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Direct numerical simulations on the receptivity of hypersonic boundary layers over a

flat plate and a sharp wedge were carried out with two-dimensional periodic-in-time wall

blowing-suction introduced into the flow through a slot. The free-stream Mach numbers are

equal to 5.92 and 8 in the cases of adiabatic flat plate and sharp wedge, respectively. The

perturbation flow field was decomposed into normal modes with the help of the multimode

decomposition technique based on the spatial biorthogonal eigenfunction system. The

decomposition allows for the filtering out of the stable and unstable modes hidden behind

perturbations of another physical nature.

I. Introduction

The progress being made in computational fluid dynamics provides an opportunity for the reliable simu-
lation of such complex phenomena as laminar-turbulent transition. The dynamics of flow transition depends
on the instability of small perturbations excited by external sources. Computational results provide complete
information about the flow field that would be impossible to measure in real experiments.

Recently, a method of normal mode decomposition was developed for two- and three-dimensional per-
turbations in compressible and incompressible boundary layers.1–3 In Ref. 4, the method was applied to the
theoretical analysis of the perturbation flow field in the vicinity of the blowing-suction actuator obtained
from direct numerical simulation (DNS). The results demonstrated very good agreement between the ampli-
tudes of the modes filtered out from the DNS data and those solved by linear theory of the flow receptivity
to wall blowing-suction.

In the present work, we apply the multimode decomposition to DNS results downstream from the blowing-
suction actuator in hypersonic boundary layers past a flat plate and a sharp wedge to compare the amplitudes
of the modes found from the computations with the prediction of linear stability theory.

II. Outline of the multimode decomposition

The method of multimode decomposition of perturbations having a prescribed frequency is based on
the biorthogonal eigenfunction system for linearized Navier-Stokes equations.3 For the clarity of further
discussion, we reproduce the main definitions necessary for discussing the present work.

We consider a compressible two-dimensional boundary layer in Cartesian coordinates, where x and z are
the downstream and spanwise coordinates, respectively, and coordinate y corresponds to the distance from
the wall. We write the linearized Navier-Stokes equations for a periodic-in-time perturbation (the frequency
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is equal to zero in the case of a roughness-induced perturbation), ∼ exp (−iωt), in matrix form as

∂

∂y

(
L0

∂A

∂y

)
+ L1

∂A

∂y
= H1A + H2

∂A

∂x
+ H3

∂A

∂z
+ H4A, (1)

where vector A has 16 components

A (x, y, z) =(u, ∂u/∂y, v, π, θ, ∂θ/∂y,w, ∂w/∂y, ∂u/∂x, ∂v/∂x,

∂θ/∂x, ∂w/∂x, ∂u/∂z, ∂v/∂z, ∂θ/∂z, ∂w/∂z)T .
(2)

L0,L1,H1,H2,H3, and H4 are 16 × 16 matrices (their definitions are given in Ref. 5); u, v, w, π, and θ
represent the three velocity components, pressure, and temperature perturbations, respectively; and the
superscript T in (2) stands for the transpose. Matrix H4 originates from the nonparallel character of the
flow. It includes terms with the y-component of the mean flow velocity and derivatives of the mean flow
profiles with respect to the coordinate x.

In the quasi-parallel flow approximation, the solution of the linearized Navier-Stokes equations can be
expanded into normal modes of the discrete and continuous spectra {Aαβ ,Bαβ},

3 where Aαβ and Bαβ are
eigenfunctions of the direct and adjoint problems, respectively. Subscripts α and β indicate the eigenfunc-
tions corresponding to the streamwise, and spanwise wave numbers, respectively. The eigenfunction system
{Aαβ ,Bαβ} has an orthogonality relation given as

〈H2Aαβ ,Bα′β〉 ≡

∞∫
0

(H2Aαβ ,Bα′β)dy = ΓΔαα′ , (3)

where Γ is a normalization constant, Δαα′ is a Kronecker delta if either α or α′ belongs to the discrete
spectrum, and Δαα′ is a Dirac delta function if both α and α′ belong to the continuous spectrum.

In a weakly nonparallel flow, one can employ the method of multiple scales (MMS) by introducing fast (x)
and slow (X = εx, ε � 1) scales. The mean flow profiles depend on y and X only, whereas the perturbation
will depend on both the fast and slow length scales. In the case of a discrete mode, the solution of the
linearized Navier-Stokes equation is presented in the form

Aβ (x,X, y) =
[
Dν (X)A

(0)
ανβ (X, y) ei

R
αν(X)dx + εA

(1)
ανβ (X, y) ei

R
αν(X)dx + . . .

]
, (4)

where the function Dν (X) has to be determined. After substituting Eq. (4) into Eq. (1), we arrive in O(ε)

at an inhomogeneous equation for A
(1)
ανβ . The solvability condition of this equation allows the finding of

Dν (X) (the details and relevant references are presented in Ref. 5).

III. Direct numerical simulation approach

In direct numerical simulation, the receptivity of hypersonic boundary layers over a flat plate and a
sharp wedge to wall blowing-suction are considered by solving the two-dimensional compressible Navier-
Stokes equations. Wall blowing-suction is introduced by an actuator located near the leading edge. In the
assumption of thermally and calorically perfect flows, the governing equations in conservative variables are
given as

∂	U

∂t
+

∂

∂x
(	F1i + 	F1v) +

∂

∂y
(	F2i + 	F2v) = 0, (5)

where 	U is a column vector containing the conservative variables:

	U = {ρ, ρu, ρv, e}T . (6)

The flux vectors in (5) are divided into their inviscid and viscous components due to the fact that the two

components are discretized with different schemes. The component 	F1i and 	F2i, are inviscid flux whereas
	F1v and 	F2v are viscous flux components:

	Fji =

⎡
⎢⎢⎢⎣

ρuj

ρuuj + pΔ1j

ρvuj + pΔ2j

uj(e + p)

⎤
⎥⎥⎥⎦, (7)
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	Fjv =

⎡
⎢⎢⎢⎣

0

−τxxj

−τyxj

−τxkxj
uk − K ∂T

∂xj

⎤
⎥⎥⎥⎦, (8)

with j, k ∈ (1, 2). In Cartesian coordinates, x1 and u1 are defined in the streamwise direction (x and u)
whereas x2 and u2 are defined in the wall-normal direction (y and v).

Under the perfect gas assumption, pressure and energy are given by

p = ρRT, (9)

e = ρcvT +
ρ

2
(u2 + v2), (10)

where cv is the specific heat at constant volume. One can find details of the governing equations in Ref. 7.
In the present work, the fifth-order shock-fitting finite difference method of Zhong8 is used to solve the

governing equations in a domain bounded by the bow shock and the flat plate (or wedge). In other words,
the bow shock is treated as a boundary of the computational domain. The Rankine-Hugoniot relations
across the shock and a characteristic compatibility relation coming from downstream flow field are combined
to solve for the flow variables behind the shock. The shock-fitting method makes it possible for the Navier-
Stokes equations to be spatially discretized by high-order finite difference methods. Specifically, a fifth-order
upwind scheme is applied to discretize the inviscid flux derivatives. By using the shock-fitting method, the
interaction between the bow shock and the wall blowing-suction induced perturbations is solved as a part
of solutions with the position and velocity of the shock front considered as dependent variables. The same
numerical method was used in Refs. 10–12. Both cases correspond to the adiabatic wall boundary condition.

IV. Results

A. Flat plate

In the free-stream, the Mach number M∞ = 5.92, temperature T∞ = 48.69 K, and pressure p∞ = 742.76
Pa. The Prandtl number and the specific heat ratio are 0.72 and 1.4, respectively. The dimensionless
blowing-suction mass flux at the wall is expressed as

(ρv)
′
= εg (l) S(t), ε = 0.405 × 10−5,

g (l) =

⎧⎨
⎩20.25l5 − 35.4375l4 + 15.1875l2, (l ≤ 1) ;

−20.25 (2 − l)
5

+ 35.4375 (2 − l)
4
− 15.1875 (2 − l)

2
, (l > 1) ;

(11)

l (x) =
2 (x − xi)

(xe − xi)
, xi ≤ x ≤ xe,

where xi = 33 mm and xe = 37 mm are the coordinates of the leading and trailing edges of the slot,
respectively. The amplitude distribution, g (l), is shown in Fig. 1.

The function of time S(t) in (11) is defined as

S (t) =

⎧⎨
⎩1, mod(t, 20μs) ≤ 2μs;

0, mod(t, 20μs) > 2μs.
(12)

The function S(t) can be presented as a Fourier series.
Analyses of the mean flow velocity, temperature profiles and their derivatives have shown that they agree

well with the self-similar solution for a boundary layer over a flat plate (see Appendix A). Only the second
derivatives of the velocity and temperature profiles demonstrate some differences between the DNS results
and the self-similar solution. A comparison of eigenvalues α obtained using the self-similar and DNS profiles
is shown in Appendix B. There is a difference in αi at high frequencies. In the analysis of the flat plate data,
the self-similar profiles have been used in the stability equations. The analysis of the perturbations is limited
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Figure 1. Amplitude distribution of the
blowing-suction through the slot.

Figure 2. Discrete modes and the continu-
ous spectrum.

Figure 3. Real parts of the phase velocities
of the discrete modes F and S scaled with
the free-stream velocity U∞.
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to the DNS data corresponding to perturbations of 100 kHz only. In order to deal with the two-dimensional
perturbations within the solver of Refs. 3, 5, the spanwise wave number β scaled with the Blasius length
scale, L = (μ∞x/ρ∞U∞)1/2, was chosen to be equal to 10−5.

In order to illustrate further analysis of DNS results, features of the spectrum should be introduced.
Figure 2 shows the branches of the continuous spectrum and two discrete modes at x = 0.08 m. One of the
discrete modes is labeled mode F (fast), the other is labeled mode S (slow). The mode names stem from their
phase velocity features in the vicinity of the leading edge. One can see in Fig. 3 that mode S is synchronized
with the slow acoustic wave (cr = 1 − 1/M∞), whereas mode F is synchronized with the fast acoustic wave
(cr = 1+1/M∞). At the chosen flow parameters, mode F is always stable, and mode S is the unstable mode.
One can see that mode F is synchronized with vorticity/entropy modes having dimensionless phase velocity
cr = 1 at x ≈ 0.25 m. The significance of the decaying mode F stems from its synchronization with mode S,
where the decaying mode can give rise to the unstable mode (switching of the modes), which may lead to
the transition to turbulence.13

1. Mode S

Figure 4 shows the pressure perturbation on the wall (scaled with the free-stream pressure) obtained in the
DNS and projections on the discrete mode S. Amplification of the discrete mode evaluated with and without
the nonparallel flow effects (MMS and LST, respectively) is also presented in Fig. 4. One can see that the
nonparallel flow effect is significant in this example. The DNS data for the wall pressure perturbation have
wiggles near the actuator region due to input from the various modes present in the signal (Fig. 5). The
filtered-out amplitude of the unstable mode S is smooth, and it is in good agreement with the theoretical
prediction on the whole interval.

Figure 4. Projection of the DNS results onto
the discrete mode S.

Figure 5. Closer view of the results in Fig.
4 in the vicinity of the actuator.

2. Mode F

It is interesting to look at the filtered-out decaying mode F on Fig 6. It is in good agreement with the
theoretical prediction up to x ≈ 0.25 m. After that, it experiences a jump and the amplitude becomes
comparable with the amplitude of mode S. The result can be attributed to the next term in the expansion

(4). The second term, A
(1)
ανβ (X, y), can be expanded into an eigenfunction system. It is the standard problem

of finding eigenfunctions of a perturbed operator using the unperturbed basis. For the non-resonance case
when eigenvalues of modes F and S are distinct (αS 
= αF ), it is straightforward to find a projection of

A
(1)
αSβ (X, y) onto AαF β (X, y) (indices S and F indicate slow and fast discrete modes, respectively).
After the Fourier transform of the linearized equations (1) with respect to coordinate z and the substi-

tution of Aβ (x,X, y), one can derive the following equation for A
(1)
αSβ (X, y):

∂

∂y

(
L0

∂A
(1)
S

∂y

)
+ L1

∂A
(1)
S

∂y
− H1A

(1)
S − iαSH2A

(1)
S − iβH3A

(1)
S = Φ, (13)

Φ ≡
dDS (X)

dX
H2A

(0)
S + DS (X)H2

∂A
(0)
S

∂X
+ DS (X) H̄4A

(0)
S ,
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where H̄4 = ε−1H4. For the sake of brevity, we use subscript S to indicate the slow discrete mode having

wave number αS . One can represent the solution for A
(1)
S as an expansion into the eigenfunctions of the

undisturbed operator. In symbolic form, we write

A
(1)
S =

∑
αk �=αS

Ck (X)A
(0)
k . (14)

The symbolic form of the expansion (14) means that we include the expansion into the discrete modes and

continuous spectrum as well. Assuming that there is no resonance (αk 
= αS), one can substitute A
(1)
S from

Eq. (14) into Eq. (13). Using the dot product with the adjoint eigenvector B
(0)
F , we arrive at the coefficient

CF :

CF (X) =
DS (X)

i (αF − αS)

〈
H2

∂A
(0)
S

∂X ,B
(0)
F

〉
+

〈
H̄4A

(0)
S ,B

(0)
F

〉
〈
H2A

(0)
F ,B

(0)
F

〉 . (15)

The input of mode F into the second term of Eq. (4) has a wave number (and phase speed) corresponding
to mode S. We call this contribution of mode F “S2F centaur” in order to emphasize the twofold character
of the term. The wall pressure perturbation associated with “S2F centaur” is shown in Fig. 7. Although
the theoretical result for mode F downstream from the point of synchronism demonstrates qualitatively the
same behavior as the amplitude of the DNS projection onto mode F, there is a quantitative discrepancy that
has yet to be understood.

Figure 6. Projection of the DNS results onto
the discrete mode F.

Figure 7. Projection of the DNS results onto
the discrete mode F, and amplitude of “S2F
centaur”.

3. Velocity profiles of modes S and F

Having found the coefficients in the projection of the DNS results onto modes S and F , we can compare the
velocity profiles of the modes with the DNS result in order to evaluate their significance at different distances
from the actuator.

One can see that the main input into the velocity perturbation in the vicinity of the actuator is associated
with the decaying discrete mode F. Far downstream, the unstable discrete mode S dominates the total signal.

B. Sharp wedge

In this example, periodic-in-time wall blowing-suction is introduced into the boundary layer over a wedge
of half-angle 5.3 degrees. The free-stream Mach number M∞ = 8, temperature T∞ = 54.8 K, and pressure
p∞ = 389 Pa. The Prandtl number and the specific heat ratio are 0.72 and 1.4, respectively. The coordinates
of the leading and trailing edges of the blowing-suction slot are xi = 51.84 mm and xe = 63.84 mm,
respectively. These flow parameters and the actuator location correspond to the Case 3 considered in Ref.
4. The dimensionless wall blowing-suction mass flux at the wall is expressed as

(ρv)
′
= q0g(l)

15∑
n=1

sin(ωnt), (16)
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Figure 8. Streamwise velocity perturbation
at x = 0.219 m.

Figure 9. Streamwise velocity perturbation
at x = 0.334 m.

Figure 10. Streamwise velocity perturbation
at x = 0.659 m.

7 of 13

American Institute of Aeronautics and Astronautics



where q0 = 0.734 × 10−7 is a dimensionless amplitude parameter, scaled by the free-stream streamwise
mass flux; the function g(l) is defined in Eq. (11), and ωn is the circular frequency of multi-frequency
perturbations.

Figure 11 illustrates the pressure perturbations on the wedge at three frequencies: 44.76 kHz, 104.44
kHz, and 164.12 kHz.

Figure 11. Pressure perturbations
(pwall/p∞) on the wedge at three fre-
quencies.

In the following examples, the analysis of the flow stability is based on the velocity and temperature pro-
files obtained from the computations without an assumption about the self-similar character of the boundary
layer flow. In order to compare the projected amplitudes with those predicted using the method of multiple
scales, we need derivatives with respect to x of the streamwise velocity and temperature profile of the mean
flow. These derivatives were derived using the computational profiles together with the assumption that the
profiles are locally self-similar.

Figure 12 shows the imaginary part of the wave number α scaled with L = (μ∞x/ρ∞U∞)1/2 obtained
using the quasi-parallel approximation (LST) and using the method of multiple scales (MMS) for pertur-
bations of frequency f = 44.6 kHz. Figure 13 shows wall pressure perturbations in DNS results and in
their projection onto mode S together with the theoretical prediction made when nonparallel flow effects are
included. Figures 14 and 15 show similar results corresponding to the frequency f = 104.44 kHz. Figures
16 and 17 demonstrate the results at frequency f = 164.12 kHz.

Figure 12. Im(αi) versus x at frequency f =
44.76 kHz.

Figure 13. Projection of the DNS results
onto the discrete mode S and comparison
with the theoretical predictions using the
method of multiple scales (MMS); f = 44.76
kHz.
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Figure 14. Im(αi) versus x at frequency f =
104.44 kHz.

Figure 15. Projection of the DNS results
onto the discrete mode S and comparison
with the theoretical prediction using the
method of multiple scales (MMS); f = 104.44
kHz.

Figure 16. Im(αi) versus x at frequency f =
164.12 kHz.

Figure 17. Projection of the DNS results
onto the discrete mode S and comparison
with the theoretical prediction using the
method of multiple scales (MMS); f = 164.12
kHz.
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V. Discussion of the results

The presented results illustrate how the multimode decomposition technique may serve as a tool for
gaining insight into the flow dynamics in the presence of perturbations belonging to different modes. In the
past, one could compare DNS results with theoretical prediction for unstable mode only far downstream
from an actuator where the unstable mode dominates the total signal. Using the biorthogonal eigenfunction
system, one can compare DNS results with theoretical predictions for unstable and stable modes in the
vicinity of the actuator as well.

In Ref. 4 and in the present work, we have found that the multimode decomposition requires more
elaborate analysis within the point of synchronism of mode F with the continuous spectra. Therefore, an
extension of the theoretical model of Ref. 13 to the case of continuous spectrum is required.
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A. Comparison of DNS mean velocity and temperature profiles with the

self-similar solution

Figure 18. Self-similar solution (solid line)
and DNS results (symbols) for the mean ve-
locity profile U(y).

Figure 19. Derivative dU/dy: solid line - self-
similar solution, symbols - DNS.

Figure 20. Derivative d2U/dy2: solid line -
self-similar solution, symbols - DNS.

Figure 21. Mean temperature profile T (y):
solid line - self-similar solution, symbols -
DNS.
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Figure 22. Derivative dT/dy: solid line - self-
similar solution, symbols - DNS.

Figure 23. Derivative d2T/dy2: solid line -
self-similar solution, symbols - DNS.

B. Comparison of eigenvalues α = αr + iαi obtained using DNS and self-similar

profiles.

Figure 24. Comparison of αr obtained using
DNS and self-similar velocity and tempera-
ture profiles. Solid line - self-similar profiles;
symbols - DNS profiles.

Figure 25. Comparison of αi obtained using
DNS and self-similar velocity and tempera-
ture profiles. Solid line - self-similar profiles;
symbols - DNS profiles.
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