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Results are presented for direct numerical simulations of hypersonic flow over an iso-

lated roughness element located on a flat plate. The simulations were performed on a

Cartesian grid with the roughness geometry imposed by a third-order cut-cell method.

The simulations also utilize a fifth-order WENO scheme to capture any steep gradients

in the flow created by the roughness. The combination results in a globally fourth-order

scheme. Two-dimensional and three-dimensional test cases show very good agreement with

results obtained from a body-fitted grid simulation. Preliminary results for Mach 6 flow

over a k/δ = 0.75 cylindrical roughness are reported. In addition, results from a series of

simulations of Mach 6 flow over a three-dimensional Gaussian roughness performed with a

body-fitted grid are presented.

I. Introduction

The ability to accurately predict the location of laminar to turbulent transition in boundary layers is of
great importance to the design of hypersonic vehicles. At high Mach numbers, the viscous effects in

the boundary layer can cause extreme surface temperatures as kinetic energy is transfer to thermal energy.
When the flow transitions from laminar to turbulent, this heating is further increased by turbulent mixing
near the wall. In addition to the thermal effects, turbulent flow also generates larger shear stresses which
increase the friction drag on the surface. Without the knowledge of the transition location, designers of
hypersonic vehicles must be overly cautious with their designs. Thermal protection and propulsion systems
must assume turbulent flow over the entire body.1 In spite of its importance, the mechanisms leading to the
transition of hypersonic boundary layers are still poorly understood.2 Predicting the location of transition
is further complicated by the presence of surface roughness.

The effects of roughness elements have been documented for sometime experimentally. Schneider2 has
recently written a review of experiments studying the effect of roughness on hypersonic boundary-layer
transition. Roughness elements generally cause the location of transition to move forward compared to flow
without a roughness element. It is possible to have a small enough roughness element such that there is no
effect on the transition location. Such a roughness is said to be below its critical height. Only a roughness
element above this critical height will cause a change in the transition location. As the roughness height is
increased past this critical height, the location of transition will continue to move closer to the roughness
element. Eventually transition will occur at its closest location behind the roughness. This location may still
be a finite distance downstream of the roughness. Further increases of the roughness height will no longer
cause the transition location to move forward. The height at which this occurs is called the effective height.
Although a great deal of research has been done to study the effects of roughness on hypersonic transition,
most of the data was for correlations to be used in the design of hypersonic vehicles. Very little is actually
known about the exact physics behind hypersonic boundary-layer transition with roughness elements.

In the recent past, a great deal of work went into exploring transient growth as an important role in
roughness-induced transition. Tumin and Reshotko3 presented a spatial theory for transient growth in
boundary-layer flow. They showed that the most significant transient growth is associated with steady
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streamwise vortices. Roughness elements generate a horse-shoe vortex and a pair of vortices in their wake.
This is exactly the kind of disturbance that Tumin and Reshotko showed would lead to optimal transient
growth. White et al.4,5, 6 have performed a series of experiments involving subsonic flow over an array of
cylindrical roughness elements and have identified transient growth in the wake of the array. Fischer and
Choudhari7 and Choudhari and Fischer8 performed numerical simulations of White’s experiments. They
also confirmed the presence of transient growth. Reshotko and Tumin9 used their spatial transient growth
theory to produce a model for roughness-induced transition. Their model reproduced the trends of Reda
and the passive nosetip technology (PANT) data.10,11

Recent work has shifted to the possible existence of an absolute instability being generated by the
roughness. For taller roughness elements in subsonic flow, the wake region is dominated by unsteady hairpin
vortices.12 Ergin and White13 conducted experiments of unsteady low-speed flow over isolated roughness
elements. They found the locations of maximum fluctuation intensity to correspond to locations of inflection
points in the streamwise velocity. This suggests that the unsteadiness seen in subsonic flow may have been
caused by a Kelvin-Helmholtz type instability. The unsteady vortex shedding seen in subsonic flow is not
present is supersonic flow.14 This difference may be due to the stabilizing effect of high Mach numbers
on shear layers.15 Although the unsteadiness is no longer present, a similar instability may still remain.
Danehy et al.16 visualized Mach 4.2 flow over an isolated 2 mm radius hemispherical roughness element using
Nitric oxide planar laser-induced fluorescence (PLIF). They showed that breakdown to turbulence begins in
the downstream legs of the horse-shoe vortex that forms upstream of the roughness. Chang et al.17 have
recently performed numerical simulations that support these results. They found strong unsteadiness in Mach
4.16 flow over isolated cylindrical roughness elements with heights of 1.3 and 2.5 times the boundary-layer
thickness with the unsteadiness first visible in the legs of the horse-shoe vortices. Spectral analysis and the
computed evolution of disturbance root mean square amplitude suggest that the source for the unsteadiness
is a possible absolute instability located in the separation region formed upstream of the roughness element.
Bartkowicz et al.18 have numerical simulated flow inside the Boeing/AFOSR Mach 6 quiet wind tunnel at
Purdue University with a cylindrical roughness element and reproduced an instability which was measured
experimentally.19 They suggest that the instability is created by a high momentum jet created near the top
of the roughness which flows down into the vortex system located near the wall.

The objective of the current paper is to study the physical mechanisms behind transition in hypersonic
boundary layers due to isolated surface roughness. This will be accomplished by numerically simulating flow
conditions similar to those of recent roughness experiments in the Boeing/AFOSR Mach 6 quiet wind tunnel
at Purdue University.19,20 The compressible Navier-Stokes equations are solved on a Cartesian grid using
a fifth-order WENO scheme combined with a third-order cut-cell method to model the roughness. Two-
dimensional and three-dimensional test cases for the cut-cell method will be presented. The two-dimensional
results will be compared to results computed using a body-fitted grid and a continuous forcing immersed
boundary method. Mach 6 flow over a three-dimensional Gaussian roughness computed with a body-fitted
grid will also be presented. In addition, preliminary results of Mach 6 flow over a cylindrical roughness
computed with the cut-cell method are reported.

II. Problem Statement

The geometry of interest is the Boeing/AFOSR Mach 6 quiet wind tunnel at Purdue University. The
wind tunnel is a Ludwieg tube capable of generating quiet Mach 6 flow and is maintained by Professor
Steven Schneider.21 Wheaton and Schneider19 have recently measured a 21 kHz instability in Pitot probe
and hot-wire measurements for Mach 6 flow over a cylindrical roughness element with a height of 10.2 mm
and a diameter of 5.97 mm. The undisturbed boundary layer had a thickness of approximately 9.23 mm.
Ward et al.20 measured the same instability with flush-mounted pressure transducers on the nozzle wall.
The goal of the current study to reproduce these results and to investigate the source of the instability.

Initial numerical simulations were performed with a body-fitted grid and a Gaussian roughness. Due
to difficulties in generating smooth grids with the roughness in the wind tunnel, the tunnel geometry was
modeled as a flat plate. Although the geometry has changed, the same flow conditions as the Purdue
wind tunnel have been used. Numerical simulation using a Gaussian roughness have been completed and
simulations with a cylindrical roughness are currently underway.
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III. Methodology

The governing equations in Cartesian coordinates, (x1, x2, x3) = (x, y, z), are the three-dimensional
unsteady compressible Navier-Stokes equations for a calorically perfect gas with density ρ, pressure p, tem-
perature T , and velocity (u1, u2, u3) = (u, v, w):

∂Û

∂t
+

∂F̂j

∂xj
=

∂F̂v,j

∂xj
, j = 1, 2, 3 (1)

where Û is the vector of conservative variables, [ρ, ρu, ρv, ρw,E]T . F̂j and F̂v,j are the vectors of the inviscid
and viscous fluxes, respectively, in the j th direction and are given as
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The total energy per unit mass E, the viscous stress tensor τij , and the heat flux vector qj are defined as

E =
p

γ − 1
+

1

2
ρuiui, (3)

τij = µ

(

∂ui

∂xj
+

∂uj

∂xi
−

2

3
δij

∂uk

∂xk

)

, (4)

qj = −k
∂T

∂xj
, (5)

where µ is the fluid viscosity and k is the thermal conductivity. The system of equations is closed by the
equation of state. Since the gas is calorically perfect, the equation of state is

p = ρRT. (6)

The gas is assumed to be air so the gas constant, R, has a value of 287.04 m2/s2 K, the ratio of the
specific heats, γ, is 1.4 and the Prandtl number, Pr, is 0.72. The viscosity is computed using Sutherland’s
law in the form

µ = µr

(

T

Tr

)1.5
Tr + Ts

T + Ts
(7)

where µr = 1.7894 × 10−5 (N s)/m2, Ts = 110.33 K, and Tr = 288 K. All variables are left in dimensional
form.

The flow fields are obtained through direct numerical simulation of the governing equations. Before
solving, the governing equations are transformed from the physical (x, y, z) space to a (ξ, η, ζ) = (ξ1, ξ2, ξ3)
computational space. The grid in the computational space is uniformly spaced with ξ, η, and ζ with each
varying from 0 to 1. After the transformation, the governing equations become

∂U

∂t
+

∂Fj

∂ξj
=

∂Fv,j

∂ξj
, j = 1, 2, 3 (8)

where U is a vector of the conservative variables, [ρ, ρu, ρv, ρw,E]T /J . J is the determinate of the the
Jacobian matrix:

J =

∣
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∣

∣
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∣

∣

∣

∣

(9)

Fj and Fv,j are the vectors of the inviscid and viscous fluxes, respectively, in the j th direction of the
computational space and are given as

Fj =
1
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where ξjk ≡ ∂ξj

∂xk
are the metrics and Uj is given by

Uj = uk ξ
j
k. (11)

The shear stresses and heat fluxes in curvilinear coordinates are

τij = µ

(

ξkj
∂ui

∂ξk
+ ξki

∂uj

∂ξk
−

2

3
δij ξ

n
k

∂uk

∂ξn

)

, (12)

qj = −k ξkj
∂T

∂ξk
. (13)

The inviscid terms in the governing equation are split using local Lax-Friedrichs flux splitting for up-
winding.

Fj = F+
j + F−

j (14)

where F±
j is

F±
j = 1

2 (Fj ± λjU) (15)

and λj is

λj =

√

(uk ξ
j
k)

2 + ǫ2c2
(

(ξj1)
2 + (ξj2)

2 + (ξj3)
2
)

+ c

√

(ξj1)
2 + (ξj2)

2 + (ξj3)
2 (16)

where c is the speed of sound and ǫ is 0.1.
The inviscid terms are computed using the fifth-order finite-difference WENO scheme of Jiang and Shu22

but with some modifications. Jiang and Shu transform the fluxes into characteristic space before applying
WENO. In this work, WENO is apply directly to the fluxes without the transformation. In addition, the
weights used for all the fluxes are computed from the fluid density only. A third-order TVD22 scheme was
used for time advancement and the viscous terms were computed using sixth-order central finite differencing.

The geometry of the roughness was imposed with three different methods in this work. The first was
with body-fitted grids. This is only possible when the roughness has a smooth geometry such as a Gaussian.
The body-fitted results are mostly used to validate and evaluate the other methods. The second and third
methods were the cut-cell method and continuous forcing immersed boundary method.

III.A. Cut-Cell Method

The cut-cell method used in this work comes from Duan et al.23 Duan et al. developed a globally fourth-
order method for simulating flows with non-body-conforming geometries. The method allows numerical
simulations of flow over isolated roughness elements to be performed on simple Cartesian grids. The main
idea behind the cut-cell method of Duan et al. is to switch to a non-uniform one-sided finite-difference stencil
whenever the normally used stencil will cross the immersed boundary. A summary of the method will be
presented here with the differences between the current implementation and the original implementation of
Duan et al. pointed out.

III.A.1. Point Classification

The cut-cell method begins by classifying all the grid points as either a regular point, an irregular point,
a dropped point, or a boundary point. Figure 1 shows the classification for a sample ξ grid line. The
immersed boundary intersects the grid line at the point ξ1. The solid is assumed to be to the left of ξ1 and
the fluid to the right. The point ξ1 is classified as a boundary point. Boundary points are created anywhere
the immersed surface crosses a grid line. Boundary points are not part of the original Cartesian grid. All
the points to the left of ξ1 are classified as dropped points. Dropped points are usually points within the
immersed surface and should not be used in any of the calculations. The first point to the right of ξ1 is
classified as dropped in the ξ direction only. Although this point is in the fluid, the point is treated as a
dropped point while performing computations in the ξ direction. The point was dropped because it was
too close to the boundary point and its inclusion would severally limit the timestep size. The criteria for
determining when a point is too close is based on a specified parameter Θ and will be explained later. ξ2,
ξ3, and ξ4 are all classified as irregular points. Irregular points are any points whose finite-difference stencil
would normally include a dropped point. The points ξ5 to ξ8 are regular points. Regular points are any
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σ∆ξ ∆ξ

ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8ξ1
ξ

Figure 1. Point classification for ξ grid line with Θ ≈ 1/3. Immersed boundary ; Regular point ; Irregular point ;

Boundary point ; Dropped point ; Dropped point in ξ direction only .

ξ

η

(a) Point classification for ξ direction

ξ

η

(b) Point classification for η direction

Figure 2. Point classification for two-dimensional computational space for Θ ≈ 1/3. Immersed boundary ; Regular

point ; Irregular point ; Boundary point ; Dropped point in both directions ; Dropped point in specified direction

only .

points whose finite-difference stencil does not include any dropped points. When applying the method to
two-dimensional and three-dimensional problems, a grid point may have a different classification in each of
the computational directions. Figure 2 shows the point classification for a sample two-dimensional domain.
The treatment for regular, irregular, boundary, and dropped points will be covered one at time.

III.A.2. Dropped Points

There are two different types of dropped points. The first type is when a point is dropped in all directions
of the computational domain. Is this case, the point is never used in the calculations and therefore no special
treatment is needed. All the points inside the immersed surface are of this type. The second type is when
a point is dropped in at least one computational direction but not all of them. If the distance from a grid
point to a boundary point along a grid line divided by the point spacing for that grid line is less than the
specified value Θ, then the grid point is dropped in the direction of that grid line. For the fourth-order
cut-cell method, Duan et al. recommend a value of 1.0 for Θ for all directions of the computational domain.
In this work, separate Θ’s were used in each of the directions. A value of 0.25 was used in the both ξ and
ζ directions and a value of 0.75 was used in the η direction. In all the simulations performed here, the ξ, η,
and ζ directions correspond to the streamwise, wall normal, and spanwise directions, respectively.

For the second type of dropped point, the point will not be used in stencils in the dropped direction(s) but
can be used in the remaining direction(s). Due to this, the values at these points must be computed but they
cannot be advanced in time like points which are regular or irregular in all the directions of the domain. Duan
et al. interpolated the conservative flow variables at these points using a fourth-order interpolation along
the grid line in one of the dropped direction. The interpolation stencil always includes the boundary point
adjacent to the dropped point. In this work, the conservative flow variables at these points are computed
using a second-order least-squares polynomial in x, y, and z of the form

U(x, y, z) = c1 + c2∆x+ c3∆y + c4∆z + c5∆x∆y + c6∆x∆z + c7∆y∆z + c8∆x2 + c9∆y2 + c10∆z2 (17)

where
∆x = x− xd, ∆y = y − yd, ∆z = z − zd, (18)
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a+i,1 a+i,2 a+i,3 a+i,4 a+i,5

i = 1 3
2σ(σ+1)(σ+2)

22σ−9
12σ

2−7σ
6(σ+1)

4σ−1
12(σ+2) 0

i = 2 −1
2σ(σ+1)(σ+2)

4σ+3
12σ

5σ+2
6(σ+1)

−(2σ+1)
12(σ+2) 0

i = 3 1
2σ(σ+1)(σ+2)

−(2σ+3)
12σ

5σ+8
6(σ+1)

4σ+5
12(σ+2) 0

a−i,1 a−i,2 a−i,3 a−i,4 a−i,5

i = 1 0 25
12 − 23

12
13
12 − 3

12

i = 2 0 3
12

13
12 − 5

12
1
12

Table 1. One-sided non-uniform interpolation constants for inviscid terms at irregular points.

and xd, yd, and zd are the x, y, and z values of the dropped point. The constants are computed from the
35 closest points by index to the dropped point. The 35 points can include regular, irregular, and boundary
points. Other dropped points cannot be included in the 35 points. Including them in the interpolation will
cause the flow variables at one dropped point to be related to the flow variables at all the other dropped
points resulting in a large implicit system. By not including the other dropped points, the flow variables at
each point may be computed individually.

In addition to computing the flow variables at points dropped in one or more directions, the shear stresses
and heat fluxes must also be computed at these points. Duan et al. do not mention how they compute the
shear stress and heat fluxes at these points. In this work, they are computed using a least-squares polynomial
and the same 35 grid points as the conservative flow variables.

III.A.3. Regular Points

Regular points are grid points whose finite-difference stencil does not contain any dropped points. This
allows the regular finite-difference stencils to used and hence does not require any special attention. In the
original implementation by Duan et al., the fifth-order upwind scheme of Zhong24 was used at regular points.
In the current work, a fifth-order finite-difference WENO scheme is used at these points.

III.A.4. Irregular Points

Irregular points are any points whose normal finite-difference stencil includes dropped points. Since
dropped points should not be used in the calculations, the finite-difference stencil for irregular points must
be changed. For the irregular points ξ2, ξ3, and ξ4 from Figure 1, Duan et al. change the stencil for the
inviscid terms to a third-order or fourth-order one-sided non-uniform upwind finite-difference stencil. The
stencils can include the boundary point at ξ1. The inclusion of the boundary point is what makes the stencil
non-uniform since the spacing between the boundary point and ξ2 is σ∆ξ instead of just ∆ξ. In this work,
the derivatives are first cast in conservative form and then the fluxes are interpolated using a non-uniform
stencil. The derivative of the inviscid flux in the ξ direction with respect to ξ is computed as

∂Fξ

∂ξ
(ξi) =

F+
ξ (ξi+1/2)− F+

ξ (ξi−1/2)

∆ξ
+

F−
ξ (ξi+1/2)− F−

ξ (ξi−1/2)

∆ξ
. (19)

The fluxes at the half grid points are computed as

F±
ξ (ξi+1/2) =

5
∑

j=1

a±i,j F
±
ξ (ξj) (20)

where the constants are given in Table 1. The fluxes at ξ1+1/2 are not computed at the half way point

between ξ1 and ξ2. They are instead evaluated at ξ2 − ∆ξ/2. The fluxes F+
ξ (ξ4+1/2), F−

ξ (ξ4+1/2), and

F−
ξ (ξ3+1/2) are computed using WENO since there are sufficient uniform points to form the WENO stencil.
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ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7

i = 1 −2(2σ+3)(σ2+3σ+1)
σ(σ+1)(σ+2)(σ+3)

(σ+1)(σ+2)(σ+3)
6σ

−σ(σ+2)(σ+3)
2(σ+1)

σ(σ+1)(σ+3)
2(σ+2)

−σ(σ+1)(σ+2)
6(σ+3) 0 0

i = 2 −6
σ(σ+1)(σ+2)(σ+3)

6−11σ
6σ

3σ
(σ+1)

−3σ
2(σ+2)

σ
3(σ+3) 0 0

i = 3 2
σ(σ+1)(σ+2)(σ+3)

−2(σ+1)
6σ

1−σ
2(σ+1)

σ+1
(σ+2)

−(σ+1)
6(σ+3) 0 0

Table 2. One-sided non-uniform finite-difference constants for viscous terms at irregular and boundary points.

a4,j

j = 1 −12
σ(σ+1)(σ+2)(σ+3)(σ+4)(σ+5)

j = 2 σ+2
20σ

j = 3 −(σ+2)
2(σ+1)

j = 4 1−σ
3(σ+2)

j = 5 σ+2
(σ+3)

j = 6 −(σ+2)
4(σ+4)

j = 7 σ+2
30(σ+5)

Table 3. Central non-uniform finite-difference constants for viscous terms at irregular points.

To compute the viscous terms, Duan et al. use a fourth-order one-sided non-uniform finite-difference
stencil at ξ2 and ξ3 and a fifth-order one-sided non-uniform finite-difference stencil at ξ4. In this work, the
same stencil is used for ξ2 and ξ3 but a sixth-order central non-uniform finite-difference stencil is used at
point ξ4. This was done to be consistent with the scheme used at the regular points. The derivative of the
viscous flux in the ξ direction with respect to ξ at all three points can be expressed as

∂Fv,ξ

∂ξ
(ξi) =

1

∆ξ

7
∑

j=1

ai,j Fv,ξ(ξj) (21)

where the constants are given in Tables 2 and 3. Table 2 also includes the constants for computing the
derivative at the boundary point ξ1. These values will be used in the next section.

III.A.5. Boundary Points

Boundary points are created anywhere a grid line crosses the immersed surface. The boundary conditions
for the flow will be imposed at the boundary points. Since the immersed surface is always treated as a wall
in this work and the flow is viscous, the no-slip boundary condition are imposed there. The temperature at
the wall will depend on the temperature boundary condition for the problem and will be either isothermal
or adiabatic in this work. The pressure at the boundary points will be extrapolated from the flow.

In Duan et al., a fourth-order extrapolation in the direction of the grid line which created the boundary
point is used to compute the wall pressure. For adiabatic walls, only the temperature gradient in the
direction of the grid line which created the boundary point is set to zero. In the current work, it was
found that for two-dimensional simulations this method works for shorter roughness elements but can cause
numerical instabilities for taller roughness elements. For the two-dimensional simulations presented here,
the pressure at boundary points was extrapolated in the wall normal direction and adiabatic walls had the
temperature gradient in the wall normal direction set to zero. For three-dimensional simulations, the wall
normal extrapolation did not work either. A least-squares polynomial was used instead.

The pressure at boundary points is computed using a second-order least-squares polynomial in x, y, and

7 of 32

American Institute of Aeronautics and Astronautics



ξ

η

Figure 3. Points used to compute derivative in η direction for ξ boundary point. Point classification for the ξ direction

with Θ ≈ 1/3 shown. Immersed boundary ; Regular point ; Irregular point ; Boundary point ; Dropped

point in both directions ; Dropped point in ξ direction only ; Boundary point where derivative is being computed ;

Interpolated point for finite-difference stencil ; Stencil used to interpolate points for finite-difference stencil ;

Finite-difference stencil used to compute derivative .

z of the form

p(x, y, z) = c1 + c2∆x+ c3∆y + c4∆z + c5∆x∆y + c6∆x∆z + c7∆y∆z + c8∆x2 + c9∆y2 + c10∆z2 (22)

where
∆x = x− xb, ∆y = y − yb, ∆z = z − zb, (23)

and xb, yb, and zb are the x, y, and z values of the boundary point. The constants are computed using 25
regular or irregular points near the boundary point. The first three points along the grid line which created
the boundary point should be included in the set of 25 points. Including these points reduces the likelihood
of obtaining a singular matrix when computing the constants. The remaining 22 points are simply the
closest points by index to the boundary point. Other boundary points cannot be included. Including them
would result in a large implicit system. In addition, points dropped in any direction cannot be included.
The least-squares polynomial used for points dropped in one or two directions includes boundary points and
therefore must be updated after the boundary points.

A similar method is used to enforce the adiabatic boundary condition. A second-order polynomial for the
temperature is created using the same 25 points. The polynomial is evaluated at four evenly space points
in the wall normal direction. These values are then used along with a uniform fourth-order finite-difference
stencil to enforce a zero temperature gradient at the wall.

In addition to imposing the boundary conditions on the flow variables, the shear stresses must be com-
puted at the boundary points. To compute the shear stresses, derivatives are required in all the directions of
the computational domain. To compute the require derivatives in the direction of the grid line which created
the boundary point, Duan et al. use a fourth-order non-uniform finite-difference stencil. The same stencil
is used in this work and is evaluated using Equation 21 with the constants coming from Table 2. However,
Duan et al. do not explain how they compute the derivatives in the other directions of the computational
domain. In this work, these derivatives are computed using a combination of interpolation and a uniform
one-sided finite-difference stencil. Figure 3 shows how the derivative in η direction is computed for a bound-
ary point defined by a ξ grid line in a two-dimensional domain. Four points above the boundary point are
first compute by interpolating values in the ξ direction. The interpolation stencils should not include any
points dropped in the direction of the grid line on which the boundary point lies (e.g. the ξ grid line in
Figure 3). The interpolation stencil may include boundary points. These interpolated values are then used
in a uniform one-side finite-difference stencil to compute the derivative.
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III.B. Continuous Forcing IBM

In this work, the same continuous forcing immersed boundary method used by Marxen and Iaccarino25

was implemented. The continuous forcing immersed boundary method mimics the immersed surface through
a forcing term added to the right hand side of the governing equations. For two-dimensional simulations,
the forcing term takes the form

B =











0

Bx

By

0











(24)

where Bx and By enforce u = 0 and v = 0 on the immersed surface, respectively. Only the equations for Bx

will be covered here. The expressions for By can be found by changing u to v in the following equations.
The forcing term Bx is a line integral of the product of a time-dependent body force, bx, and an approx-

imation to the delta function, d, along the immersed surface S,

Bx = ρ

∮

S

bx (xs) d (x− xs) dS. (25)

x is the location where the force is being computed and xs is a location on the immersed surface. The line
integral is evaluated using the trapezoidal rule. The approximation to the delta function is

d (x− xs) = exp

{

−
(x− xs)

2

σx
−

(y − ys)
2

σy

}

. (26)

The body force is given by

bx = α

∫ t

0

u (xs, t
′) dt′ + βu (xs, t) (27)

where u (xs, t) is the u velocity component evaluated at xs. Since the velocity is not solved for on the
immersed surface, bilinear interpolation using the four neighboring grid points is used to compute u (xs, t).
The integral in the equation for bx is computed as a Riemann sum.

III.C. Grid Generation and Boundary Conditions

In the current simulations, the roughness experiments in the Purdue wind tunnel are modeled as an
isolated roughness located on a flat plate. This was done to simplify the grid generation process. Most of
the grids that were used in this work were generated algebraically. The only exception is the tallest of the
three-dimensional Gaussian roughnesses for the body-fitted grid and will be covered in section V.B. In all
the simulations, the x axis is aligned with the flow direction and the y axis with the wall normal direction.
In the three-dimensional simulations, the z axis is in the spanwise direction. The two-dimensional grids
are clustered around the roughness element in the x direction and near the wall in the y direction. The
same is true for the three-dimensional grids but they are also cluster around the roughness element in the
z direction. For the three-dimensional simulations with hyperbolic tangent and Gaussian roughnesses, the
grid is generated by the following equations:

x = (xc − xin)

(

1 +
sinh(a1)

sinh(a2)

)

+ xin (28)

y = (H − h(x, z))
sinh(Sηη)

sinh(Sη)
+ h(x, z) (29)

z =



















W
sinh(Sζζ)

sinh(Sζ)
when simulating half domain in z

W
sinh(Sζ(2k/KL− 1))

sinh(Sζ)
, k = 1, . . . ,KL when simulating full domain in z

(30)
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where KL is the number of points in the ζ direction and

a1 = Sξξ −
1
2 log

(

b+
b−

)

,

a2 = 1
2 log

(

b+
b−

)

, (31)

b± = 1 + (exp(±Sξ)− 1)
xc − xin

xout − xin
.

xin and xout are the x locations of the domain inlet and outlet, respectively. xc is the center of the clustering
in the x direction. H is the domain height and W is the domain half width. For the body-fitted grids,
h(x, z) is the function governing the roughness geometry. For the cut-cell method and the continuous forcing
immersed boundary method, h(x, z) is simply zero. Sξ, Sη, and Sζ control the amount of clustering in the
x, y and z directions, respectively. The same equations are used to generate the two-dimensional grids but
z is set to zero and the function governing the roughness geometry is only a function of x.

When simulating cylindrical roughness elements, a different point distribution is used in the y direction.
The distribution has the form

y = H
[

ysinhη
P + ylin

(

1− ηP
)]

(32)

where

ylin = Lη,

ysinh = yc

(

1 +
sinh(c1)

sinh(c1)

)

,

c1 = Sηη − 1
2 log

(

d+
d−

)

, (33)

c2 = 1
2 log

(

d+
d−

)

,

d± = 1 + (exp(±Sη)− 1)
yc
H

.

Equation 32 produces a uniform distribution near the wall and a hyperbolic sine distribution away from the
wall. P controls the extent of the linear region while L controls the clustering in this region. yc is the center
of the clustering in the y direction for the hyperbolic sine region.

The leading edge of the flat plate is not included in any of the simulations. Instead, a compressible
similarity solution is imposed at the inlet of the numerical domain and held fixed with time. The outlet
of the domain is a supersonic outlet so the conservative variables are extrapolated from the interior of the
domain. At the top of the domain, a sponge layer26 is used to prevent the shock and expansion fan created
by the roughness from reflecting back into the domain. The bottom edge of the domain is a no-slip wall with
the pressure being extrapolated from the domain interior. The temperature on the wall is either adiabatic
or isothermal and depends on the problem. For the three-dimensional case, symmetry boundary conditions
used at both edges on the domain in the z direction.

IV. Two-Dimensional Results

IV.A. Hyperbolic Tangent Roughness

The first two-dimensional simulation comes from Marxen and Iaccarino.25 Marxen and Iaccarino simu-
lated Mach 4.8 boundary-layer flow over an isolated roughness constructed from hyperbolic tangent curves
located on a flat plate. The roughness height to undisturbed boundary-layer thickness ratio (k/δ) is 0.547.
The origin of the coordinate system is located at the leading edge of the flat plate but the leading edge was
not included in the simulations. The freestream conditions for the flow are summarized in Table 4 where
Re∞ = ρ∞u∞Lref/µ∞. The equation for the roughness geometry can be found in Marxen and Iaccarino.
The results were computed with a body-fitted grid, the cut-cell method, and the continuous forcing immersed
boundary method. The purpose of this simulation was to evaluate and compare the cut-cell method and
the continuous forcing immersed boundary method since only one method would be used for the remaining
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Freestream Mach number M∞ 4.8

Freestream velocity u∞ 720 m/s

Freestream pressure p∞ 239.426 Pa

Freestream temperature T∞ 55.4 K

Freestream density ρ∞ 1.51×10−2 kg/m3

Freestream Reynolds number Re∞ 105

Reference length Lref 3.365×10−2 m

Roughness height k 0.1Lref

Ratio of roughness height to boundary-layer thickness k/δ 0.547

Table 4. Flow conditions for hyperbolic tangent simulations

α β σx σy

−105
c2
∞

L3

ref

−5× 105 c∞
L2

ref

3.2× 10−4 Lref 5× 10−4 Lref

Table 5. Constants for continuous forcing immersed boundary method
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(a) Body-fitted grid
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(b) Cartesian grid used for cut-cell method. Roughness element shown in black.

Figure 4. Grid in vicinity of the two-dimensional hyperbolic tangent roughness element. Both grids use 800 points in

the x direction and 400 points in the y direction. Every fourth point in both directions shown.
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(a) Pressure contour. Non-dimensionalized as p/p∞. 18 levels from 0.45 to 1.3.
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(b) Density contour. Non-dimensionalized as ρ/ρ∞. 22 levels from 0.15 to 1.2.
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(c) v velocity contour. Non-dimensionalized as v/u∞. 17 levels from -0.12 to 0.04.

Figure 5. Contours in vicinity of the two-dimensional hyperbolic tangent roughness element. Continuous forcing

immersed boundary method ; Cut-cell method ; Body-fitted .
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(a) Streamwise velocity at x/Lref = 14.8
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(b) Temperature at x/Lref = 14.8

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

u/u∞

y
/
L
r
e
f

(c) Streamwise velocity at x/Lref = 15.0
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(d) Temperature at x/Lref = 15.0
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(e) Streamwise velocity at x/Lref = 15.2
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(f) Temperature at x/Lref = 15.2

Figure 6. Streamwise velocity and temperature profiles for two-dimensional hyperbolic tangent roughness element.

Roughness element shown in grey. Continuous forcing immersed boundary method ; Cut-cell method ; Body-

fitted .
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Freestream Mach number M∞ 5.93

Freestream velocity u∞ 873 m/s

Freestream pressure p∞ 0.37 kPa

Freestream temperature T∞ 53.9 K

Stagnation pressure p0 551.58 kPa

Stagnation temperature T0 433 K

Wall temperature Twall 298.2 K

Freestream unit Reynolds number Re∞ 5.94×106 m−1

Undisturbed boundary-layer thickness δ 9.23 mm

Table 6. Flow conditions for Gaussian and cylinderical roughness simulations

simulations in this study. The body-fitted results are used as a basis for the comparison between the cut-cell
method and continuous forcing immersed boundary method. The two-dimensional roughness from Marxen
and Iaccarino was chosen because Marxen and Iaccarino were able to simulated the roughness with the
continuous forcing immersed boundary method showing that it could be done.

The grids in the vicinity of the roughness element for the body-fitted and cut-cell method are shown
in Figure 4. The grids use 800 points in the x direction and 400 points in the y direction with Sξ = 10,
Sη = 3.6, and xc = 15Lref . The numerical domain starts at x/Lref = 5.859 and ends at x/Lref = 30.1665.
The top of the domain is located at y/Lref = 1.575. The grid used for the continuous forcing immersed
boundary method is the same as the cut-cell method grid except 600 points are used in the y direction. The
constants used in the continuous forcing immersed boundary method are shown in Table 5.

Figure 5 shows contour plots of pressure, density and v velocity in the vicinity of the roughness element
for the three methods. The results from the body-fitted grid and the cut-cell method match exactly. Both
results were confirmed to be grid convergence by increasing the grids points in the x direction to 1200 and the
points in the y direction to 600. There were no visible changes in the results. The results from the continuous
forcing immersed boundary method appear similar to the body-fitted results away from the roughness but
there are significant differences near the roughness. The continuous forcing immersed boundary method
results were not checked for grid convergence due to the method’s low spatial convergence rate.

Figure 6 shows streamwise velocity and temperature profiles at various x/Lref locations for the three
methods. The profiles are at the upstream curved portion of the roughness (x/Lref = 14.8), the center of
the roughness (x/Lref = 15) and the downstream curved portion of the roughness (x/Lref = 15.2). Just
as with the contours, the profiles for the body-fitted grid and cut-cell method match. There are noticeable
differences between the body-fitted and continuous forcing immersed boundary method which are greatest
near the roughness. Based on the results of this test, it was decided to use the cut-cell method for the
remainder of the simulations in this study.

IV.B. Gaussian Roughness

The second two-dimensional simulation is Mach 6 flow over a Gaussian roughness with a k/δ ratio of 0.75.
The purpose of the simulation is to test the cut-cell method under flow conditions similar to the Purdue wind
tunnel. The flow conditions match those provided by Wheaton and Schneider19 and are given in Table 6.
The simulation has an isothermal wall with the temperature coming from Schneider.27 A Gaussian roughness
was used instead of a rectangular roughness (which would be a two-dimensional version of the cylindrical
roughness) to allow body-fitted simulations to also be performed for comparison. The shape of the roughness

is given as h(x) = k exp
(

−x2

r2

)

where k is the roughness height and r controls the roughness width. r is set

to 0.498δ in this simulation. The Reynolds number based on the roughness height and the local conditions
in the undisturbed boundary layer (Rek = ρuk/µ) is 3,330.

The origin of the domain is located at the center of the roughness element. The numerical domain starts
40δ upstream of the roughness and ends 25δ downstream of the roughness. The domain has a height of
8.0δ. The grids in the vicinity of the roughness element for the body-fitted and cut-cell method are shown
in Figure 7. The grids use 1200 points in the x direction and 800 points in the y direction with Sξ = 11,
Sη = 2.9, and xc = 0. The solutions were not checked for grid convergence. However, very dense grids were
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(a) Body-fitted grid
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(b) Cartesian grid used for cut-cell method. Roughness element shown in black.

Figure 7. Grid in vicinity of the two-dimensional Gaussian roughness element. Both grids use 1200 points in the x
direction and 800 points it the y direction. Every fourth point in both directions shown.

used so it is likely that the solutions are close to being grid converged.
Figure 8 shows contour plots of pressure, density, and v velocity in the vicinity of the roughness element

for the body fitted grid and cut-cell method. The results from the two methods match very well. There
appears to be a small difference between the pressure and density contours from the two methods near
x/δ = 0.35. Profiles of density and pressure at that x location are plot in Figure 9. Although the contours
show a small difference, the profiles match. Figure 10 shows streamwise velocity and temperature profiles at
various x/δ locations for the two methods. The profiles are at x/δ = −0.5, x/δ = 0.0, and x/δ = 0.5. The
profiles from the cut-cell method match exactly with the results from the body-fitted grid.

V. Three-Dimensional Results

V.A. Hyperbolic Tangent Roughness

The first three-dimensional roughness is a three-dimensional version of the hyperbolic tangent roughness
from the two-dimensional results. This roughness was also simulated by Marxen and Iaccarino.28 The equa-
tion for the roughness geometry is given in Marxen and Iaccarino. The roughness height and flow conditions
match those of the two-dimensional simulation and are given in Table 4. The results were computed using
a body-fitted grid and the cut-cell method. The purpose of the simulation was to evaluate the performance
of the cut-cell method with a three-dimensional roughness.

For both the body-fitted grid and the cut-cell method, both sides of the roughness in the z direction
were simulated. The grid in the vicinity of the roughness for the body-fitted grid and cut-cell method are
shown in Figures 11 and 12, respectively. Both grids use 600 points in the x direction, 300 points in the y
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(a) Pressure contour. Non-dimensionalized as p/p∞. 21 levels from 0.3 to 1.3.

-2 -1 0 1 2 3
0

0.5

1

1.5

x/δ

y
/
δ

(b) Density contour. Non-dimensionalized as ρ/ρ∞. 23 levels from 0.1 to 1.2.
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(c) v velocity contour. Non-dimensionalized as v/u∞. 11 levels from -0.16 to 0.04.

Figure 8. Contours in vicinity of the two-dimensional Gaussian roughness element. Cut-cell method ; Body-fitted

.
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(a) Density at x/δ = 0.35
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(b) Pressure at x/δ = 0.35

Figure 9. Streamwise velocity and temperature profiles for two-dimensional Gaussian roughness element. Roughness

element shown in gray. Cut-cell method ; Body-fitted .

direction, and 300 points in the z direction with Sξ = 10, Sη = 3.6, Sζ = 2, and xc = 15Lref . The numerical
domain starts at x/Lref = 10.6065 and ends at x/Lref = 28.1665. The top of the domain is located at
y/Lref = 1.575 and the half width is W = 0.7Lref .

Contours of the pressure and the v velocity component near the roughness at the z/Lref = 0 plane are
shown in Figure 13 for the body-fitted grid and cut-cell method. The z/Lref = 0 plane passes through the
center of the roughness in the z direction. Contours of the pressure and the w velocity component near the
roughness at the x/Lref = 15 plane are shown in Figure 14. The x/Lref = 15 plane passes through the
center of the roughness in the x direction. The results from the two methods agree very well. Only small
differences between the body-fitted and cut-cell results are visible. Neither set of results were confirmed to
be grid converged. Increasing the grid resolution may remove the differences.

Figure 15 shows streamwise velocity and temperature profiles at various x/Lref locations from the
z/Lref = 0 plane for the two methods. The profiles are at x/Lref = 14.8, x/Lref = 15, and x/Lref = 15.2.
The profiles from the two methods match except near the wall in the temperature profiles. Despite the small
differences, the cut-cell method appears to work very well for this test case.

V.B. Gaussian Roughness

While the cut-cell code was being developed, a series of simulations were performed of flow over a flat
plate with a three-dimensional Gaussian roughness using a body-fitted grid. Four different roughness heights
were used with the tallest matching that of Wheaton and Schneider. The flow conditions match those of
Wheaton and Schneider and are given in Table 6.

In these simulations, the origin of the numerical domain is located at the center of the roughness element.
The numerical domain starts 20δ upstream of the roughness and ends 25δ downstream of the roughness.
The domain has a height and half width of 5δ each. The shape of the roughness is given as h(x, z) =

k exp
(

−x2+z2

r2

)

where k is the roughness height and r controls the roughness width. Four different roughness

heights were simulated. The tallest element has a k/δ ratio of 1.10 and is the same height as the roughness
from Wheaton and Schneider. The remaining roughness elements have k/δ ratios of 0.75, 0.50, and 0.25. The
shortest roughness element is completely submerged in the subsonic portion of the undisturbed boundary
layer. r is set to 0.498δ for all the roughnesses. Figure 16 shows a comparison of the roughness elements used
in the simulations to the roughness from Wheaton and Schneider. The height of the undisturbed boundary
layer and the location where the Mach number is one (sonic line) are also shown. The Rek for each roughness
are listed in Table 7.

Two different grid generation techniques were used in the simulations. For the three shorter roughnesses,
the grids were generated algebraically using the equations from section III.C. Figure 17 shows the grid in the
vicinity of the k/δ = 0.75 roughness. All the grids were generated with Sξ = 9, Sη = 2, Sζ = 4, and xc = 0.
The grid for the k/δ = 1.10 roughness element was generated using the method of Spekreijse.29 Spekreijse
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(a) Streamwise velocity at x/δ = −0.5
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

u/u∞

y
/
δ

(c) Streamwise velocity at x/δ = 0.0
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(d) Temperature at x/δ = 0.0
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(f) Temperature at x/δ = 0.5

Figure 10. Streamwise velocity and temperature profiles for two-dimensional Gaussian roughness element. Roughness

element shown in gray. Cut-cell method ; Body-fitted .
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(a) x− y plane at z/Lref = 0
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(b) y − z plane at x/Lref = 15

Figure 11. Body-fitted grid in the vicinity of the three-dimensional hyperbolic tangent roughness element. Grid has

600 points in x direction, 300 points in y direction, and 300 points in z direction. Every fourth point shown in all

directions.
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(a) x− y plane at z/Lref = 0

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

z/Lref

y
/
L
r
e
f

(b) y − z plane at x/Lref = 15

Figure 12. Grid in the vicinity of the three-dimensional hyperbolic tangent roughness element for cut-cell method.

Roughness element shown in black. Grid has 600 points in x direction, 300 points in y direction, and 300 points in z
direction. Every fourth point shown in all directions.
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(a) Pressure contour. Non-dimensionalized as p/p∞. 24 levels from 0.45 to 1.6.

14.6 14.8 15 15.2 15.4
0

0.1

0.2

x/Lref

y
/
L
r
e
f

(b) v velocity contour. Non-dimensionalized as v/u∞. 16 levels from -0.08 to 0.07.

Figure 13. Contours in vicinity of three-dimensional hyperbolic tangent roughness element at z/Lref = 0 plane. Cut-cell

method ; Body-fitted .
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(a) Pressure contour. Non-dimensionalized as p/p∞. 34 levels from 0.96 to 1.62.
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(b) w velocity contour. Non-dimensionalized as w/u∞. 22 levels from -0.1 to 0.1.

Figure 14. Contours in vicinity of three-dimensional hyperbolic tangent roughness element at x/Lref = 15 plane.

Cut-cell method ; Body-fitted .
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(a) Streamwise velocity at x/Lref = 14.8
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(b) Temperature at x/Lref = 14.8
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(c) Streamwise velocity at x/Lref = 15.0
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(d) Temperature at x/Lref = 15.0
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(e) Streamwise velocity at x/Lref = 15.2
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(f) Temperature at x/Lref = 15.2

Figure 15. Streamwise velocity and temperature profiles for three-dimensional hyperbolic tangent roughness element.

All profiles are from z/Lref = 0 plane. Roughness element shown in grey. Cut-cell method ; Body-fitted .
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Figure 16. Comparison of roughness elements used in simulations to roughness used in Wheaton and Schneider.19 k/δ
= 1.10 Gaussian ; k/δ = 0.75 Gaussian ; k/δ = 0.50 Gaussian ; k/δ = 0.25 Gaussian ; k/δ = 1.10 cylinder

from Wheaton and Schneider .

Roughness height (k/δ) Roughness Reynolds Number (Rek)

0.25 130

0.50 680

0.75 3,330

1.10 57,600

Table 7. Reynolds number based on roughness height and local undisturbed conditions.

outlined an elliptical grid generation method for creating smooth orthogonal grids. The only necessary
input is the grid point distribution along the two-dimensional sides of the three-dimensional domain. These
distributions came from the equations in section III.C. The same values for Sξ, Sη, Sζ , and xc as the shorter
roughnesses were used. Figure 18 shows the grid in the vicinity of the k/δ = 1.10 roughness element. All the
grids use 600 points in the streamwise direction, 300 points in the wall normal direction, and 150 points in
the spanwise direction. Only half of the domain was simulated in the z direction. Away from the roughness
element, the grids used for each of the roughness elements match. The results were not confirmed to be grid
converged.

The simulations for all the roughnesses reached a steady-state solution. Figure 19 shows density contours
at the z = 0 symmetry plane for the four roughnesses. The k/δ = 1.10 roughness clearly shows a shock
generated slightly upstream of the roughness. Just downstream of the shock is an expansion fan which is
followed by a weaker shock. The same structures are also visible in the shorter roughnesses but they become
weaker as the roughness height decreases. The contours for the k/δ = 1.10, 0.75, and 0.50 roughnesses show
that the boundary layer has been significantly altered downstream of the roughness element. The boundary
layer downstream of the k/δ = 0.25 roughness element was not as greatly affected by the roughness.

Figure 20 shows a three-dimensional isosurface of the vorticity magnitude, |ω|, for each roughness. The
|ω|δ/u∞ = 1.5 surface is shown. The main features for the k/δ = 1.10 roughness is the horse-shoe vortex and
the wake vortex. The horse-shoe vortex is the two outer streaks seen in the figure. It wraps around the front
of the roughness element and then aligns itself with the flow direction downstream of the roughness element.
The wake vortex is formed directly behind the roughness element. In the figure, it is the long streak located
between the legs of the horse-shoe vortex. There is also a high vorticity region along the wall underneath
the wake vortex. All the structures are straight and persist until the exit of the numerical domain. For the
k/δ = 0.75 roughness, the same structures are present but the legs of the horse-show vortex are smaller. For
the k/δ = 0.50 roughness, the horse-shoe vortex is no longer visible in the figure. The wake vortex and the
high vorticity region near the wall are still present. For the k/δ = 0.25 roughness, only a small portion of
the wake vortex is visible.
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Figure 17. Grid in the vicinity of the three-dimensional Gaussian roughness element with k/δ = 0.75. Grid has 600

points in x direction, 300 points in y direction, and 150 points in z direction. Every fourth point shown in all directions.
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Figure 18. Grid in the vicinity of the three-dimensional Gaussian roughness element with k/δ = 1.10. Grid has 600

points in x direction, 300 points in y direction, and 150 points in z direction. Every fourth point shown in all directions.
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(c) k/δ = 0.75
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(d) k/δ = 1.10

Figure 19. Density contours at z = 0 plane for Gaussian roughness elements. Non-dimensionalized as ρ/ρ∞. 16 contour

levels from 0.1 to 1.75.
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(a) k/δ = 0.25

(b) k/δ = 0.50

(c) k/δ = 0.75

(d) k/δ = 1.10

Figure 20. Vorticity magnitude isosurfaces for Gaussian roughness elements. Surface for |ω|δ/u∞ = 1.5 shown. Flat

plate shown in gray.
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Figure 21. Vorticity magnitude contours at various x locations for Gaussian roughness elements. Non-dimensionalized as |ω|δ/u∞. 16 contour levels from 0 to 10. Starting

from the bottom and moving vertically, the contours are at x/δ = 2, 9.3, 16.6, 23.9.
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(a) Numerical shadowgraph contour with streamlines for Mach 6 flow over cylindrical roughness. From
Bartkowicz et al.18
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(b) Density contour with streamlines for Mach 6 flow over three-dimensional k/δ = 1.10 Gaussian rough-
ness. Density non-dimensionalized as ρ/ρ∞. 21 contour levels from 0.2 to 4.2.

Figure 22. Streamlines for Mach 6 flow over cylindrical roughness and three-dimensional Gaussian roughness. Both

plots are at the symmetry plane.

Figure 21 show contours of the magnitude of the vorticity vector at various x/δ locations for the four
roughness elements. The contours for k/δ = 1.10 show a large circular vortex in the center of the domain
and a kidney-shaped vortex off to the side of the roughness. The circular vortex is the wake vortex while the
kidney-shaped vortex is a leg of the horse-shoe vortex. Both vortices persist until the end of the numerical
domain. At x/δ = 2, the top of the wake vortex is at approximately y/δ = 0.8 which is less then the height
of the roughness. The vortex moves vertical as it progresses downstream. At x/δ = 24, the top of the
vortex has reach y/δ = 1.3. The horse-shoe vortex also moves vertical as it progresses downstream but the
increase is much less then the wake vortex. However, the size of the horse-shoe vortex increases greatly.
The vortex approximately doubles in length within the numerical domain. The two vortices are also present
in the contours for the k/δ = 0.75 roughness but both are much weaker in magnitude. At x/δ = 2, the
top of the wake vortex is approximately the same height as the roughness element. The vortex also moves
vertically like the wake vortex from the k/δ = 1.10 roughness but the increase is less. The horse-shoe vortex
also increase in length but to a greater extent then the k/δ = 1.10 roughness. For the contour levels used
in the figure, only the wake vortex is visible for the k/δ = 0.50 roughness. The top of the wake vortex is
higher then the roughness element at x/δ = 2 with an approximate high of y/δ = 0.7. The vortex moves
vertically as it progresses downstream but appears to asymptote to approximately y/δ = 1.0. For the k/δ =
0.25 roughness, there is a very small wake vortex seen at x/δ = 2 but it cannot be seen with these contour
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levels anywhere downstream.
The 21 kHz instability of Wheaton and Schneider or any other unsteadiness was not seen in the simulations

with a Gaussian roughness. This may have been due to the different roughness geometries. Bartkowicz et
al.18 where able to reproduce the instability measured by Wheaton and Schneider with numerical simulations
of flow in the Purdue wind tunnel with a cylindrical roughness element. They found that the instability
originates inside the vortex system located in front of the roughness near the wall. They postulate that the
instability is being created by a jet of high momentum fluid which is created by the strong shock at the upper
edge of the roughness and which flows down toward the vortex system. Figure 22 shows a comparison of
the streamlines at the symmetry plane for the simulation of Bartkowicz et al. and the k/δ = 1.10 simulation
performed here. The Gaussian roughness appears to allow more fluid to flow over the roughness and thus
weakens the jet which flows into the vortex system near the wall. The weakening of this jet may be the
reason no instability was found in the current simulations.

V.C. Cylindrical Roughness

Simulations of flow over a flat plate with a cylindrical roughness are currently underway. Two roughness
heights are being used: k/δ = 0.75 and k/δ = 1.10. The diameter of the roughness is 0.647δ for both
simulations. The taller roughness has the same height and diameter as the roughness used by Wheaton and
Schneider. The flow conditions match those provided by Wheaton and Schneider and are given in Table 6.
The origin of the numerical domain is located at the center of the roughness element. The numerical domain
starts 20δ upstream of the roughness and ends 25δ downstream of the roughness. The domain has a height
of 5δ and half width of 7.5δ. The Rek match the values from the three-dimensional Gaussian and are listed
in Table 7. The simulation for the k/δ = 1.10 roughness has only just begun so no results will be presented
here.

The grids being used were generated algebraically using the equations from section III.C. Figure 23 shows
the grid in the vicinity of the k/δ = 0.75 roughness. The k/δ = 0.75 grid has 800 points in the x direction,
600 points in the y direction, and 600 points in the z direction. The grid was generated with Sξ = 10.44,
Sη = 6.8, Sζ = 3.96, xc = −0.375δ, yc = 1.5δ, L = 0.2994, and P = 15. Both sides of the domain in the the
z direction are being simulated.

The results for the k/δ = 0.75 roughness being presented here are only preliminary. The simulation has
not reached a steady-state or periodic solution yet. Figure 24 shows density contours at the z = 0 symmetry
plane for the current state of the the simulation. The large structures seen downstream of the roughness
elements are just the initial transients created by the simulation’s initial condition. Although the entire flow
field is still undergoing transient changes, the flow in the immediate vicinity of the roughness is no longer
displaying large changes with time. Figure 25 shows the streamlines near the k/δ = 0.75 roughness in the
z/δ = 0 plane and the x− z plane one grid point away from the wall. The streamlines show the creation of
a vortex system generated upstream of the roughness which is similar to the results of Bartkowicz et al.18

VI. Conclusion

Results from numerical simulations of hypersonic flow over isolated roughness elements were presented.
Most of the simulations utilized a third-order cut-cell method combined with a fifth-order WENO which
results in a globally fourth-order scheme. Two-dimensional and three-dimensional test cases show excellent
agreement to results obtained from a body-fitted grid simulation. Preliminary results from Mach 6 flow
over k/δ = 0.75 cylindrical roughness was also presented and a simulation with a k/δ = 1.10 roughness is
currently underway. In addition, the results from simulations of Mach 6 flow over three-dimensional Gaussian
roughnesses of varying heights computed with body-fitted grids were also reported.
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Figure 23. Grid in the vicinity of the three-dimensional cylindrical roughness element with k/δ = 0.75. Roughness

element shown in black. Grid has 800 points in x direction, 600 points in y direction, and 600 points in z direction.

Every fifth point shown in all directions.
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Figure 24. Density contours at z = 0 plane for k/δ = 0.75 cylindrical roughness. Non-dimensionalized as ρ/ρ∞. 16

contour levels from 0.1 to 1.75.
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(b) Streamlines and pressure contour one grid point away from wall. Pressure non-dimensionalized as p/p∞
with 15 levels from 0.6 to 2.0.

Figure 25. Streamlines for k/δ = 0.75 cylindrical roughness
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