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Hypersonic boundary-layer transition can be affected significantly by surface roughness. 
Many important mechanisms which involve transition induced by arbitrary roughness are not 
well understood. Direct numerical simulation is broadly applied for investigating the roughness 
induced instability and transition in recent decade.  But due to the complex computational 
geometry with embedded 3-D roughness, the use of body fitted curvilinear grids could prove to 
be very difficult. In our previous papers [44,45], we proposed a new high-order cut cell method 
to overcome the natural complexities in grid generation around curvilinear surface. The new 
algorithms of up to 4( )O h  accuracy have been derived and applied to simulate two-dimensional 
boundary-layer transition with finite surface roughness. Compared with two-dimensional 
roughness, the flow with three-dimensional isolated and distributed roughness is more 
complicated in analyzing and simulating. In this paper, we extend our previous new high order 
cut cell method to simulate three-dimensional hypersonic flow with finite surface roughness.  
The flow structure in three-dimensional boundary layer is investigated by using the new 
numerical approach. 
 

I. Introduction 
 

Modeling of the roughness induced laminar-turbulence transition of boundary layer serves as a 
critical design issue for hypersonic vehicles, since transition can have a first order influence on 
their body lift and drag, stability and control, propulsion and proposer performance, heat transfer 
property, dynamic pressure loading et al. For example, swept wings are very critical mechanical 
parts for most commercial and military aircraft. It turns out that aerodynamics parameter may 
vary substantially after transition thus to understand the fundamental instability mechanisms in 
swept-wing flows is crucial considering its board application in aerospace design [1]. Another 
promising application of studying roughness induced transition is for heat protection. A 
spacecraft entering earth’s atmosphere initially experiences a heating environment associated 
with a laminar boundary layer. Eventually as the vehicle surface become rougher, the boundary 
layer become turbulent and the heating rate at the surface can be increased by a factor of four or 
more. Thus the ability to understand and predict the roughness induced transition plays an 
essential role in thermal protection system (TPS) design process [2]. However, roughness 
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induced laminar-turbulence transition in hypersonic boundary-layer is still poorly understood due 
to the limitation in experimental facilities and theoretical analysis. 
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Fig.1. A schematic of a hypersonic flow over flat plate with surface roughness induced boundary 
layer transition. 

 
 
Within the entire laminar-turbulence transition, the receptivity process involves the generation 
and excitation of instability wave (T-S waves) inside the boundary-layer under various external 
environmental perturbations [3]. The receptivity and transition process induced by surface 
roughness is one of the most studied fields in the last decades. The instability mechanisms 
associated with different kind of roughness are distinguished. Generally surface roughness which 
induces transition can be divided into three categories. Among those styles two-dimensional 
roughness(Spanwise variant three-dimensional roughness) have been well understood since the 
instability mechanisms inside is simple in analyzing and simulating both from the theoretical and 
experimental point of view. A well accepted conclusion is that both of the frequency of external 
free stream disturbance and surface roughness can affect the amplitude of T-S instable waves 
where a linear relationship between amplitude of T-S wave and height of roughness can be 
observed for small roughness [4]. 
 
Compared with two-dimensional roughness, isolated and distributed roughness is more 
complicated in analyzing in theory and there are still gap remaining both in numerical simulation 
and experiments. The three-dimensional roughness is observed to be more critical than two-
dimensional roughness in introducing the instability mechanisms. It turns out that this kind of 
roughness may lead to bypass transition directly when the Reynolds number based on roughness 
height exceed a certain range [5]. Within this range, the roughness appears to have minor impact 
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on transition. Recently, Balakumar [6] conduct numerically experiments on the transition process 
induced by isolated roughness with acoustic disturbance on supersonic boundary layer. His 
computational results show that the generation of T-S waves inside the boundary layer is mainly 
due to the acoustic waves while the roughness does not exert a significant influence on transition.  
Thus the above bypass process suggest us introduce a new instability mechanisms inside the 
boundary-layer other than traditional T-S instability, which is termed as transient growth.  
 
Based on the instability waves generated from receptivity process, transient growth arises 
through the nonorthogonal nature of the Orr–Sommerfeld and Squire eigenfunctions. The largest 
effects come from the non-orthogonal superposition of slightly damped, highly oblique near 
streamwise T–S and Squire modes. These modes are subcritical with respect to the T–S neutral 
curve. The transient growth signature is essentially algebraic growth followed by exponential 
decay. A weak transient growth can also occur for two-dimensional or axisymmetric modes. 
Transient growth is therefore a candidate mechanism for many examples of bypass transition.  
 
Transient growth was initially recognized by Ellingsen et al. [7] and by Landahl [8] as an 
inviscid mechanism producing an algebraic increase of kinetic energy in shear layer. Since its 
discovery, a number of investigators have made great contribution to its basic theoretical 
understanding. This theory was further developed by Trefethen et al [9], Henningson [10], 
Reshotko [11]. Recently, the spatial transient growth in 2-D boundary layers was addressed by 
Anderson et al. [12], Luchini [13] and Tumin et al. [14]. Andersson and Luchini consider the 
growth of stationary disturbances in non-parallel Blasius boundary layers at finite and infinite 
Reynolds number respectively. Tumin et al. consider the more general case of arbitrarily oriented 
disturbances at nonzero frequencies but are restricted to parallel-flow boundary layers. Both of 
their results show that the most significant transient growth is associated with stationary 
streamwise vortices. The plot of the spatial transient growth of zero-frequency, streamwise 
vortices of various streamwise wavenumbers calculated using the parallel-flow transient growth 
code by Tumin exhibit a distinguishable increasing modes from transitional T-S wave like 
exponential growth. Tumin and Reshotcko extended their former analytical techniques on 
receptivity prediction to the roughness induced transient growth in the context of linearly 
unstable T-S modes. By using biorthogonal eigenfunctions of the linear, quasiparallel 
disturbance equations, they are able to predict the stationary disturbances in the wake of an array 
of roughness elements.  
 
Although the theoretical approaches have been making a good progress, there has not been much 
experiments designed to support the transient growth relating algebraic disturbance growth and 
the link with surface roughness. Prior to the development of transient growth theory, there are 
many experiments about surface roughness induced boundary layer transition, many of which 
were summarized in [15, 16]. One of the relevant experiments to current study comes from 
Reshotko and Leventhal [17].  They consider three different roughness levels: smooth (i.e., 
polished aluminum), low-amplitude roughness (nominally 15kR = ), and high-amplitude 

roughness (nominally) which placed in the subcritical region of a flat-plate boundary-layer. 
Measurements were obtained at four x locations, 300, 400, 500, and 600 mm downstream of the 
leading edge, all along the plate centerline. What they found is that maximum amplitude of 
disturbance in the T-S subcritical region varies along streamwise direction in a clearly a non-
exponential manner, whose characteristics are quite unlike those of T-S waves. When the 
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growing disturbances they observed were filtered out through Fourier transformation, the 
component with lowest frequencies exhibits the strongest growth—exactly matching the 
prediction from transient-growth theory.  Later, the experiment by Kendall [23] examine the 
evolution of a disturbance produced by an isolated roughness element. 
 
The more recent experiment that directly supports the transient-growth theory is conducted by 
White et al. [18-21]. In white’s experiments [21], The facility used in the experiments is the Case 
Wind Tunnel, an open-return facility with a 30.71*0.71*2.7m section and a maximum control 
speed 25 /m s . Disturbances are generated by a spanwise array of cylindrical roughness elements 
located 300 mm down-stream of the plate’s physical leading edge. A clearly transient growth 
behavior for the streamwise evolution of steady disturbance energy rmsE is observed. Under 

incompressible boundary environment, some parameters study associated with transient growth, 
such as the effects of roughness height and diameter on the steady disturbance energy are carried 
out. A main conclusion from their experiments is that the maximum amplitude of transient 
growth is linear proportional to square of height roughness.  
 
By now there are limited reported numerical experiments related to boundary-layer transient 
growth with surface roughness. White’s experiments are carried out by Fischer et al. [24,25] with 
spanwise periodic array of circular disks in incompressible boundary layer. In their simulation, 
the unsteady Navier-Stokes equations are integrated in by using the spectral element 
discretization in space and third-order, operator-splitting formulation in time. A parameter study 
is conducted for investigating the dependent of transient growth on geometric characteristics of 
the roughness distribution. The agreement between the experimental data and simulation result 
validate each other. They find that with sufficiently small roughness heights, a previously 
unknown trend about monotonic energy decay will appear for mode disturbance, which is 
consistent with Tumin’s optimal growth. Piot et al. [26] performs a numerical simulation on flow 
around a swept cylinder in the presence of a micro-roughness array. Their spatial scheme is 
classical fourth-order accurate center explicit finite difference discretization, while temporal-
wise is a compact explicit third-order accurate Runge-Kutta algorithm. The simulation shows 
that both the steady and unsteady waves are generated though the receptivity process induced by 
roughness and could be explained by LST analysis and biorthogonal decomposition. Rizzetta et 
al. [27] employ a high-order overset grid approach to simulate the subsonic flow past an array of 
distributed cylindrical roughness elements mounted on a flat plate. The 202kR =  case shows a 

exponential growth of turbulence energy in the steamwise direction, which may ultimately lead 
to transition.  
 
For problems having complex computational geometry, as might occur in the transition problems 
induced by isolated/distributed roughness, use of body fitted curvilinear gird could prove to be 
very difficult due to natural complexities in grid generation. Consequently, a Cartesian cut cell 
method should be used for its advantage in generating and implementing numerical schemes. Cut 
cell methods can take full advantage of fast computer architectures like vector or parallel 
computers and could serve as a very flexible method for simulating flow around complex 
geometries. In the retrospect of the cut cell method, it was first used in the context of solving the 
equations of transonic potential flow by Purvis and Burkhalter [28]. Then it is used to calculate 
steady compressible flows by Clarke et al. [29]. Among those methods, a restriction on time step 
will arise when dealing with the relatively small irregular cell formed by irregular cutting of 
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boundaries. This restriction will significantly delay the time advance thereby make the object 
system of equations become too stiff to solve. Thus the major issues for our numerical algorithm 
is on how to design a method that while relax the time step, can maintain the result accuracy, 
stability, and conservation inside the irregular cells at the fluid-body interface simultaneously.  
 
Many innovative methods were developed to resolve this problem. Berger and Leveque [30] use 
rotating box method to address the small cell problems. Colella et al. [31-33] uses flux-
redistribution procedures, and Quirk [34], Shyy [35] uses cell merging skill to get numerical 
stability. However, all the cut cell methods with different treatments for the boundary can be 
found are of first or second order, which is not sufficient in numerically predicting laminar-
turbulent boundary transition. Later a series of the new cut cell method were developed equipped 
with high-order features. Shyy et al. [37] extend its old method to fourth order with merging cell 
skill. But the reconstruction of flux procedure is relatively expensive thus slowing down the 
computational efficiency.  Colella et al. [38] developed a fourth order accurate finite volume 
method combined with a local mesh refinement for discretezating Poisson’s equation in a 
rectangular domain. This kind of method will be extremely tedious in implementing for irregular 
domain. Fedkiw et al. [39] also presented a fourth order finite difference method for solving the 
Laplace and Heat equation on arbitrary domain by using ghost fluid method.  
 
In this paper, we present a high-order cut cell method to simulate the roughness induced transient 
growth and transition in three-dimensional hypersonic boundary layer. An array of roughnesses 
with smooth surface is placed in the spanwise direction at the flat plate 0.185m downstream from 
the leading edge. The spanwise distance between two close roughnesses is 0.01m. The bow 
shock generated from leading edge of flat plate will be treated as a boundary condition and 
discretizated  based on Zhong’s [41] fifth-order finite difference flux split method and shock 
fitting method. To extend our original two-dimensional cut cell method, we calculate the 
irregular points in three dimensional geometry and extend corresponding numerical scheme. A 
local refinement of a cut cell may be incorporated to obtain a method that is of third or higher 
order accuracy. 

II.  Governing Equations 
 

The governing equations for the numerical simulation of hypersonic boundary layer transition 
are the three-dimensional Navier–Stokes equations. We assume that we are dealing with 
Newtonian fluids with perfect gas assumption and isothermal wall condition.  The governing 
equations can be written in the following conservation-law form in the Cartesian coordinates, 
 

0j vj

j j

F FU

t x x

∂ ∂∂
+ + =

∂ ∂ ∂
                                                      (1)   

 
where U , jF  and vjF  are the vectors of flow variables, convective flux, and viscous flux in the 

jth  spatial direction respectively, i.e., 
 

{ }1 2 3, , , ,U u u u eρ ρ ρ ρ=                                                   (2) 
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 In this paper, only perfect-gas hypersonic flow is considered, i.e.,  

 
p RTρ=                                                               (5) 

1
( )

2 k ke C T u uvρ= +                                                     (6) 

( )
u uu ji k

ij ijx x xj i k
τ μ δ λ

∂ ∂∂
= + +

∂ ∂ ∂
                                          (7) 

T
q kj x j

∂
= −

∂
                                                          (8) 

 
where R  is the gas constant. The specific heat Cv is assumed to be constant with a given ratio of 

specific heats γ . The viscosity coefficient μ can be calculated by Sutherland’s law in the form: 
 

3/2
0

0

T TT s
r T T Ts

μ μ
+

=
+

                                                         (9) 

 

Where 0
5 21.7894 10 / , 288.0 , 110.33Ns m T K T Kr sμ −= × = =  and λ is assumed to be 2 / 3μ− . 

The heat conductivity coefficient k can be computed through a constant Prantl number Pr . 
 

III. Numerical Methods 

A. Grids Generation and Definition 
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Fig.2. Hypersonic boundary layer transition with surface roughness a), hypersonic flow over blunt 
body with surface roughness b), the computational domain with roughness after the transformation 

and Cartesian cut cells generation. 
 
 
A schematic of roughness induced hypersonic boundary layer transition is shown in Figure 2. 
The roughness surface is a close curve and is governed by the equation,  
 

: ( , , ) 0f x y zΓ =                                                             (10) 
 
It is possible that there is not an analytical equation applicable to represent some special 
roughness e.g. real arbitrary roughness in hypersonic vehicle surface. In these cases a set of n  
discrete coordinate points { }1 1 1 2 2 2( , , ), ( , , ),..., ( , , )n n nx y z x y z x y z  can be obtained by scanning the 

physical roughness surface.  With the roughness data we can reconstruct the roughness surface 
for simulation by using high order piecewise continuous and differentiable Lagrange 
interpolation polynomials.   
 
The shock fitting method is used to compute the unsteady boundary layer transition. The 
governing Eqs. (1) – (8) and (10) in the physical domain are transformed into a regular 
computational domain bounded by oscillating shock and flat plate boundary. Under the 
computational coordinate system, the body fitted grids are represented by a curvilinear three-
dimensional coordinates ( , , , )ξ η ς τ along the grid lines.  The unsteady movement of the bow 
shock is treated as the computational upper bound at maxη η= , which is time dependent. The other 

grid lines constξ = and constς = remains stationary while computing. The coordinate 
transformation is defined by: 
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( , , ) ( , , , )

( , , , ) ( , , , )

( , , ) ( , , , )

x y z x x

x y z t y y

x y z z z

t t

ξ ξ ξ η ς τ

η η ξ η ς τ

ς ς ξ η ς τ

τ τ

= =

= =
⎯⎯→

= =

= =

                                         (11) 

 
where ( , , , )x y z t  is defined under Cartesian coordinate system. 
 
Eq. (11) can be substituted into the governing Eq. (1), which may lead to a system of 
transformed equations in the computational domain ( , , , )ξ η ζ τ  as 
 

' ' '1 ' ' ' (1/ )
0

E F GU E F G Jv v v U
J τ ξ η ζ ξ η ζ τ

∂ ∂ ∂∂ ∂ ∂ ∂ ∂
+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
                           (12) 

where 
1 2 3' x y zF F F

E
J

ξ ξ ξ+ +
=                                                         (13) 

1 2 3
'

x y z U tF F F
F

J

ηη η η ++ +
=                                                  (14) 

  2 31'
x yF F F z

G
J

ζ ζ ζ+ +
=                                                          (15) 

1 2 3
'

v x v y v z
v

F F F
E

J

ξ ξ ξ+ +
=                                                     (16) 

1 2 3
'

v v y v z
v

F F Fx
F

J

η η η+ +
=                                                       (17) 

1 2 3
'

v x v y v z
v

F F F
G

J

ζ ζ ζ+ +
=                                                     (18) 

 
Where , , , , , , ,,x y z x y z x y zξ ξ ξ η η η ς ς ς are transformation metrics and J is Jacobean matrix of 

coordinate transformation defined by 
 

( , , )

( , , )
J

x y z

ξ η ς∂
=

∂
                                                            (19) 

The surface roughness is also transformed into the computational domain and can be represented 
as  
 

( ( , , ), ( , , , ), ( , , )) 0f x y z x y z t x y zξ η ς =                                      (20) 
 
The grids transformation metrics and the Jacobean matrix could be calculated through applying 
derivative chain rule into the relation of Eq. (11). With the coordinate transformation, uniform 
distributed grids could be generated in the computational domain where in reality the grids 
distribution in physical domain is non-uniform distributed.  
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Fig.3. Definition of grids for high-order cut-cell method in a coordinated plane ( , )ξ η (Other plane are 

similar). ∇ is regular point, ⊗ is dropped point, is boundary point and • is irregular point. 
 
 
Smooth body-fitted uniformly distributed grids are generated in the regular computational 
domain without roughness as shown in the Figure 2(b).  Some of the Cartesian cells may cut by 
the roughness boundary, which leads to irregular Cartesian cells. The roughness geometry should 
be transformed into ( , , , )ξ η ς τ  coordinate plane following the Eq. (10) while computing the 
metrics associated with roughness boundary.  
 
Four different kinds of grids located in the vertex of those Cartesian cells are defined and 
different numerical algorithms are implemented. They are regular points, irregular points, 
boundary points, and dropped points as shown in Figure 3. The intersections of roughness 
interface and grid lines are defined as boundary points. The other points produced by 
intersections of grid lines themselves are termed as regular points, irregular points and dropped 
points respectively. The criteria for distinguishing those are depending on their minimum 
distances to the solid wall. If the grids points are adjacent to a boundary point with a distance 
smaller than a pre-specified critical ratio Θ in wall-normal or streamwise direction, they are 
defined as dropped points and are took off from the grid stencil in corresponding direction, 
which is terms as “dropped direction”. The points are abandoned in the “dropped direction” only, 
they may be included in finite difference stencils in directions that are not defined as “dropped”. 
In the third and fourth order simulation, the critical ratio Θ  is selected to be 0.5 hΔ and 

hΔ respectively where desirable stable solution can be obtained as shown in following sections. 
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All the points in the solid side of computational domain can be defined as dropped points as well. 
They don’t participant any numerical calculation in later stage. For those points whose finite 
difference stencil may include boundary points, they are defined as irregular points. Then the left 
points which cover the entire domain are defined as regular points since they are relatively far 
away from boundary points, where a standard uniform finite difference approach can be applied.  
 
B. Cut-Cell Method and Numerical Scheme 
 
Based on different grids definition in the computational domain, the steps to derive the numerical 
scheme for both irregular and regular points are described as following.  
 
Regular Points 
 
In the discretization of the Navier-Stokes equations at regular points, spatial derivatives in the 
streamwise (ξ ) and wall-normal (η ) directions are modeled by a fifth-order finite difference 
scheme. The flow variables behind the shock are determined by the Rankine-Hugoniot relations 
across the shock and a characteristic compatibility equation behind the shock. The velocity of 
shock front and acceleration of shock front could be written as the relation, 

 

( , , , , , , )

H
H

H H H P Ma

τ

ττ ττ

τ
ξ ζ τ ρ∞ ∞ ∞

∂
=

∂

=

                                           (21) 

 
( , , , , , , )H H P Maττ ξ ζ τ ρ∞ ∞ ∞ is a relation determined by time and the condition , ,P Ma ρ∞ ∞ ∞ . With 

time advancing in computation, the shock shape as well as the physical domain is updated in 
each simulation step according to equation (20). The details about derivation of the shock fitting 
formulas and numerical methods can be found in Zhong (1998). 
 
The transformed Eq. (12) is discretized by a high-order uniform finite difference method. In the 
inviscid flux term, the Jacobian matrix contains both positive and negative eigenvalues, thus for 
obtaining more stable computation, two sets of schemes are employed to calculate viscous and 
inviscid flux term separately. A fifth-order upwind scheme combined with a local Lax-Friedrichs 
flux (LLF) split scheme is used for discretizing the inviscid flux derivatives, while a six order 
central scheme is used to discretize the viscous flux derivatives.  
 
The inviscid flux term in Eq. (12) can be divided into two parts with pure negative and position 
values as 

 
' ' 'F F F+ −= +                                                           (22) 

 
To obtain Eq. (22), a general method is to choose a sufficient large parameter λ ,  like 

 

2 2( ( )c u c
J

η
λ ε

∇
= + +                                                    (23) 
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where c  is the speed of sound, ε is a small variable which introduce smoothness of the flux 
splitting, and u can be calculated by 
 

' x y z tu v w
u

η η η η

η

+ + +
=

∇
                                                     (24) 

λ could be chosen to be larger than any of the absolute eigenvalue of 'F .Then 'F + , 'F − could be 

defined as  

1
' ( ' )

2
1

' ( ' )
2

F F U

F F U

λ

λ

−

+

= −

= +

                                                           (25) 

Since 'F − and  'F + contains only pure negative and positive value respectively, the fifth-order 
explicit upwind scheme could be used to discretize their derivatives in order to improve the 
overall computational stability. A finite difference equation for first order derivatives could be 
written as 

63

3

' 1 '' ......
6!i k i k

k i

F Fa F
h

α
ξ ξ

+ +
+

+ +
=−

∂ ∂= − +
∂ ∂Δ

                                     (26) 

 
where hΔ  is the size of spatial grids. The coefficients can be calculated by using Taylor 
expansion as follows: 
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2

3

1 5
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3
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( 45 )
4

1 1
( 9 )

2

1 1
( 1 ) 60
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i

i

i

i
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b

a
b

a
b

a b
b

α

α

α

α

±

±

±

= −

= ± +

= −

= ± + =

                                     (27) 

 
When 0α <  the scheme is upwind and when 0α = , the scheme is sixth-order central difference, 
which is used to discretize the viscous terms. Combined with cut cell method for boundary 
treatment, the spatial discretization towards Eq. (12) leads a system of ordinary differential 
equation. For steady problem, a first-order Euler scheme is used to discretize the system of 
ODEs, which in turn lead to a system of linear equations.  Final solution can be obtained through 
temporal integration. The stability analysis for the high-order finite difference method can be 
found in Zhong’s paper (1998). 
 
Irregular Points 
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Contrary to the standard fifth-order finite-difference schemes used for regular points, special 
treatment is needed in the discretization of the governing equations for the irregular points 
because boundary points are included into the finite difference stencil. Fig 4. shows a schematic 
of a grid stencil for irregular points near the boundary. In this figure, grid points 2ξ  and 3ξ  are 

irregular points, 1ξ  is a boundary point, while the grid point between 1ξ  and 2ξ  is a dropped 

point because it is too close the boundary point. The dropped point is removed from the stencil 
for the irregular point schemes. The rest of the grid points are regular points. For example, for a 
local third-order finite-difference approximation at the irregular point 2ξ , the grid stencil 

consists of the following five grid points: 1ξ , 2ξ , …, 5ξ . The grid spacing between the points 

involved are not uniform because 

 1
h

θ
σ = ≠

Δ
 (28) 

 
where θ  is the spacing between 1ξ  and 2ξ , and hΔ is the uniform grid spacing of the regular 

grid.  Therefore, a non-uniform-grid finite difference schemes are needed for irregular points. 
 

o
θΔh

σ = θ/Δh
Fluids Solids

ξ1

ξ2ξ3ξ4ξ5

Interface

⊗
<Θ

• • • ••

 
Fig. 4. A schematic of a grid stencil for an  irregular point with 3p =  , 5q = and 3 2 3{ , }ξ ξ ξΩ = , θ  is 

non-uniform grid spacing after removing a dropped point, hΔ is the normal grid spacing, ⊗ represents 
the dropped point, O represents the boundary point, and • represents irregular and regular points. 

 
 
It is assumed that p  is the local order of accuracy in boundary of the simulation. In order to 
maintain a ( 1)p th+ −  order global accuracy for the distretization of both the inviscid and viscous 
flux terms, all local non-uniform schemes for irregular points need to be at least p th−  order 
accuracy. In our construction of high-order cut-cell scheme, if a grid stencil with a number of q  
grids is used for discretizing regular points near the boundary in each direction of the 
computational domain, there are / 2q  irregular points near a boundary surface. Figure 4 shows 

the case of a third-order scheme with 5q = , where there are two irregular points 2ξ  and 3ξ . We 

denote the collection of all irregular points near this boundary in one direction as set p
ξΩ , where 

the superscript represents the direction of the stencil and the subscript represents the local order 
of schemes at this point. 
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Viscous Term in Irregular Points 
 
The general formulation of a non-uniform-grid finite-difference scheme for computing the 
viscous terms for an irregular point iξ of p

ξΩ  can be written in the following form: 

 

 
1' 1

'
, ,

1

1 ( ) '( )     for  where 2,3,..., / 2 1
!

qqq
v v

i k v k i p
k ii

F C h Fa F i q
h q

ξσ ξ
ξξ

−−

=

∂ Δ ∂= − ∈ Ω = +
∂∂ Δ

 (29) 

 
The subscripts of coefficient ,i ka  stand for the k th− coefficient for the i th−  irregular point as 

defined for the case of 3p=  and 5q = (Fig. 4). The coefficient ,i ka  is function of σ , which is 

defined in Eq.28 , and C  is a constant. 
 
Inviscid term in irregular points 
 
Similar to the local algorithms for the viscous terms at irregular points, a non-uniform-grid high-
order upwind scheme is used to discretize the inviscid fluxes, 'F +

 and 'F −
, as defined in Eq.25. 

For every irregular grid point, there are several possible grid stencils for finite-difference 
approximation of the flux derivatives of the same accuracy order. Different choices of stencils 
for these boundary closure schemes lead to different stability characteristics for the overall 
algorithm. Since 'F +

 and 'F −  have either all positive or all negative eigenvalues, local grid 
stencils for finite-difference approximation of the flux derivatives are chosen so that the 
discretization for the fluxes are upwind biased, while maintaining high-order accuracy. 
Therefore, for a given irregular grid point, the stencil for 'F +

 may be different from the stencil 
for 'F − . In addition, a grid stencil for these fluxes may or may not include the boundary point.  
 
The non-uniform-grid finite-difference schemes for the inviscid flux terms of positive and 
negative eigenvalues can be written as  

 

 ,
1

' 1
'      for  where 2,3,..., / 2 1

q

i k k i p
k

i

F
b F i q

h
ξξ

ξ

+
+ +

=

∂
= ∈Ω = +

∂ Δ
 (30) 

 ,
1

' 1
( ) '      for  where 2,3,..., / 2 1

q

i k k i p
k

i

F
b F i q

h
ξσ ξ

ξ

−
− −

=

∂
= ∈Ω = +

∂ Δ
 (30) 

 
The stencil contains a total of q  grid points as shown in Fig. . The subscripts of coefficients ,i kb+

 
and ,i kb−

 stand for the k th− coefficient for the i th− irregular point as defined in Fig. 5. The 

upwind schemes are represented by different sets of coefficients of the two formulas above. 

Because the upwind bias stencil used for 
'F

ξ

+∂

∂
 does not include the boundary point, the 

coefficients ,i kb+  is not a function of σ  defined in Eq.25. On the other hand, ,i kb−  is a function of 
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σ  because the upwind stencil for 
'F

ξ

−∂

∂
 includes the boundary point. The coefficients for each 

upwind schemes above can be calculated following the same general formulas as in the previous 
section.   
 
Boundary points 
 
As shown in Fig. 3, boundary points are the marker points located at the intersection between the 
roughness surface and grid lines. The governing equations are not solved at these points. 
However, flow variables at these points are needed for finite-difference algorithms of the 
irregular points near the roughness surface. The solid interface imposes the non-slip and non-
flow-through conditions for flow velocities at the boundary points. Depending on the actual 
thermal conditions of the solid surface, either an isothermal or adiabatic wall can be specified. In 
this paper, only the isothermal wall is considered. In this case, both the velocities and 
temperature of the boundary points are specified by the wall boundary conditions. The local 
pressure on the solid surface (boundary points) needs to be computed by the local flow 
conditions near the wall.  
 
There are several approaches to compute the pressure at the boundary points. One approach is to 
integrate a local wall-normal momentum equation to obtain the wall pressure. We can also use an 
approximation assumption of zero pressure gradient at the wall to determine the pressure there. 
In a previous paper, Zhong used a fifth-order polynomial extrapolation to determine the wall 
pressure [13]. Satisfactory results have been obtained with this approach. We follow the 
extrapolation approach of Zhong [13] to determine the pressure at the boundary points. 
 
In computing pressure at the boundary points, the polynomial extrapolation is required to have 
comparable order of accuracy as that of the interior schemes in order to maintain the expected 
global accuracy. To maintain a ( 1)p th+ − order global accuracy of the upwind schemes 
developed in the last sections, it is desirable to have at least p th−  order of accuracy for the 
extrapolation for the boundary points.  
 
Since a boundary point is formed by the intersection of the roughness interface with one of the 
grid lines, the extrapolation is conducted along the direction of the same grid line. We use the 
grid line along the ξ  direction as an example. The methods can be applied the other directions 
similarly. In two and three-dimensional cases, there is options of either constructing the 
extrapolation along the direction normal to the solid interface, or doing it along the grid lines. 
Though either method can be used in multi-dimensional problems, the latter approach is used in 
this paper. In this case, the determination of pressure at the boundary points is a one-dimensional 
extrapolation along one of the grid lines. The one-dimensional stencil of Fig. 4, which involves 
non-uniform grid spacing θ , is used to derive the extrapolation formulas for the pressure at the 
boundary point. For example, for the case of four point extrapolation shown in Fig. 4, pressure at 
the boundary point 1( )p ξ  is obtained by a third degree polynomial interpolating through the 

following four interior pressures: 2( )p ξ , 3( )p ξ , 4( )p ξ , and 5( )p ξ . The grid spacing between 

neighboring grid points is a constant value of hΔ , with the exception that the distance between 
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the first and second points are θ . If there is a dropped point in the stencil, the dropped point is 
not used in the extrapolation calculations. 
For current three-dimensional problems, the high-order extrapolation along 
the  or  or ξ η ζ direction is employed to extrapolate pressure from the interior domain into the 
boundary. A total of p  grid points in the direction associated with the boundary point are chosen 
to be included in the extrapolation stencil. Again, dropped points are not included in the 
extrapolation stencil. This procedure can prevent the small cell problem of producing numerical 
instability near the solid boundary.  
 
Dropped Points 
 
In this paper, in order to avoid the small cell problem, a grid point is designated as a dropped 
point if its distance from a neighboring boundary point along a grid line is smaller than a pre-
determined value Θ . The dropped point, which is associated with a grid direction, is removed 
in the finite-difference grid stencil along the grid line for the irregular points near the boundary. 
On the other hand, a grid point may become a dropped point in one direction, but remain a 
regular or irregular point in another. For example, point 1P  in Fig. 5 is a dropped point in the ξ  

direction, but a regular point in the η  direction. In this case, the flow variables at point 1P  are 

not used in finite difference formulas for derivatives in the ξ  direction. However, the flow 
variables at the same grid point are needed for finite difference formulas for derivatives in the 
η  direction. The flow variables at this dropped point 1P  are obtained by the interpolation of a 

stencil along the ξ  direction. 
 
For a grid point which is a regular or irregular point in one direction, but a dropped point in 
another, finite difference schemes along the former direction may include this point in its 
stencil.  As shown in Fig. 4 for the case of 3p = , the finite-difference stencil for an irregular 
point Q  located at ( , )i jξ η contains five points in the η  direction, which are in set 

2 1 1 2{( , ),  ( , ),  ( , ),  ( , ),  ( , )}Q i j i j i j j i ji
ξ η ξ η ξ η ξ η ξ η+ + − −Ω = . There are two dropped points along the ξ  

direction in this set of stencil QΩ : point 1P  at 1( , )i jξ η −  and point 2P  at 2( , )i jξ η − . If the points 

1P and 2P  are removed from the stencil used in the calculations of flux terms 
' '/  and /vF Fη η∂ ∂ ∂ ∂  in Q , the stencil set QΩ  needs to be shifted two grids down to include 

3( , )i jξ η − and 4( , )i jξ η −  to maintain the accuracy. In this case, the resulting stencil for Q  may 

contain a significantly large intervalθ  compared with the normal grid spacing hΔ , which may 
lead to a deterioration of accuracy of the method. Therefore, we maintain the original grid 
stencil QΩ , which includes points 1P  and 2P , along the η  direction for point Q . We calculate 

the flow variables of these two dropped points by interpolation along the ξ  direction. 
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Fig. 5. An example of a grid point, such as point 1P  and point 2P , which is a regular or irregular point 

in one direction, but a dropped point in another for the case of 3p = : ∇ represents regular points, 
⊗ dropped points, O  boundary points, and • irregular points. 

 
 
For the case of 3p =  for point 1P , a third-order polynomial interpolation along the ξ  direction 

is employed to compute the flow variables at this point. The interpolation is carried out along 
the ξ  direction, which is along the direction where the point is dropped. For 3p =  as shown in 
Fig. 5. the interpolation stencil for point 1P  is set 1 1 2 1{( , ),  ( , ),  }P i j i j Bξ η ξ η− − − −Ω = , where B  

represents the boundary point. For higher order method, the order of interpolation needs to be 
increased accordingly. For 4p = , a fourth order interpolation should be used. For a general case 
of p th− order methods at the boundary, a total of 1p −  adjacent grid points and exactly one 
boundary point along the ξ  direction are chosen as the interpolation stencil. The interpolant can 
be written as  
 

 1

1
1 1,

( )
p p

p l
p n

n n ll l n

U U
ξ ξ

ξ
ξ ξ= = ≠

−
= ∏ −

 (31) 

 
Where 

1pξ is the ξ  coordinate of dropped point, { }, 1..iU i p= is conservative flow variables at 

the grid points of the interpolation stencil.   
 
Similar interpolation procedures can also be carried out if a point is designated as a dropped 
point in the η  and ζ  direction, but is an irregular or regular point in the ξ  direction.  If a grid 
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point is designated as a dropped point in all the ξ  , η  andζ directions, there is no need to do 
interpolations because this point is removed from the calculations of both directions. 
 

IV. Steady Base Flow over a three-dimensional flat plate without Roughness 
 
A test case for flow over a three-dimensional flat plate with Mach number 5.92 without 
roughness is conducted. The numerical results could serve as a benchmark for filtering out 
steady mean flow components from the flow field with roughness generated perturbations. The 
ambient flow conditions are following Maslov’s experiment (2001) as,  

 
60.72, * / 1.32 10 /

5.92, 48.69 , 742.76
rP R u m

M T K P Pa

ρ μ∞ ∞ ∞ ∞

∞ ∞ ∞

= = = ×

= = =                                        (32)                         

 
Where M ∞ is Mach number,T∞ is temperature, P∞ is pressure, rP is Prantle number and R∞ is unit 

Reynolds number. The flat plate is assumed to be isothermal with fixed temperature 
350.0wT K= .  
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Fig.6. Temperature and wall normal velocity long a wall-normal grid line which is originated from a 

point located at 0.1676x m= and 0.05z m= on the plate surface. 
 
 
The steady mean flow solutions are calculated by using a high-order shock fitting method 
discussed in section III. But in the leading edge of the flat plate, there is a singularity when high-
order shock fitting method is implemented. Thus a second-order TVD shock-capturing method is 
employed to calculate the flow field in the tip of flat plate. The computational domain for TVD 
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starts from a very short distance downstream of the leading edge which is divided to 
241 121 16× ×  grids. The spatial discretization of TVD scheme following Lee et al. (1993) is 
applied toward Eq. (12) and leads to semi-discrete system of ordinary differential equations, 
which are solved by using fourth-order Runge-Kutta method.   

 
The computational domain for the high-order shock-fitting methods starts at 0.003x m= and ends 
at 1.68784x m= . In actual simulations, the computational domain is divided into 30 zones, with 
total of 5936 grid points in the stream wise direction, 121 points in the wall-normal direction and 
6 points in the span wise direction. As mentioned above, the second zone uses the results of the 
first zone of second-order TVD scheme as the inlet condition. The later zone used the 
interpolation of former zone’s data as the inlet condition. 
 
Figure 6 shows the streamwise velocity profile and temperature profiles in the wall-normal 
direction at the location of 0.1676x m= and 0.005z m=  .The current numerical solutions are 
compared with the self-similar boundary layer solution. The velocity and temperature are 
normalized by corresponding freestream boundary condition, while y is nondimensionalized by 

/x Uμ ρ . Figure 6 illustrate that the results of the current numerical simulation agree very well 

with theoretical solutions. Thus second-order TVD scheme is accurate enough to be the 
supporting inlet condition of fifth-order shock-fitting method. 
 

V. Steady Flow over three-dimensional flat plate with Roughness 
 
The three-dimensional roughness is mounted on the surface of plate at downstream 0.185x m= . 
Following Whiteheard’s experiments (2006),   the surface roughness is governed by the elliptic 
equation, 
 

22 2
2

2 2 2

( / 2)( ) z Lx Rap y
h

a b c
ς−−

+ + =                                                (33) 

 
Where Lζ is the spanwise length of flat plate. The computation are performed under parameter 

configuration 2,  1, 1a b c= = =  and / 1/ 2h δ =  where   δ corresponds to the boundary layer 

thickness at 0.185cx m=  as shown in Figure 7.  
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Fig.7. Computational schematic of hypersonic flow over flat plate with finite surface roughness. 
 

 
In section III we discussed the methodology of treating irregular domain without roughness. A 
coordinate transformation is employed to simplify the computation. The optimal formation of 
transformation formula is determined by the specific physical model. For viscous flow 
simulation, two steps of mapping procedure could be implemented to obtain better resolution 
inside the viscous layer. The first step is involving transforming the entire physical domain under 
Cartesian coordinates into a square defined on [0,1] [0,1] [0,1]× × under an intermediate coordinate 
space. The relation is defined as: 
 

( , )

strartx x
X

L
y

Y
H x z

z
Z

Lζ

−
=

=

=                                                            

(34)

                        

 
Where ( , , )X Y Z is defined under the intermediate coordinate system.  L  is the streamwise length 

of the flat plate in current physical domain. startx is the physical streamwise coordinate of starting 
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point of computation. The distance along η  between the solid wall and bow shock is referred to 
H . 
 
In the second step of transformation, the intermediate plane ( , , )X Y Z is mapped into the 
computational domain ( , , )ξ η ς  in order to cluster more grids into the viscous layer on the flat 
plate. In present study, an exponential stretch function is employed as following, 
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1
1
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−

=

                                                   (35)

 

 
where β  is the stretching parameter. In current simulation 1.0β = . The combination of the two 
steps leads to Eq. (11). 
 
By substituting Eq. (52) into roughness surface function Eq. (10), the analytical equation for 
roughness in computational domain can be written as  
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                           (36) 

 
An array of three dimensional roughnesses defined by relation (39) with mutual distance 

0.0068L mζ =  is placed on the flat-plate at 0.185cx m=  downstream from the leading edge. A 

periodic boundary condition is imposed in the z direction.  
 
The 3-D simulation of hypersonic flow over roughness is conducted by using the cut cell method 
and up to third-order converging case is achieved. The total girds used for computing the zone 
contain roughness is 241 121 40× × . The 3-D pressure and wall normal velocity contour is shown 
in Fig. 8. The hypersonic flow over the surface roughness generates a weak shock wave parallel 
to the roughness surface. Immediately after the weak shock wave, a 3-D expansion wave is 
generated and extend to downstream as in 2-D case. Controlled by the roughness shape, the 
shock strength reaches its maximum value in the middle of z direction and gradually decreases as 
moving to other two sides. Figure 8 (b) shows the normal velocity contour. A spanwise vortex is 
formed in the downstream of roughness, which is generated by the shear force as the flow passes 
the 3-D elliptic roughness surface. But the vortex shed rapidly due to the viscous dissipation 
close to the boundary layer.  
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Fig.8. Computational contour of 3-D hypersonic flow over flat plate with finite surface 

roughness.a), pressure  b), wall normal velocity. girds : 241 121 40× × .  
 

Figure 9 shows 2-D spanwise velocity and streamline contour of hypersonic flow over flat plate 
with finite surface roughness in the x-z plane. Since the periodic boundary condition is imposed, 
the computational result is symmetry along the central lines across the roughness in the x 
direction.  The streamline pattern shows with roughness element, the original flow field is 
modified significantly. The flow is separated into two branches equally as approaching the 
roughness front and then merge together after passing the roughness.  
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Fig.9. 2-D spanwise velocity and streamline contour of hypersonic flow over flat plate with finite 
surface roughness. Black lines represent streamlines in x-z computational plane.  
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Fig.10. 2-D streamwise velocity contour in x direction. a), 0.1830x m=  b), 0.1838x m=  c), 
0.1845x m=  d), 0.1860x m=  e), 0.1890x m=  f), 0.1950x m= . 
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Fig.11. Variation of velocity disturbance profile in x direction as difference between DNS solution 
and Blasius boundary layer solution. a), difference of streamwise velocity *

dU  b), difference of wall-

normal velocity *
dV  along symmetry line.  

 
 
Figure 10 show the 2-D streamwise velocity variation in y-z plane along x direction. In the 
upstream of surface roughness, due to the roughness effect, boundary layer flow is minorly 
modified. In order to maintain the continuity of flow field, the streamline velocity approaches 
zero in small regions before the roughness. As the flow moves downstream and contacts with the 
surface roughness, a new boundary layer is formed on the roughness surface.  As the flow moves 
to the roughness tail, the boundary layer is fully developed. In the region downstream of surface 
roughness, the roughness effect starts to modify the original boundary layer. A gap is formed 
immediately after the roughness where the pressure is relatively low. The gap is then filled 
rapidly by fluids surround. Thus due to the existence of surface roughness, the original 
homogenous boundary layer feathers are changed significantly as shown in fig 10 (e). At the end 
of current computational domain where 0.1950x m= , the velocity contain shows that the mean 
flow without roughness is restored.  
 
Figure 11 show velocity disturbance profile along x direction as difference between DNS 
solution and Blasius boundary layer solution. Figure 11 (a) shows that difference of streamwise 
velocity *

dU  along the symmetry line. As discussed in the last paragraph, the disturbance 
generated by roughness to the boundary layer is small before the roughness region, is amplified 
gradually in the roughness region, and is reduced to the mean Blasius solution in the region far 
downstream. This kind of disturbance behavior applies to Fig 11 (b), difference of wall-normal 
velocity too. The disturbance profile is modified significantly in the roughness region and back 
to original state in the far downstream. This implies that roughness only exert local effect to the 
boundary layer. The boundary layer instability feathers may not change in region far downstream 
of surface roughness.  
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VI. Conclusion and Future Plan 
 

A 3-D numerical test has been conducted to verify the high–order 3-D shock-fitting and cut-cell 
method. The new simulation is based on original configuration of the Mach 7.92 flows over flat-
plate. An array of 3-D roughness is placed on the surface of plate at downstream 0.185x m= . 
The simulation results show that current cut-cell method is adequate in high-order numerically 
simulating the transition in boundary layer induced by surface roughness. The computational 
results show the after the roughness element, the mean flow is modified significantly by 
disturbances generated by the 3-D roughness. But in the far downstream of roughness, the mean 
flow profile is restored. The code is being developing and will be applied to numerically simulate 
the receptivity and transient growth of 3-D boundary layer with finite surface roughness.  
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