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     Transition reversal on blunt cone hypersonic boundary layer transition refers to the 
experimental observation that the laminar-turbulent transition location moves upstream 
with increasing nose radius when it is larger than a certain critical value. It was first 
reported in Stetson’s transition experiment in 1967on a Mach 5.5 flow over blunt cones. 
Decades passed, the cause of reversal is still not well understood. In all previous linear 
stability and numerical simulation on different study cases, no bluntness-caused reversal 
was found. The objective of this paper is to perform extensive linear stability analysis on 
Stetson’s Mach 5.5 cases. Three different blunt cones with nose radii of 0.156, 0.5 and 1.5 
inch will be used to study the effect of nose bluntness on transition.  
 
 

1. INTRODUCTION 
  
 For hypersonic flows over blunt cones, the transition location moves downstream when the 
nose radius increases. This trend is, however, reversed when the nose radius is larger than certain 
critical value based on some experimental observations [1, 20]. This phenomenon is called 
transition reversal. Increasing nose radius after that will lead to a forward movement of the 
transition location. The downstream movement of the transition location at small radii can be 
explained by the reduction of local Reynolds numbers owing to the entropy layer created by the 
nose bluntness. However, there is still no satisfactory explanation for the cause of transition 
reversal at large nose bluntness. 
   
 Most of the previous theoretical and computational studies of the transition reversal have been 
on the Stetson’s stability experiments on an axisymmetric blunt cone in a Mach 7.99 flow [2, 3]. 
The half angle of the cone was 7o , the nose radii were up to 1.5 inches and larger, and the 
freestream Reynolds number based on the nose radius was 33,449. The Reynolds number based 
on the total length of the cone was about 9 millions. Detailed fluctuation spectra of the 
disturbance waves developing along the body surface were measured in the experiments. It was 
found that the disturbances in the boundary layer were dominated by the second mode instability. 
Significant super harmonic components of the second modes were observed after the second 
mode became dominant. Compared with similar hypersonic flow over a sharp cone, the second 
mode instability of the blunt cone appeared in much further downstream locations. This indicates 
a stabilization of the boundary layer by slight nose bluntness. Stability experiments of hypersonic 
flows over sharp or blunt cones have also been carried out by other researchers. Demetriades [4, 
5] had done extensive stability experiments on hypersonic boundary layers over axisymmetric 
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cones. Recently, Maslov and his colleagues [6, 7] reported their stability experiments on 
supersonic and hypersonic flows over sharp or blunt cones.  
  
 The normal-mode linear stability characteristics of the boundary-layer flow over the same 
blunt cone as Stetson et al.'s experiments have been studied by a number of researchers [8-11]. 
Malik et al. [8] computed the neutral stability curve and compared the growth rates obtained by 
LST with the experimental results. The steady base flow solution was computed by using the 
parabolized Navier-Stokes equations. They found that the nose bluntness stabilizes the boundary 
layer. The growth rates predicted by the LST were compared with Stetson et al.'s experimental 
results at the surface location of 175s  nose radii (0.667 m). The linear stability analyses 
predicted slightly lower frequency for the dominant second mode, but much higher amplification 
rates than the experimental results. Rosenboom et al. [12] did further study on the effect of nose 
bluntness on the linear stability of hypersonic flow over Stetson's blunt cone. In their studies, the 
cone geometry and freestream conditions were adapted to the Stetson's experiments. Three cases 
of blunt cones of different nose radii, which cover both ``small'' and ``large’’ bluntness, were 
considered. The purpose was to investigate, by linear stability analysis, the transition reversal 
phenomenon observed in experiments at ``large'' bluntness [13, 14]. By a linear stability analysis, 
Rosenboom et al. confirmed a monotonic downstream movement of the second mode critical 
Reynolds number as nose radius increases. However, their linear stability analysis still cannot 
explain the transition reversal phenomena observed in experiments at ``large'' bluntness.  

 
Zhong et al. [15-17] have conducted numerical simulation of the stability and receptivity of 

Stetson’s Mach 8 flow over blunt cones. In [16], the numerical results for the steady base flow 
were compared with the experimental results of Stetson et al [2], and with the numerical results 
of Esfahanian[18]. In addition, a normal-mode linear stability analysis was used to identify the 
main components of boundary-layer disturbances generated by forcing freestream fast acoustic 
waves. It was found that neither the first mode nor the second mode instability waves are excited 
directly by freestream fast acoustic waves in the early region along the cone surface, although the 
Mack modes can be unstable there. Instead, the second mode is excited downstream of the 
second-mode Branch I neutral stability point. The delay of the second-mode excitation is a result 
of the fact that the hypersonic boundary-layer receptivity is governed by a two-step resonant 
interaction process: 1) resonant interactions between the forcing waves and a stable boundary-
layer wave mode I near the leading edge region, and 2) resonant interactions between the 
induced stable mode I and the unstable second Mack mode downstream.  

 
In [17], Zhong conducted a numerical study on the effects of nose bluntness on the receptivity 

to free-stream acoustic waves for hypersonic flow by comparing the results of three nose radii. 
The flow conditions duplicated the experiments of Stetson et al. [2] and investigated the effects 
of nose bluntness on receptivity. Three nose radii were chosen to be the same as those used in 
Rosenboom et al.'s stability analysis.  They are 3.81 mm (Case A), 17.78mm (Case B), and 
42.67mm (Case C). The first nose radius belonged to category of ``small'' nose bluntness, while 
the second and third cases fell into the region of ``large'' bluntness. By using the numerical 
simulation, the initial receptivity process was computed accurately. The effects of bow shock 
interaction with forcing waves, the effects of the entropy layer and non-parallel boundary layer 
are also taken into account in the numerical simulation. A total of 15 frequencies are computed 
in the receptivity simulation for each case. It is found that, in those three test cases, the basic 
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receptivity mechanism of hypersonic flow over the blunt cone with different nose radii is 
essentially the same. Specifically, the receptivity is a result of the resonant interactions between 
forcing waves and boundary-layer wave modes near the nose region, and the resonant 
interactions between different boundary-layer wave modes downstream. As the nose radius 
increases from ``small'' to ``large'', the results in [2] showed no reversal in the location of 
instability wave induced by the receptivity process. In other words, the location of initial 
excitation of the second instability mode always moved downstream as the nose bluntness was 
increased.  
  
 Therefore, currently, the small bluntness effects of transition delay can be explained by the 
reduction of local Reynolds numbers. However, the mechanisms of transition reversal are not 
clear for the larger bluntness effects. The possible explanation for the experimental observation 
of transition reversal can be the instability of entropy layers, the surface roughness effects, wind 
tunnel noise in conventional noise tunnel, etc. So far, LST and computational studies have been 
done only on the test cases of Stetson’s Mach 8 experiments [2]. All previous calculations have 
found no instability reversal at very large nose radii. On the other hand, Stetson’s Mach 8 test 
model was not long enough to observe transition in his experiments. In other words, transition 
reversal phenomenon was not actually observed experimentally in Stetson’s Mach 8 test cases. It 
is worthwhile to study, by both numerical simulation and LST, the mechanisms of transition 
reversal on the actual experimental conditions which have showed transition reversal.   
 
 Though the delay of transition by slight nose blunting has been found by many experiments 
since 1950s, the transition reversal at large nose bluntness has only been reported by a few 
researchers. Stetson et al. [1, 19] were the first ones to report concrete results on transition 
reversal. The only other reversal results were reported by Softley [20] on a Mach 10 flow over 
blunt cones with a half angle of 5 degree.  
 
 The most extensive experimental results on transition reversal are those reported by 
Stetson especially the case of Mach 5.5 flow over sharp and blunt cones [1] and similar 
experiments by Softley [20]. Transition data obtained in these test models is re-plotted in Figure 
1(left), which shows the transitional Reynolds numbers vs. free stream Reynolds numbers based 
on nose radii. This figure is created by using Stetson's experimental results tabulated in Table 2 
of [1].  The figure shows a clear transition reversal as Ren increases, with the Ren of 52 10  as the 
dividing line between “large” and “small” nose radii. These results are very similar to the 
transition reversal results of Softley collected from the case of between freestream Mach 10 to 12 
flows over blunt cones as shown in Figure 1(right). 
 
 So far, there have not been LST and DNS studies on the Stetson’s Mach 5.5 cases and 
Softley’s cases, which are among the very few experimental test cases actually showing 
transition reversal. We have done some preliminary calculations on the Stetson’s case [21, 22]. It 
will be valuable if these experiments can be systematically re-analyzed by modern DNS and 
linear stability techniques to study the effects on transition by nose bluntness. The experimental 
results on the parametric effects on transition can be compared with the computations. Therefore, 
the objectives is to continue our previous studies to conduct the LST and DNS studies of  the 
cases of Stetson’s Mach 5.5 on the nose bluntness effects. In this paper, we present both the DNS 
and LST results of three test cases of different nose radii: 0.156, 0.5 and 1.5 in. We will simulate 
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hypersonic flows over blunt cones corresponding to the flow conditions of this set of experiment, 
where transition reversal was observed. We will use a fifth-order shock-fitting code to compute 
the Navier-Stokes equations for such flows [23]. The code has been used to study the steady and 
unsteady hypersonic flow over a 7 degree blunt cone of Stetson’s 1984 experiments [16, 17]. The 
use of high-order shock fitting schemes makes it possible to obtain highly steady and unsteady 
accurate solution of hypersonic flow over the cones with entropy layer effects. The steady mean 
flows then will be used as the base flows for the LST analysis. The unstable second mode growth 
rate will be calculated using a multi-domain spectral collocation method, which also have been 
tested in various study cases and proven to be reliable. Following that, the range of unstable 
second mode frequency can be identified for each case, which will be used as the forcing 
frequency for the unsteady numerical simulations. Also, the second mode N factor will be 
computed once the growth rates are obtained. It will be used to compare the predicted transition 
location based on LST to the transition location reported in the experiment. Lastly, through the 
LST analysis, we can take a closer look into the how the second mode is excited, which is hard 
to do using the numerical simulation. 

 
 
2. GOVERNING EQUATIONS AND NUMERICAL METHOD 

 
Steady Base Flow   
 
     The steady base flow solution is the solution of flow filed with no disturbance introduced. It 
was done by solving the full Navier-Stokes equations. The advantage of solving the full Navier-
Stokes equations is that it contain least amount of approximation such that, if implement 
correctly, it can resolve the flow field with very high accuracy. The governing equations are the 
unsteady three-dimensional Navier-Stokes equations written in the following conservative form: 

                                                                 
* ** 0

* * *
j vj

j j

F FU
t x x

 
  

  
                                                                    (1 ) 

where * * * * * * * *
1 2 3* ( , , , , )U u u u e    , and superscript “*” represents dimensional variables. The 

Cartesian coordinates are denoted by * * *
1 2 3( , , )x x x  in tensor notation. In the current simulation of 

axisymmetric flow over blunt cones, *x  is along the centerline of the cone toward the 
downstream direction. The origin of coordinate is located at the center of spherical nose. 
 
     For numerical computation, is more convenient to deal with the dimensionless quantities. The 
flow velocities are nondimensionlized by the free-stream velocity *U 

, similarly, the length, 
density, pressure, temperature and time are nondimensionlized by * * * *, , ,nr p T    and * *

nr U  , etc.  
The dimensionless variables are presented by dropping the superscript “*”. 
       A fifth-order shock-fitting method of Zhong [28] is used to compute the flow field bounded 
by the bow shock and cone surface. The flow variables behind the shock are determined by 
Rakine-Hugoniot relations across the shock and a characteristic compatibility equation behind 
the shock. Since the performance of the linear stability analysis is very sensitive to the base flow 
solution, the base flow must be very accurate in order to obtain the correct result for linear 
stability analysis.  The shock-fitting scheme had been proven accurate and reliable by comparing 
with both experimental results from Esfahanian & Herbert [12] and the experimental results of 
Stetson et al [6].  
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Linear Stability Theory 
 
     The linear stability theory (LST) is used to study the instability of hypersonic flow over blunt 
cones in this paper.  Based on the LST, the disturbances are limited to small amplitude and do 
not interact with each other unless at the synchronization point. The normal mode of 
disturbances is assumed to have the following form: 
                                                                       

( )ˆ' ( ) i t s
nq q y e                                                                             (2) 

where 'q  can be any flow variable such as velocity, temperature, density and pressure. And q̂  is 
the eigenfunction representing the complex amplitude of the disturbance. In the spatial stability 
theory, , the dimensionless frequency of a normal disturbance mode , must be a real number.  

r i     is the stream-wise wave number, which is a complex number. The imaginary part of 
wave number is the spatial growth rate of a specific disturbance mode. When i  turns negative, 
the disturbance becomes unstable. The real part of wave number r represents the spatial wave 
number. An important quantity that can be extracted from r  is the phase velocity, which is 
defined as 

                                                                    610
r r

FRa 
 

                                                                                  (3) 

In the above equation, a is the dimensionless phase velocity normalized by the free-stream 
velocity. F is dimensionless frequency such that 

                                                                      
* *

6
* 210F

U
 



                                                                                     (4) 

R is local Reynolds number based on the length scale of boundary layer thickness. And *s is the 
curvilinear coordinate along the cone surface measuring from the nose. 
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       One of the most common applications of LST analysis in predicting the laminar-turbulent is 
to calculate the N factors based on a semi-empirical method called Ne  method.  From  the theory, 
the transition will occur when the increment in amplitude of the disturbances reach certain 
critical level. The ratio of the amplitude of disturbances with fixed frequency can be calculated 
as they travel downstream. Since the growth rate is not a constant, the amplitude ratio between 
two locations can be expressed as an integral:  

 
*

*
0

*

0

1e x p
s

N

s

A d Ae d s
A A d s

                                                    (7) 

Or, just for the N factor, 
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In Eq.(8), *
0s corresponds to the location that the disturbance just becomes neutrally stable. By 

computing this integral, we know how much the amplitude for a specific disturbance changes as 
it moves downstream. On the other hand, the N factor leading to transition is determined from 
the experimental measurement. The N factor is not unique for all the cases. It does depend on the 
flow conditions, object geometry and other unknown parameters.  Even in one single case, the N 
factor differs when different unstable modes are considered. Here, the different unstable modes 
refer to the first mode and second mode introduced by Mack. In general, the N factor for first 
mode is smaller than the one for second mode. For high Mach number flow (Ma>4), the second 
mode is most unstable. Therefore, the N factor calculated in this paper is sorely for the second 
mode instability waves. 
 
 

3. TEST CASES and FLOW CONDITIONS 
 
The flow conditions for the test case studied in this paper are the same as those in Stetson’s 
experiments on air flow over a blunt cone in a Mach 5.5 freestream [1]. For the case of zero 
angle of attack, Stetson tested ten blunt cones of different nose radii ranging from 1/32 in to 1.5 
in. A range of different freestream unit Reynolds numbers were used to test these cones, from 

61.6 10 / tf to 618 10 / tf . In this paper, only three cases of different nose radii and a constant 
unit Reynolds number are used in the numerical simulation. The nose radii of the three cases are: 
 

 
Case 1: 1.5 38.1

Case 2: 0.5 12.7

Case 3: 0.15625 3.969

n

n

n

r in mm

r in mm

r in mm

 

 

 

  

The actual flow conditions used for the numerical simulation, which are identical in all three 
cases, are: 

 5.468M   
 * 7756.56P Pa  , * 174.46T K   
 Wall temperature:    296wT K  
 1.4  , Pr 0.72 , * 286.94 /R Nm kgK  
 Freestream unit Reynolds number: * 6 1Re 18.95 10 m

    
 Blunt cone half angle: 8  o , the freestream flow has a zero angle of attack 
 Parameters in Sutherland's viscosity law: * 288rT K ,  * 110.33sT K , 
                                                                          * 40.17894 10 /r kg ms    

where *p  and *T  are freestream pressure and temperature respectively. The body surface 
boundary condition is a non-slip condition for velocity and isothermal wall condition for 
temperature. In this particular study, both the steady base flow and unsteady flows are restricted 
to zero angle of attack.  
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4. SIMULATION of STEADY/UNSTEADY FLOW 

 
As mentioned in previous section, the base flows are computed using fifth-order shock-fitting 
scheme with multiple zone approach. Each zone has a grid size of 240 by 240 by 4 in x, y and z 
direction respectively. The simulations are carried up to 0.8m, 1.8m and 3.2 m along the cone 
surfaces for the case with nose radius of 0.156, 0.5 and 1.5 inch. The detail of the results had 
been discussed in Zhong’s paper [21]. In the current paper, only comparison of the contour of 
local unit Reynolds number for the three cases is showed (Figure 2) to demonstrate the nose 
bluntness effect on delay of the transition.  
 

The unsteady simulations were performed by imposing a wall blowing and suction 
perturbation at the surface of the cone. The surface blowing and suction is applied by specifying 
perturbations to the wall normal velocities in the following form, 

                               , 0 0 1
1

( , ) sin ( ) cos( )               ( )
N

n wall w n n n
n

v x t x x A t x x x   


            (9) 

In order to make comparisons with the linear stability results, the disturbance amplitude was set 
to small enough to insure the growth of instabilities was within the linear regime. For the current 
simulation, the amplitude ε is set to 510 . For the case of 1.5 inch nose radius cone, 15 
frequencies ranged from 17517.0 Hz to 262754.3 Hz were imposed. The blowing and suction 
was placed at 0.1 m away from the nose tip along the cone surface. The unsteady waves are 
generated downstream of the blowing and suction slot. Figure 3 plots the contours of the real 
part of the disturbance waves in temperature and tangential velocity. The disturbance wave 
patterns can be clearly observed on these contours. 
 
After the LST analysis was conducted, it was found that the set of frequencies for the case of 1.5 
inch cone is too low to capture the instability waves. The actual range will be presented in the 
next section. However, comparison was able to make to substantiate the LST results in the stable 
region. In Figure 4, the wave numbers versus the cone surface distance calculated by both the 
unsteady numerical simulation and LST analysis for a specific frequency of 262754 Hz are 
showed for case 1. A well agreement is established between the DNS and LST results on the 
wave numbers in this comparison. Also, the wave speeds obtained from both DNS and LST 
match up very well in Figure 5. In addition, this figure clearly indicates that the excited mode 
comes from the fast acoustic wave with a non-dimensional wave speed about 1+1/M. It will be 
showed later than this mode which is stable at the current location will become the unstable 
second mode at a higher frequency. Detail on mode analysis will be discussed in next section 
again. Here, the comparisons are to show that the LST results can be verified by the unsteady 
numerical simulation. 
 
In order to provide a more realistic disturbance environment for natural transition, another type 
of forcing was also set up for the unsteady simulation. In this unsteady simulation, the free-
stream fast acoustic waves were added in front of the shock, so the disturbances were allowed to 
interact with the shock structure. The disadvantage of this simulation is it requires a large amount 
of computational time. Some preliminary results have been obtained. However, the analysis is 
still undergoing, so the results will not be presented in the current paper. 
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5. LINEAR STABILITY RESULTS 

 
From the base flow data obtained by the shock-fitting scheme, the unstable second modes for all 
three cases with different nose radii are successfully identified. The second mode dimensional 
growth rates versus the curvilinear distance along the surface of the blunt cone are presented in 
Figure 6 for the three cases with different nose radii. Some common characteristics are observed 
in these cases.  The disturbance with higher frequency turns unstable at location closer to the 
nose tip. As the frequency of the disturbance decrease, the peak value of second mode growth 
rate become higher. Among the three cases, the location where the second mode instability wave 
first appears consistently moves toward further downstream as the nose bluntness increases. Also, 
the range of unstable mode frequency keeps shifting to the lower end as the nose becomes 
blunter. The shift of frequency range can be explained but the increase of boundary layer 
thickness by blunting the nose, which causes the wave lengths of unstable modes become larger.  
 
Figure 8 shows the wave speed and growth rate of the case with the nose radius of 0.156 inch for 
the disturbance frequency equals to 656886Hz only. In the non-dimensional growth rate plot, the 
negative value indicate unstable wave. By correlating with the wave speed figure, it is showed 
that the unstable mode is actually mode F, a discrete mode stems from the fast acoustic wave. 
The normalized fast acoustic wave have a value equals to 1+1/M, where M is the Mach number 
at the edge. Similarly, the slow acoustic wave is defined with speed of 1-1/M. In the same figure, 
the mode S is also plotted to demonstrate the phenomena called synchronization. 
Synchronization is a resonance between two normal modes of identical frequency when they 
reach the same wave speed. In this specific frequency, the synchronization occurs at about 0.42 
m.  The mode S becomes unstable Second mode is commonly seen in other studies [16], while 
this is the first case showing that the mode F becomes unstable second mode. The wave speed 
and growth rate figures for a fixed frequency share many similarities with those at a fixed 
location with various frequencies. In Figure 9, the wave speeds and growth rates versus the non-
dimensional angular frequency at a fixed location s=0.42 m are plotted.  These plots are very 
similar to the previous ones. Especially around the synchronization point, a clearly energy 
exchange is observed between mode S and mode F for both fixed-frequency and fixed-location 
plots.  
 
As the second mode growth rates are calculated, the N factors can be found by integrating the 
growth rates along the cone surface. In Figure 7, the second mode N factors for all three cases of 
different nose bluntness are presented. By comparing the current LST results to the experimental 
transition data reported by Stetson [1], discrepancies in the transition locations are found. For the 
two cases with nose radius of 12.7mm and 38.1mm, the experiment showed transitions occurred 
at 0.421m and 0.243m, while no second mode instability were found at these locations according 
to the LST analysis. Traditionally, the N factor for transition has a value between 10 and 15. If 
taking N factor equals to 10 as the transition prediction criteria, the case1 and case2 predict that 
the transitions occur at 1.9 m and 0.7 m respectively. For case1, the N factor calculations do not 
even show a substantially large growth up to 3.2 m from the nose tip.  In Table 1, some of the 
experiment and LST results are summarized.   
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Table 1 comparison of LST and experimental results 

 
Nose radius 

Free stream Re based 
on  nose radius 

Experimental transition 
location 

N factor  
Based on Transition data 

Instability onset location 
based on LST 

3.969 mm 75213 0.406 m 2.3 0.3 m 

12.7 mm 240665 0.421 m N/A 0.8 m 

38.1 mm 721995 0.243 m N/A 1.9 m 

 
Lastly, the eigenfunctions or mode shapes of mode F and mode S at location before, around and 
after the synchronization point are presented to observe the influence of mode interaction and to 
get a better understanding of the generation of second mode. In Figure 10, the eigenfunction of 
mode F in pressure, temperature and u velocity disturbance with frequency of 656886 Hz are 
plotted for the case 3. From Figure 8, it is known that the synchronization location of this 
frequency is at s=0.42m. So, the before, around and after locations of synchronization are chosen 
to be 0.3m, 0.42m and 0.6 m respectively. By comparing the shapes of eigenfunctions, it is found 
that the temperature disturbance profiles of mode F change drastically before and after 
synchronization while other two disturbances remain in similar shapes. The eigenfunctions of 
Mode S with the same frequency are showed in Figure 11. An interesting phenomenon is 
observed for the temperature perturbation of mode S, that is the peak of this mode quickly 
amplifies as the mode S moves downstream. At s=0.58 the peak reach a value above 8000, which 
make the assumption of linear perturbation no longer valid. If that is the case, the non-linear 
effect must be taking into account.  
 
    

6. CONCLUSIONS/REMARKS 
 
   The Stetson’s experiments with a free-stream Mach 5.5 conducted in 1967 are investigated 
using LST analysis and verified by unsteady numerical simulations. The ranges of second mode 
instability frequency for cones with nose radius of 0.156, 0.5 and 1.5 inch are identified. The 
growth rate and N factors are computed for each case. For the case in which the transition 
reversal was observed, the N factors based upon the second mode do not match with the 
experimental measurements. The second mode transition N factor for the case of 0.156 inch nose 
radius cone is too weak to be the dominant mechanism causing the transition. This implies that 
transition reversals are not caused by the second mode instabilities. Since the experiments were 
performed in a quiet noisy environment, there is likelihood that the reversal is cause by some 
uncontrollable noise with the amplitude large enough that the LST analysis and small 
perturbation numerical simulation are longer reliable. The Next step to unveil the secret of 
transition reversal is to conduct a numerical simulation with non-linear disturbance amplitudes.   
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Figure 1. Transition Reynolds number vs. Reynolds number based on nose radius reported by Stetson(left) replot 

fromTable2 in [1] and Softley(right) in [20] 

 
                                  

 
Figure 2. Contours of the local unit Reynolds numbers for the base flows with different nose radii 

r=0.156 in r=0.50 in 

r=1.5 in 
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Figure 3. Contours of temperature (Left) and velocity (Right) disturbances of unsteady simulation with frequency 

of 262754 Hz for the case r=1.5 in. 
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Figure 4. Comparison of wave numbers from DNS and LST with the disturbance frequency of 262754 Hz for the 

case r=1.5 in. 
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Figure 5. Comparison of wave speeds from DNS and LST with the disturbance frequency of 262754 Hz for the 

case r=1.5 in 
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Figure 6. Second mode dimensional growth rates for the three cases with different nose radii 

Case3: r=0.156 
in 

Case2: r=0.5 in 

Case1: r=1.5 in 
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Figure 7. Second mode N factors for the three cases with different nose radii 
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Figure 8. LST second mode wave speed (L) and non-dimensional growth rates (R) with the disturbance 

frequency of 656886 Hz for the case r=0.156 in 

Case1: r=1.5 in 
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Figure 9. LST second mode wave speed (L) and non-dimensional growth rates (R) at location S=0.41 m for the 

case r=0.156 in 
 

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18



T'

 

 
s=0.3 m
s=0.42 m
s=0.6 m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

p '



 

 
s=0.3 m
s=0.42 m
s=0.6 m

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18



u ' 

 

 
s=0.3 m
s=0.42 m
s=0.6 m

 
Figure 10. Eigenfunctions of temperature, pressure and u velocity of Mode F at different locations with the 

disturbance frequency of 656886 Hz for the case r=0.156 in 
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Figure 11. Eigenfunctions of temperature, pressure and u velocity of Mode S at different locations with the 

disturbance frequency of 656886 Hz for the case r=0.156 in 
 


