time-
stepping. 

6.1 Methods for Finding Shock-Acceleration 

Conventional shock-fitting methods find the shock acceleration by taking time derivative 
of Rankine-Hugoniot conditions and using one characteristic equation similar to Eq. (37) . The 
shock acceleration equation is then used to find the shock-velocity and update the shock location. 
Effect of grid refinement for this method was reported in our previous study [1] and error values 
from reference solution is presented in Table 1. It can be seen that close to fifth order 
convergence is observed for conventional moving grid shock-fitting. 

 
Table 1: L-1 errors from conventional shock-fitting[42]  for problem defined by (41) and (42) 

 
Error I: 

1dxe  
Error II: 

2dxe  
Error III: 

3dxe  
    Order from 

I and II 
Order from 
II and III 

Density 1.02E-05 4.39E-07 1.63E-08 4.54129919 4.747224 

Velocity 7.77E-07 2.43E-08 7.89E-10 4.99887 4.94489 

Pressure 5.87E-06 1.89E-07 6.06E-09 4.958014 4.961402 

 
Henrick et al. [44] describe a different method to find the shock acceleration, where time 

derivative of only momentum is used. Momentum in the normal direction to the shock is given 
by  
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where, nu  is the normal velocity to the shock and nv is the velocity of the shock. Subscripts ‘s’ 
and ‘0’ are used to represent high-pressure side and low pressure side of the shock. One can take 
the derivative of Eq. (45) with respect to  nv and use following relation for shock acceleration 
 

 
1
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n

dv u u
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ρ ρ
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−
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 (46) 

Here the term ( )s nsuρ
τ

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

is computed directly as one solves governing equation (16). 

This method is more general as compared to method of Henrick et al [44] as they solve one-
dimensional governing equations in a reference frame fixed to the shock front. Figure 18 
compares solutions from all three sets of grids obtained with Eq. (46) against the reference 
solution. It can be seen that as the grid is refined, density values approach to the reference 
solution. Comparing solutions from Fig. 18(b) and 18(c), it can be seen that convergence is 
generally not very good near the shock. A coarse grid result obtained from this alternative 
method is compared with the conventional method in Fig. 19. It is again observed that results 
obtained from conventional method are significantly better match to the reference values as 
compared to those obtained from Eq. (46).  These error values are quantified in Table 2. 

 
Table 2: L-1 errors of shock-fitting based on momentum-change, Eq.  (46)   

 
Error I: 

1dxe  
Error II: 

2dxe  
Error III: 

3dxe  
    Order from 

I and II 
Order from 
II and III 

Density 9.66E-06 7.05E-07 1.21E-07 3.776791 2.540185 

Velocity 2.00E-06 1.51E-07 2.44E-08 3.723481 2.628458 

Pressure 1.57E-05 1.20E-06 1.93E-07 3.715074 2.634586 

 
Thus, as compared to conventional shock-fitting method, error values are generally higher 

when shock is updated using Eq. (46). Moreover, as the grid is refined the rate of convergence is 
less than the expected order of accuracy. From these results, it can be deduced that the shock-
acceleration method which uses time derivative of appropriate characteristic variable 
corresponding gives better results as compared to the one where only momentum equation is 
used. 

6.2 A Method Based on Riemann invariants 

An alternative to shock-acceleration based method is to compute the shock velocity 
directly using the value of Riemann invariant from behind the shock. For the unsteady one-
dimensional problem considered here, a schematic of the movement of characteristics is shown 
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in Fig. 20. On C+ line, given by /dx dt u c= + , we have Riemann invariant 
2 /( 1)J u c constγ+ = + − = . This value of J +  is related to upstream conditions as  
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 (47) 

 
where  c  is velocity of sound downstream of the shock and sv is shock-velocity. Once J +  value 
is known behind the shock, shock velocity can be found using an appropriate numerical method 
(e.g. Secant method) to solve Eq. (47). With known values of flow field, shock velocity n

sv and 
shock location n

sx  at a particular time nt , as shown in Fig. 20, one can find the velocity 1n
sv + at 

new time step, 1n nt t t+ = + ∆  , using following steps:  
1. Advance the shock to new position 1n n n

s s sx x t v+ = + ∆ i  .  
2. Choose appropriate number of grid points (5 in current study) behind the shock at time 

nt and find location of C+ lines ( /dx dt u c= + ) originating at these points at time 1nt + . 
Values of Riemann invariant 2 /( 1)J u c γ+ = + − at the chosen grid points is also 
computed and stored. 

3. Using locations of C+ lines originating from chosen grid points and corresponding J +  
values found in step 2, interpolate to obtain Riemann invariant behind the shock sJ +  
corresponding to 1n

sx +  location. 
4. With known value of sJ + , solve Eq. (47) to obtain 1n

sv + . 
 

            Velocity of shock is obtained at the new time without the need of finding shock-
acceleration values. This algorithm was implemented with our conventional moving grid shock-
fitting code and problem given by Eqs. (41) and (42) was solved with fifth order central finite 
differencing for spatial derivatives and Rk-3 time stepping. Five grid points were used for 
interpolation in step 2. The density profiles are presented in Fig. 21 for these sets of grids and are 
compared with the reference profile. Fig. 21(a) shows that results compare well with the 
reference profile for all three grid-sets considered here. As we zoom on a portion away from the 
shock (Fig. 21(b)), we see that results are converging towards the reference values with grid 
refinement. Figure 21(c) shows effect of grid refinement on prediction of shock location. It is 
observed that for all the three grid-sets used in this study, there is a sudden jump in density from 
the shock point to the adjacent point. Such jump is not observed in the reference solution which 
advances the shock based on shock-acceleration formula. Location of shock can also be seen to 
be converging towards the reference value with grid-refinement. Convergence rate for this case 
is measured using  (43) and is presented in Table 3. 
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Table 3: L-1 errors using Riemann invariants for finding shock-velocity   

 
Error I: 

1dxe  
Error II: 

2dxe  
Order from 

I and II 

Density 5.69E-03 3.32E-03 0.777701 

Velocity 1.23E-03 6.97E-04 0.8188 

Pressure 9.57E-03 5.46E-03 0.810507 

Shock-location 3.68E-04 1.30E-04 1.502324 

  

Thus, method of determining shock-velocity based on Riemann invariant gives poor 
results as compared to those obtained from the shock acceleration formulation. A sudden jump is 
observed in the profiles near the shock since shock velocity can change abruptly as the values of 
flow variable change. Shock velocity is directly used in Rankine-Hugoniot jump conditions 
which lead to large changes in the values just behind the shock. Acceleration based shock-
updating methods ensure that changes in shock-velocity are smoother and thus show expected 
order of convergence.  

Hence, based on these results, we find that conventional shock-fitting way of advancing 
shock using characteristics based shock-acceleration relation is more accurate for unsteady shock 
disturbance interaction problems considered.  

7 SHOCK-FITTING METHOD WITH WENO SCHEME 

Current study focuses on solving canonical problem shown in Fig. 1, where a main shock 
interacts with incoming disturbances or turbulent flow. In past, we have shown that shock-fitting 
method coupled with upwind finite-differencing shows high convergence rates if the flow behind 
the shock is smooth enough. However, the high-order upwind scheme is not suitable if secondary 
shocks are present behind the fitted shocks. Since secondary shocks are often observed in the 
shock-turbulence interaction problems, it is worthwhile to consider shock capturing schemes to 
solve the post-shock flow. 

As described in section 3.2 and demonstrated in Fig. 2, one-sided finite differencing is 
required to approximate the spatial derivatives on the nodes close to the shock while interior of 
the domain is treated by a WENO scheme. In this section, we consider different sets of such 
combinations to assess the convergence properties. Specifically, WENO5 scheme of Jiang and 
Shu[43] and WENO5M scheme of Henrick et al.[44] are considered along with following one-
sided 5-point finite difference formulas near the shock. 
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 Henrick et al [44] suggest using following combination of one-sided approximation near 

the shock, which have also been considered to use with WENO5 and WENO5M in this study. 
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Thus following four combinations of shock fitting and WENO schemes are considered  
 

Scheme 1: WENO5 with shock-fitting and application of (48) near the shock 
Scheme 2: WENO5 with shock-fitting and application of (49) near the shock 
Scheme 3: WENO5M with shock-fitting and application of (48) near the shock 
Scheme 4: WENO5M with shock-fitting and application of (49) near the shock 
 

For convergence study, we solve the smoother version of Shu-Osher problem defined by 
Eqs. (41) and (42) using all the four schemes described above and compare the results with those 
obtained from fifth order central finite difference scheme of Zhong [42]. Table 4 presents L-1 
error in density values for various schemes. It can be observed that choice of one-sided 
difference scheme i.e. Eq. (48) or Eq. (49) for the points close to the shock does not significantly 
alter the error in density values. However, using WENO5M instead of WENO5 does reduce the 
errors significantly. As described in section 3.2, WENO5M maps weights calculated in WENO5 
scheme to the values that are closer to ideal weights. Thus, in smooth region WENO5M leads to 
smaller error. These errors, however, are larger than 7-point fifth order upwind central 
differencing scheme. It can also be observed that for both WENO schemes, solutions approach to 
the design accuracy of 5th order as grid is refined while central differencing shows fifth order 
convergence even for coarser grids. Similar observations are made when convergence of velocity 
field is studied. However, error in velocity values is also affected by choice of one-sided 
difference scheme near the shock. In general, using one-sided five point stencils for all the three 
points behind the shock (Eq. (48)) gives slightly lesser errors in velocity as compared to those 
obtained by using Eq. (49). Moreover, velocity values are seen to be converging with design 
accuracy for both WENO schemes as well as central difference scheme even for coarser grid. 
Errors from WENO5M scheme are generally 3-5 times less as compared to those from WENO5. 
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Table 4: Convergence of density values using various schemes for problem given by (41) and (42) 

 
Error I: 

1dxe  
Error II: 

2dxe  
Error III: 

3dxe  
    Order from 

I and II 
Order from 
II and III 

 5th Order Central 1.02E-05 4.39E-07 1.63E-08 4.54129919 4.747224 

Scheme 1 1.04E-04 8.35E-06 3.00E-07 3.63372094 4.797872 

Scheme 2 1.04E-04 8.36E-06 3.04E-07 3.64290661 4.781968 

Scheme 3 3.33E-05 2.17E-06 4.55E-08 3.93826979 5.577517 

Scheme 4 3.40E-05 2.18E-06 4.61E-08 3.96727522 5.559748 

Pure WENO5 5.31E-03 2.67E-03 1.26E-03 0.99359335 1.079674 

 
 

Table 5: Convergence of velocity field using various schemes for problem given by (41) and (42) 
 

 
Error I: 

1dxe  
Error II: 

2dxe  
Error III: 

3dxe  
    Order from 

I and II 
Order from 
II and III 

Central 
Differencing 7.77E-07 2.43E-08 7.89E-10 4.99886965 4.94489 

Scheme 1 2.92E-06 1.21E-07 4.56E-09 4.59540322 4.726582 

Scheme 2 3.78E-06 1.55E-07 5.90E-09 4.60633121 4.717143 

Scheme 3 1.13E-06 3.70E-08 1.29E-09 4.92821096 4.836535 

Scheme 4 1.44E-06 4.73E-08 1.69E-09 4.92547902 4.809022 

Pure WENO5 2.84E-03 1.55E-03 7.14E-04 0.87120134 1.117991 
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 Better insight for convergence is obtained by observing pointwise errors. Spatial 
variations of point-wise errors in density values obtained for grid-spacings 1dx  and 2dx  are 
compared in Fig. 22 for central differencing scheme, WENO5 (Scheme 1) and WENO5M 
(Scheme 3) schemes. It can be observed that errors for finer grid are significantly less. Since log 
of error values on base 2 is plotted, one can deduce the local order of convergence, as defined in 
Eq. (43) , by taking difference between the any two profiles in Fig. 22. It can be seen that for all 
the schemes, errors incurred in the region just behind the shock is higher. Since the wavelength 
of the amplified disturbance is lesser in the region just behind the shock, lesser resolution is 
obtained in that region. For both the WENO schemes, pointwise errors generally correspond to 
accuracy between 3rd and 4th order while errors for central differencing correspond to mostly 
between 4th and 5th orders of accuracy. Errors for WENO schemes are significantly higher than 
central differencing for the grid-sets considered here. Figure 23 plots the spatial variation of 
pointwise errors in velocity values. While errors from central differencing scheme do not change 
a lot behind the shock, WENO schemes still show more errors near the shock. This is an effect of 
sharper variation in density profile just behind the shock affecting the smoothness indicators in 
WENO scheme.  The errors indicate 4th to 5th order convergence for all the schemes, although 
errors are higher for WENO schemes.  

The problem was also solved by pure WENO schemes alone and error values are tabulated 
in Tables 4 and 5. It can be observed that errors are generally much larger with pure WENO 
schemes as compared to the shock-fitting based methods. Moreover, only first order convergence 
is found in the solution for density as well velocity values. Figure 24 compares density profiles 
obtained from WENO scheme with (Scheme 1) and without shock-fitting for this problem. It can 
be observed that, for this 1-D problem of almost standing shock, some post shock oscillations are 
observed (Fig. 24(b)) when flow is solved by purely WENO scheme which leads to deterioration 
of accuracy. From Fig. 24(c) it can be observed that even a coarse grid solution from shock-
fitting is better than highly resolved purely WENO scheme. Thus, for simple one-dimensional 
problem there is obvious advantage of using shock-fitting algorithm as compared to using purely 
shock capturing schemes. 

Canonical problem described by Eq.(39) provides a good test case to compare shock-
capturing and shock-fitting algorithms. As described in section 5, a vorticity-entropy disturbance 
interacts with a normal Mach 1.5 shock. To implement the shock-fitting scheme, we divide the 
computational domain in 2 zones sharing the shock as common boundary as shown in Fig. 9(b). 
The problem was solved using WENO5 scheme with and without shock-fitting algorithm and 
density contours for angle of incidence of 75°are presented in Fig. 25(a). Diffused shock can be 
noticed for the case when pure WENO is used for the entire domain. Contours match fairly well 
except at the exit which could be due to exit boundary conditions. However, when we compare 
the density variation along X-direction, as done in Fig. 25(b), spurious numerical oscillations are 
observed for pure WENO scheme, while shock-fitting algorithm coupled with WENO as well as 
central differencing scheme provides very smooth solution. 

Thus, combined shock-fitting and shock-capturing algorithms are much more accurate than 
using only shock-capturing schemes. Although accuracy is slightly poorer as compared to shock-
fitting results with central differencing scheme, shock-capturing provides more robustness for 
when secondary shocks are formed behind the fitted shock.  
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8 SUMMARY AND FUTURE WORK 

We have carried out a number of computations relevant to problems of shock and 
turbulence interactions. Specifically, our approach is to treat the shock as a sharp entity 
whenever possible using methods based on shock.-fitting algorithms. In conventional shock-
fitting algorithm, flow is solved on the moving grid attached to the shock. For two-dimensional 
flows, we have been able to extend the idea of shock-fitting for computations with fixed grid 
while shock is tracked using front tracking method. Satisfactory results were obtained for 
canonical two dimensional shock and disturbance interaction problems. However, this method 
was found to be much more tedious to implement as compared to the conventional shock-fitting 
methods and high order implementation were prone to numerical instabilities. On the other hand, 
conventional shock-fitting method in multi-zone setting was found to be more robust and 
accurate. Considering the fact that main shock generally does not break down in the shock and 
isotropic turbulence interaction problems, it makes sense to take advantage of accuracy afforded 
by fitting the main shock instead of using shock-capturing in entire domain. However, complex 
interactions of high Mach number turbulence flow and shock might lead to nonlinearities, e.g. 
weak secondary shocks, in the post-shock flow. Hence, it is advisable to couple the moving grid 
shock-fitting method with shock-capturing schemes.  

We have combined our conventional shock-fitting method with a couple of WENO 
schemes and found that expected order of accuracy is obtained in the flow behind the main shock 
for canonical unsteady shock and disturbance interaction problems. Moreover, results from 
coupled shock-fitting and WENO schemes were found to be much superior to those obtained 
from using pure WENO alone. Errors from pure WENO scheme were seen to be much larger 
than shock-fitting based schemes, e.g. for 2.5 3dx e= − , density errors from pure WENO schemes 
are almost 20 times of those from shock-fitting errors. The disparity further grows as we refine 
the grid as pure WENO scheme showed only first order accuracy in the post shock flows and 
numerical oscillations were also observed.  

We have also looked into some alternative methods for finding shock-velocity to improve 
efficiency and accuracy of front-tracking and shock-fitting algorithms. Results for these 
alternative methods were presented in the study and were found to be poor as compared to the 
conventional shock-fitting.  

Based on the encouraging validation studies presented in this study, in future, we intend 
to explore problems involving interactions of shock and isotropic turbulence. The shock-fitting 
schemes combined with shock-capturing schemes are especially useful for high Mach number 
flows, since shock-fitting does not need grid stretching to capture the shock.  
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Fig. 1: A schematic of typical setting of isotropic shock and turbulence interaction. 
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Fig. 2: For application of shock-fitting with 5th order WENO schemes, upwind finite differencing 
is used for points close to shock (shown by filled circles) while WENO scheme is applied for the 

interior (shown by hollow circles). 
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Fig. 3: Irregular points for 5th order front-tracking based fixed grid shock-fitting. 
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Fig. 4: For one-sided difference derivatives not computed point closest to interface and an extra 
point (green) is included for interpolation. 
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Fig. 5: Schematic for arrangement of Marker Points and stencil for one-sided differentiation for 

the fixed-grid-shock-fitting methodology. 
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Fig. 6: Treatment of grid-points where enough points are not available for taking one-sided 
difference in X-direction ( 2φ = − ), shown by green circles. For such points, interpolation is 

carried out using neighboring grid-points Y-direction, shown by purple triangles. 
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Fig. 7: Computation of shock velocity at a marker point in front tracking based fixed set-up 
shown in (a) is carried out by using appropriate values for an imaginary shock-aligned moving 

grid set-up as shown in (b). 
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Fig. 8: Grid points crossed (highlighted by green dots) by movement of shock-front  from old 
position from (solid blue line), to a new position (dashed blue line). New values at such grid-

points are required as they are on wrong side of the shock with shock-movement. 
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Fig. 9:  For the shock and vorticity-entropy wave interaction (a) Schematic of the problem (b) 
Computational domain used for multi-zone moving grid shock-fitting and (c) Typical (fixed) 
grids and shock-profile corresponding to the Front-tracking based adaptation of shock-fitting 

algorithm. Shock passes through grid points where oscillations in shock can be noticed. 
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Fig. 10:  Interaction of a vorticity-entropy wave at t = 4.0 after start. (a) Contours of density (b) 

Variation in X-direction at Y = π (centerline of domain) and (c) Interface shape with marker 
points for 15˚ angle of incidence 
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Fig. 11:  Interaction of a vorticity-entropy wave at t = 10.0 after start. (a) Contours of density (b) 

Variation in X-direction at Y = π (centerline of domain) and (c) Interface shape with marker 
points for 15˚ angle of incidence. 
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Fig. 12:  Comparison of results from conventional shock-fitting and fixed-grid shock-fitting for 

variation in X-direction of (a) entropy (b) vorticity  (c) pressure and (d) density at Y = π 
(centerline of domain) for 45˚ angle of incidence at 10t s= . 
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Fig. 13:  Interface variables for 45˚ angle of incidence case obtained with Front-Tracking method 

(a) Location of the front on Cartesian grid compared with shock-location from moving-grid 
shock-fitting method (b) Y-component of the front-normal and (c) shock-normal velocity. 
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Fig. 14:  Comparison of results from conventional shock-fitting and fixed-grid shock-fitting for 

variation in X-direction of (a) entropy (b) vorticity  (c) pressure and (d) density at Y = π 
(centerline of domain) for 75˚ angle of incidence at 10t s= . 
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Fig. 15:  Interface data for 75˚ angle of incidence case obtain with Front-Tracking method (a) 

Location of the front on Cartesian grid compared with shock-location from moving-grid shock-
fitting method (b) Y-component of the front-normal and (c) shock-normal velocity. 

 



 42

X

ρ

7 8 9 10

1.81

1.82

1.83

1.84

1.85

1.86

1.87

1.88

Moving-Grid S-F
Front-Tracking- 5th Order
Front-Tracking 3rd Order

X

ω

0 2 4 6 8 10

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Moving-Grid S-F
Front-Tracking- 5th Order
Front-Tracking 3rd Order

 
(a)                                                                  (b) 

 
Fig. 16:  (a) Density and (b) vorticity variation along Y π= line obtained from 5th order and 3rd 
order Front-Tracking methods and 5th order moving grid shock-fitting method for the shock-

vorticity wave interaction at 75˚ angle of incidence. 
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Fig. 17: Computational domain used for solving 1-D interaction of shock and density disturbance 
using conventional shock-fitting. 
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Fig.18: (a) Density variation for the smoother version of the Shu-Osher problem while using 
alternative shock acceleration method Eq.(40) for different grid sets. (b) and (c) are zoomed 

versions of the profile showing convergence. 
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Fig.19: Comparison of density variation obtained  from alternative shock-acceleration method 
with that obtained from Zhong’s shock acceleration method and reference values  (a) and (b) 

represent zoomed portions near and away from the shock respectively. ( 2.5 3dx e= − ) 
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Fig. 20: Finding shock velocity based on value of Riemann invariant from behind the shock ( J+). 
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(b)       (c) 

Fig. 21: (a) Density variation for the smoother version of the Shu-Osher problem for different 
grid sets using Riemann invariants to find the shock-velocity. (b) and (c) are zoomed versions of 

the profile showing convergence. 
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(c) 

Fig. 22: Comparison of point-wise errors, 1dxe  and 2dxe   in density values solved by shock-fitting 
combined with (a) upwind central difference scheme  (b) WENO5 scheme (c) mapped 

WENO5M scheme for smoother Shu-Osher problem. 
 



 48

X

E
rr

or
in

ve
lo

ci
ty

,u

1 1.5 2

-28

-26

-24

-22

-20

-18

-16

-14

log (edx1)/ log 2
log(edx2)/ log 2

X
E

rr
or

in
ve

lo
ci

ty
,u

1 1.5 2

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8 log (edx1)/ log 2
log(edx2)/ log 2

 
(a)      (b) 

X

E
rr

or
in

ve
lo

ci
ty

,u

1 1.5 2

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8 log (edx1)/ log 2
log(edx2)/ log 2

 
(c) 

 
Fig. 23: Comparison of point-wise errors, 1dxe  and in velocity values solved by shock-fitting 

combined with (a) upwind finite difference scheme (b) WENO5 scheme (c) mapped WENO5 
scheme for smoother Shu-Osher problem. 
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Fig. 24: (a) Comparison of density variation obtained from WENO scheme with and without 

fitting the shock . (b) and (c) are zoomed versions of the profiles. 
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Fig. 25: (a) comparison of density contours obtained from WENO5 scheme at 10t s=  with and 

without shock-fitting methodology and (c) variation of density along y π= line. 
 


