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There is renewed interest in physical phenomena leading to laminar-turbulent transition in hypersonic
boundary layers. In high-temperature flows characteristic of hypersonic vehicles, the degree of chemical and
thermal non-equilibrium becomes significant. However, not many studies have been conducted on the non-
equilibrium effect on the receptivity process to free-stream acoustic disturbances. The goal of this paper is,
first, to present a code capable of accurately modeling free-stream acoustic disturbances with non-equilibrium
effects, and, second, to present preliminary findings on the non-equilibrium effects on receptivity. This is
done by examining Mach 15.3 flow over a blunt cone with nose radius 6:35 � 10�3 m and half angle 7� and
imposing free-stream fast acoustic wave disturbances using a high-order shock-fitting finite-difference solver.
Results were computed for flows using both thermochemical non-equilibrium and perfect gas models and were
then compared to determine the non-equilibrium effects. Complex wave structures were found in the boundary
layer for each gas model when a free-stream acoustic disturbance wave was introduced. The non-equilibrium
gas case was found to have higher perturbation amplitudes and had its maximum perturbation amplitude
nearer to the blunt nose.

Nomenclature

E Internal energy J
EV Vibrational energy J
Fi Inviscid flux vector
Fvi Viscous flux vector
QT�V;s Rate of species vibrational energy increase J=s
Runiv Universal gas constant, 8.314472 J=(K �mol)
R Gas constant J=(K � kg)
T Temperature K
TV Vibrational temperature K
U State vector
W Source term vector
a Speed of sound m=s
c Mass fraction
eV;s Species specific vibrational energy J=kg
hs Species specific enthalpy J=kg
k Thermal conductivity W=(m�K)
kV Vibrational energy conductivity W=(m�K)
n Normal unit vector
p Pressure Pa
r Blunt cone nose radius m
u Velocity m=s
vs Diffusion velocity m=s
ws Rate of species creation kg=(m3 � s)
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 Ratio of specific heats
� Viscosity kg=(m� s)
� Density kg=m3

� Viscous stress N=m2

Subscripts
1 Free-stream
i; j; k Direction i; j; k
s Species s
V Vibrational energy component
w Wall surface

I. Introduction

UNDERSTANDING of laminar-turbulent transition and hypersonic turbulent boundary-layer (HTBL) flows is crit-
ically important to the design and operation of hypersonic vehicles. However, very little is understood on the

fundamental physics of transitional and turbulent hypersonic boundary layers. In hypersonic flows, temperatures be-
hind a shock rise to values high enough to cause the components of air to react and even ionize. For five-species air
without ionization, there are 17 chemical reactions to consider. Among these, some reactions are exothermic and oth-
ers endothermic, leading to varying effects on flowfield parameters within the boundary layer, and thus, with boundary
receptivity and stability. Additionally, different modes of energy do not come to equilibrium across the shock. For
instance, there is a relaxation process to bring the vibrational and rotational modes of energy of molecules to thermal
equilibrium. The effect of these fundamental phenomena characteristic of hypersonic flow on receptivity and transi-
tion to turbulence in hypersonic boundary layers is still relatively unknown. Laboratory experiments are extremely
difficult, expensive, and mostly limited to low Mach numbers. Furthermore, relatively few numerical simulations of
a hypersonic laminar-turbulent transition are available in the literature. Most of the existing studies were conducted
at low Mach numbers and with perfect gas models only. We have implemented a high-order shock-fitting routine for
DNS of transitional and turbulent hypersonic flows with non-equilibrium real gas effects. The objective of this paper
is to perform DNS studies of the fundamental physics of hypersonic boundary layer receptivity with thermo-chemical
non-equilibrium to determine their effect on the receptivity process.

Among the early investigations into the laminar-turbulent transition within hypersonic boundary layers, Mack1 first
found acoustic instability modes in addition to the first-mode instability waves in high Mach number boundary layer
flows. It was found that the second Mack mode becomes the dominant instability within hypersonic boundary layers.
Malik2, Stuckert and Reed3, Hudson et al.4, and Johnson and Candler5 studied equilibrium and non-equilibrium real
gas effects on linear stability of hypersonic boundary layers. It was found that the dissociation of air species stabilizes
the first mode instability, while destabilizing the second mode. The second mode instability shifts to lower frequencies
due to the real gas effects. Germain and Hornung6 experimentally studied the real gas effects on transition location
for high enthalpy hypersonic flow over a cone for Mach = 4.7 - 6.5. It was found that transition Reynolds numbers
increased for higher total enthalpy. Martin and Candler7 performed DNS of reacting isotropic turbulence decay under
conditions typical of hypersonic turbulent boundary layer flow. Ma and Zhong8 studied the receptivity of free stream
disturbances of a Mach 10 non-equilibrium oxygen flow over a flat plate. They found strong non-equilibrium effects
on receptivity, namely that the unstable region for non-equilibrium flow has a greater peak amplitude and longer un-
stable second Mack mode region. This implies that the real gas effect is destabilizing for the discrete wave modes.
However, they did not consider thermal non-equilibrium effects. Stemmer9 investigated the differences in spatial
disturbance development in flat-plate boundary layer flow for Mach = 20 between ideal gas and thermal and chem-
ical non-equilibrium flows using a hybrid-ENO finite volume scheme. Most of these studies are centered on linear
instability.

Hypersonic vehicles possess blunt noses in order to reduce the high degree of thermal heating encountered at
hypersonic speeds. As such, a fundamental case in the practical study of boundary layer stability and transition has
centered on blunt cone geometries. There are many documented computational studies on the study of boundary layer
instability both using linear stability analysis to predict unstable modes and regions and direct numerical simulation
of the receptivity process. It has been found that there is a complex development of wave structures in hypersonic
boundary layers on blunt cones subject to free-stream acoustic disturbances. There are also distinct synchronization
locations between different wave modes that play an important role in the receptivity of the unstable second Mack
mode in the boundary layer10 11 12.
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There has yet to be a published study on the receptivity of free-stream disturbances on hypersonic boundary layers
with thermal and chemical non-equilibrium over blunt bodies. The receptivity of hypersonic boundary layers to free-
stream disturbances is significantly altered by the presence of a bow shock in flows over blunt bodies. The main
focus of this study is to examine the effects of thermal and chemical non-equilibrium on the receptivity process in the
presence of free-stream acoustic waves. We will study the receptivity process for hypersonic boundary layers over
a blunt cone with thermal and chemical non-equilibrium. This will be done by computing the steady mean-flow for
Mach 15.3 air over a blunt cone with nose radius 6:35�10�3 m and half-angle 7�. The solutions will be obtained using
a 3rd-order finite-difference shock-fitting routine developed by Zhong13 for ideal gas flow and modified by Prakash et.
al14 for non-equilibrium flows. The receptivity process will then be examined by introducing a free-stream acoustic
wave. These results will be compared to results obtained for the ideal gas model given the same flow parameters to
examine the effect of thermal and chemical non-equilibrium.

This paper will detail the governing equations and physical model used and show the steady mean-flow results
for the case studied. Then the procedure for introducing free stream waves will be outlined. Finally, results will be
presented and investigated for the receptivity to a free-stream fast acoustic wave.

II. Governing Equations and Physical Model

The governing equations for the non-equilibrium gas case are formulated for a two-temperature model with the
rotational energy mode assumed fully excited and five non-ionizing species with finite rate chemistry. The conservative
three-dimensional Navier-Stokes equations consist of five mass conservation equations, three momentum conservation
equations, the vibrational energy conservation equation, and the global energy conservation equations:

@U

@t
+
@Fj
@xj

+
@Fvj
@xj

= W; (1)

where U is the state vector of conserved quantities, W the source terms as defined by

U =

2666666666666664

�N2

�O2

�NO
�N
�O
�u1
�u2
�u3
EV
E

3777777777777775
; W =

266666666666666664

wN2

wO2

wNO
wN
wO
0
0
0

mol:P
s=mol:

(QT�V;s + wseV;s)

0

377777777777777775
; (2)

the flux is split into its viscous, diffusive components Fvj and inviscid, convective components Fj

Fj =
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where the viscous stress is modeled by

�ji = �

�
@ui
@xj

+
@uj
@xi

�
� 2

3

�
�
@uk
@xk

�
�ji: (4)

Vibrational energy is determined using the harmonic oscillator model, where �V;s is the characteristic vibrational
temperature,

EV =
X
s

�seV;s =
X
s

�s
Runiv
Ms

�V;s
e�V;s/Tv � 1

: (5)

The source terms include the creation of species ws through chemical reaction and vibrational-to-translational energy
exchange QT�V;s. The QT�V;s term is determined using the Landau-Teller formulation,

QT�V;s = �s
e�V;s(T )� eV;s

�V;s
: (6)

where e�V;s(T ) represents the species specific vibrational energy computed using the translational temperature and the
relaxation time �V;s is given by Millikan and White15. In the 5-species model, there are 17 unique chemical reactions
that take place:

N2 +M , 2N +M
O2 +M , 2O +M
NO +M , N +O +M
N2 +O , NO +N
NO +O , O2 +N
M 2 [N2; O2; NO;N;O] :

(7)

The reaction rates kf and kb in Eqs. (8)- (9) are determined using Park’s16,17 two-temperature model. In this model,
the defining reaction temperature for the forward rates is Ta =

p
TTV for dissociating species, and Ta = T for

exchange reactions and recombination reactions. The equilibrium constants Keq are determined using the Gibbs free
energy approach, Eq. (10), with curve-fit expressions for species thermodynamic properties18.

kf = CfT
�
a exp(��d=Ta) (8)

kb = Keq=kf (9)

Keq = e
��fGo

RT (10)

The viscous transport parameters, including global viscosity �, global thermal conductivity k, and vibrational
energy conductivity kV , are computed using the Yos mixing rules with curve-fit coefficients given by Gupta et. al19.
The species diffusive velocities vsj are determined by Ramshaw’s self-consistent effective binary diffusion model20.
It is noted that there are many different modes of energy to be considered in modeling non-equilibrium flows, and,
further, different models to represent those modes. The formulation of these governing equations with the presented
physical models merely one of many ways to model non-equilibrium flows.

To compute the flow using a perfect gas model, the source term vector W is removed from Eq. 1 and all TV and
EV terms are removed from the governing equations.

The equations are solved using Zhongs high-order shock-fitting code, capable of 3rd-order temporal accuracy
and 3rd-order spatial accuracy13. The shock-fitting method treats the shock as a computational boundary. Flow
variables across the shock are computed by the Rankine-Hugoniot relations and a characteristic compatibility equation
from behind the shock, which takes into account transient shock movement and shock interaction with free-stream
disturbances. For simplicity, ionization, radiation, surface chemistry, and in-depth thermal response have not been
considered at this stage. An iso-thermal, non-catalytic, no-slip wall boundary condition is used for the steady flow
calculation.
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Table 1. Flow conditions used for computing mean-flow results.

cN21 = 0:797 M1 = 15:3
cO21 = 0:200 p1 = 664 Pa
cNO1 = 0:001 �1 = 7:83� 10�3 kg=m3

cN1 = 0:001 Re1 = �1U1d=�1 = 26; 480
cO1 = 0:001 r = 6:35� 10�3 m

III. Flow Conditions

The conditions for this case are shown in Table 1. The blunt cone has a 7� half angle. During simulations, the
body-surface is modeled as a no-slip wall with isothermal temperature Tw = 1000 K. The axi-symmetric grid is
1106 � 251 � 2, with exponential grid clustering near the wall in the wall-normal direction and algebraic clustering
near the nose along the wall-tangential direction. This grid allows us to study the flow over the blunt cone from
0:0 < x=r < 63:3, where x=r = 0 represents the stagnation point on the blunt cone, which corresponds to dimensional
values 0:00 m < x < 0:40 m.

IV. Mean Flow Results

Steady mean-flow results were computed using both the non-equilibrium and perfect gas models over the blunt
cone. Figure 1 compares the shock shape for each gas model and corresponding experimental result21 and computed
perfect gas result from Candler22. Excellent agreement in both instances is displayed by our computed shock shapes.
The scaled shock shape profile in the nose region is shown in Fig. 1(a), where it shows that the shock is pushed closer
to the blunt cone surface in the non-equilibrium case due to its weaker shock. Figure 1(b) shows that the difference in
shock stand-off distance extends downstream.
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(a) Shock shape near nose of the cone.
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Non-Equilibrium
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(b) Shock location. Note that the axes are not scaled and this is not a
proper representation of the shock shape, but rather describes the coordi-
nates of the shock location

Figure 1. Computed steady mean-flow shock shape and location.

Figure 2 compares the computed steady mean-flow temperature profiles along the stagnation line between the non-
equilibrium and perfect gas models. The x=r = 0 value corresponds to the stagnation point on the blunt cone, and the
left-most point for each curve represent values at the shock front. The translational temperature immediately across the
shock is the same for both gas models due to the Rankine-Hugoniot relations. However, the translational temperature
decreases sharply in the non-equilibrium case relative to the perfect gas case, as energy is lost in the vibrational energy
relaxation and chemical reaction processes. The vibrational temperature is at its free-stream value immediately across
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the shock but rises to over 7000 K in overshooting the translational temperature. The iso-thermal wall condition sets
each temperature value to 1000 K, but even near the wall, the vibrational temperature is in non-equilibrium with the
translational temperature. The computed temperature contours near the nose for each case are shown in Fig. 3 and
show that the non-equilibrium effects greatly affects the temperature throughout the flowfield.
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Figure 2. Computed steady mean-flow temperature profiles along stagnation line.

Figure 4 examines the chemical reaction processes in the non-equilibrium case. The species mass fractions along
the stagnation line are shown in Fig. 4(a), where there is significant chemical activity associated with the high tem-
perature gradients in the region. It is seen that as flow comes across the shock and encounters high temperatures,
first, diatomic oxygen begins to dissociate, followed by dissociation of diatomic nitrogen, which leads to the produc-
tion of monotonic oxygen, monotonic nitrogen, and nitric oxide. Near the wall, temperatures cool to the iso-thermal
cold-wall value, which forces the recombination of some diatomic oxygen and nitrogen. The species mass fractions
along the blunt cone surface are shown in Fig. 4(b). The most chemical activity occurs near the stagnation point at
x=r = 0, which corresponds to the region with highest temperature gradients. However, the chemical composition is
in non-equilibrium throughout the computational domain studied. As the flowfield temperature decreases downstream
of the cone nose, there is recombination of diatomic oxygen and nitrogen.

The temperature profile of the two gas models at x=r = 46:5 is shown in Fig. 5(a). This again shows that the
vibrational temperature is in non-equilibrium with the translational temperature inside the boundary layer. Figure 5(b)
shows the velocity profile at x=r = 46:5. Figures 5(a)- 5(b) clearly show that the boundary layer thickness for the
perfect gas model is greater than that of the non-equilibrium gas model. This difference in boundary layer thickness
may be significant to the receptivity process, as the wavelength of the second mode disturbance is proportional to the
boundary layer thickness4. Figure 6 displays the distribution of wall pressure along the surface of the blunt cone. Near
the cone nose, the pressure in in the perfect gas case is higher than the non-equilibrium gas case due to the stronger
shock, but the non-equilibrium effects on pressure are minimal.

V. Acoustic Disturbances

The receptivity of the hypersonic boundary layer to free-stream acoustic disturbance waves is studied. The dis-
turbances are assumed to be weak planar fast acoustic waves in the free-stream before reaching the shock at zero
incidence angle. The free-stream disturbances are superimposed on the steady mean-flow result to examine the re-
ceptivity process. The non-equilibrium real gas effects are studied by comparing the results from the perfect gas and
non-equilibrium gas models. The perturbations of flow variables can be written as the summation of the mean-flow
value and an oscillating component, Eq. 11.
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(a) Non-equilibrium gas. (b) Perfect gas.

Figure 3. Computed steady mean-flow temperature contours.
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(b) Species mass fractions along blunt cone surface.

Figure 4. Computed steady mean-flow mass fractions.
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Figure 5. Steady mean-flow profiles at x=r = 46:5.
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Figure 6. Steady mean-flow distribution of pressure along the wall surface.
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V1 =

26666666666664
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37777777777775
=

26666666666664
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��NO;1
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�p1

37777777777775
+

26666666666664

��N2

��O2

��NO
��N
��O
�u
�v
�w
�p

37777777777775
cos (kxx� !t) : (11)

The disturbance amplitudes for the imposed zero-incidence angle fast acoustic waves are defined by Eq. 12, where
� is a non-dimensional parameter representing the wave magnitude. For the zero-incidence angle case, the �v and
�w amplitudes are each zero. The dimensionless frequency of the wave f� is defined by Eq. 13.

�p

1p1
=

��

�1
=

�u

a1
= �; (12)

f� =
!�1
�1u21

; (13)

! = kx (u1 + a1) ; (14)

A. Shock-fitting procedure

Zhong’s high-order finite-difference shock-fitting scheme13 is the base solver used through this study. The details of
this scheme are not presented in full here, but the inclusion of additional variables for the non-equilibrium gas case
necessitates a re-derivation of components of the shock-fitting procedure, the details of which are presented here.

The flow variables immediately behind the shock are determined by the Rankine-Hugoniot relation,

Fs = F1 (15)

where F is the flux in the computational space along the wall-normal grid line �, across the shock, and a characteristic
compatibility equation from the flow field behind the shock. The subscript s denotes the values immediately behind
the shock, and the subscript1 denotes the flux on the free-stream side of the shock surface. Their respective fluxes
are found to be

F 0s = Fs � ‘s + Vs‘t; (16)

F 01 = F1 � ‘1 + V1‘t; (17)

where ‘s is the normal vector of the shock front and ‘t is the velocity of the shock front in the ‘s direction. With J as
the Jacobian of the coordinate transform13, these values are determined by

‘s =
��x
J

�
i+
��y
J

�
j +

��z
J

�
k (18)

‘t =
��t
J

�
: (19)

Equations 15-17 combine to yield

(Fs � F1) � ‘s + (Vs � V1) ‘t = 0: (20)

Differentiating Eq. 20 with respect to time gives�
@F

@�
� @F1

@�

�
� ‘s +

�
@Vs
@�
� @V1

@�

�
‘t + (Fs � F1) � @‘s

@�
+ (Vs � V1)

@‘t
@�

= 0 (21)

In the steady case in which no disturbances are introduced in the free-stream, the derivatives of the free-stream values
with respect to time are inherently zero. In an unsteady free-stream, however, the derivative of the disturbance with
respect to time is therefore
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@V1
@�

= [! ��V ��V (kxx� )] sin (kxx� !t) : (22)

Equation 21 is rewritten as

B0s
@Vs
@�
�B01

@V1
@�

+ (Fs � F1) � @‘s
@�

+ (Vs � V1)
@‘t
@�

= 0; (23)

where B01 is the flux Jacobian,

B0 =
@F 0

@V
: (24)

The flux Jacobian for the freestream values is given in Eq. 26, with Eqs. 26- 31 defining the parameters within the flux
Jacobian.

B01 =

2666666666666664
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=

1
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The corresponding left eigenvector of the flux Jacobian matrix is found in Eq. 32. With Eqs. 26 and 32, the Zhong
shock-fitting scheme can be solved for the non-equilibrium gas model.
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VI. Receptivity to Planar Fast Acoustic Waves

Free-stream fast acoustic waves expected to excite the unstable second Mack mode are studied. The non-dimensional
free-stream disturbance amplitude is chosen to be � = 5:0� 10�4, which is small enough such that the forcing waves
are considered linear. A non-dimensional frequency of f� = 2:2�10�4 is used. Given the free-stream conditions, this
non-dimensional frequency gives an acoustic wavelength of approximately two boundary layer thicknesses, which is a
good first guess in the absence of a corresponding LST analysis at the prediction of a second-mode instability inducing
frequency.

Figure 7 shows instantaneous pressure perturbations for both the non-equilibrium and perfect gas cases. It is
clear that the free-stream disturbances pass through the shock and are seen by the entire flowfield. Additionally, the
acoustic waves run nearly parallel to the surface of the cone. However, the wave structure of the perturbations in the
boundary layer differ from the structure seen in the inviscid region. Near the nose, perturbations along the wall are
the most significant, as shown in Fig. 8. The wave structures are generally similar for both gas models. However, in
the up-stream region, the pressure perturbation amplitudes are greater for the non-equilibrium gas case and confined
to a region closer to the wall, due to the smaller boundary layer in the non-equilibrium case. These wall perturbations
decay significantly towards the computational exit boundary, as shown in Fig. 9.

The instantaneous temperature perturbations for each case are shown in Fig. 10. The contours show a so-called
”rope” like wave structure that resides on the edge of the boundary layer in the downstream region. In the upstream
region, as shown in Fig. 11, it is seen that the forcing waves from the freestream pass through the shock and enter
the boundary layer to generate mode I waves in the boundary layer. These waves decay as flow moves downstream.
Figure 12 shows that, near the computational domain exit, the ”rope” like wave structure at the edge of the boundary
layer is the dominant perturbation.

Figure 13 shows instantaneous pressure perturbation along the blunt cone wall surface. The perturbation is non-
dimensionalized by the local steady mean-flow pressure value. Pressure perturbations display complex wave patterns,
indicating the presence of several wave modes generated in the boundary layer. It is noted that the maximum amplitude
for the non-equilibrium perturbation is higher than that of the perfect gas case, and the stable downstream perturbation
amplitude is higher for the non-equilibrium case as well.
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Figure 7. Instantaneous pressure perturbation contours induced by planar fast acoustic wave for the perfect gas case [TOP] and non-
equilibrium gas case [BOTTOM]. Refer to Figs. 8- 9 for contour levels.
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(a) Non-equilibrium gas.
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(b) Perfect gas.

Figure 8. Instantaneous pressure perturbation contours induced by planar fast acoustic wave in a localized upstream region.
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Figure 9. Instantaneous pressure perturbation contours induced by planar fast acoustic wave in a localized downstream region.

Figure 10. Instantaneous temperature perturbation contours induced by planar fast acoustic wave for the perfect gas case [TOP] and
non-equilibrium gas case [BOTTOM]. Refer to Figs. 11- 12 for contour levels.
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Figure 11. Instantaneous temperature perturbation contours induced by planar fast acoustic wave in a localized upstream region.
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Figure 12. Instantaneous temperature perturbation contours induced by planar fast acoustic wave in a localized downstream region.
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Figure 13. Instantaneous pressure perturbation along the cone surface.
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Figure 14. Instantaneous shock perturbations induced by planar fast acoustic wave.
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Figure 14 shows instantaneous shock height perturbation for each gas model. It is found that the shock oscillations
are, in general, not significant and relatively small in magnitude. However, for both gas models, the shock height
oscillates much more in the region near the blunt nose and perturbations decay moving downstream.

By taking the Fourier transform of the data, the amplitude of the perturbations throughout the flowfield can be
constructed. Figure 15 shows the distribution of pressure disturbance amplitudes along different streamwise grid lines,
where j = 1 corresponds to the cone wall, j = 51 is within the boundary layer, j = 101 is near the edge of the
boundary layer, and j = 201 is near the shock front. It can be seen that the perturbation amplitudes can vary greatly
across different grid lines. Within the boundary layer, the complex wave structures are apparent and similar in shape.
The maximum amplitude for each gas case occurs within the boundary layer at the stagnation point, as shown in
Fig. 15(a). The maximum amplitude past the blunt nose occurs along the wall at approximately x=r = 7 for the non-
equilibrium case and x=r = 11 for the perfect gas case. Just outside the boundary layer along the j = 101 grid line, the
amplitudes are significantly lower than those within the boundary layer. However, the forcing amplitudes are apparent
and relatively steady near the shock throughout the flowfield, as seen along the j = 201 grid line. The amplitude
along each grid line for each case decays going downstream and shows no signs of growth at the computational exit
boundary. It is noted that throughout the flowfield, with the exception of the stagnation point, the amplitudes for the
non-equilibrium case are greater than those for the perfect gas case.
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(a) Region near cone nose.
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Figure 15. Distribution of pressure perturbation along different grid lines induced by planar fast acoustic wave.

The distribution of the Fourier amplitudes of temperature perturbations along different grid lines are shown in
Fig. 16. Similar behavior to the pressure perturbation amplitudes is observed. Within the boundary layer, complex
wave structures are observed, with the maximum amplitudes occurring along the wall and amplitudes decaying down-
stream. There are no signs of unstable growth at the computational boundary exit. Again, the non-equilibrium gas
case shows higher perturbation amplitudes than the perfect gas case.

VII. Conclusions

Hypersonic receptivity was examined for Mach 15.3 flow over a blunt cone with nose radius 6:35 � 10�3 m and
half angle 7� and imposed free-stream fast acoustic wave disturbances using a high-order shock-fitting finite-difference
solver. This was studied by first computing a steady mean-flow result, then super-imposing a free-stream fast acous-
tic wave. Results were computed for flows using both thermochemical non-equilibrium and perfect gas models and
were then compared to determine the non-equilibrium effect. Complex wave structures were found in the boundary
layer for each gas model when a free-stream acoustic disturbance wave was introduced. The non-equilibrium gas case
has higher perturbation amplitudes within the boundary layer and has its maximum perturbation amplitude nearer the
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Figure 16. Distribution of temperature perturbation along different grid lines induced by planar fast acoustic wave.

blunt nose than the perfect gas case. These findings indicate that non-equilibrium effects destabilize the boundary
layer. However, downstream unstable growth modes were not observed in our study. Future work will incorporate a
more thorough receptivity study. This will include a linear stability analysis to predict the unstable free-stream fre-
quency range and accompanying unstable growth region. Then, further DNS studies of the receptivity process will be
investigated to capture and identify the various wave modes within the boundary layer.
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