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Compressible turbulent boundary layers with free-stream Mach number ranging from 2.5 up to 20
are analyzed by means of direct numerical simulation of the Navier–Stokes equations. The fluid is
assumed to be an ideal gas with constant specific heats. The simulation generates its inflow
condition using the rescaling-recycling method. The main objective is to study the effect of Mach
number on turbulence statistics and near-wall turbulence structures. The present study shows that
supersonic/hypersonic boundary layers at zero pressure gradient exhibit close similarities to
incompressible boundary layers and that the main turbulence statistics can be correctly described as
variable-density extensions of incompressible results. The study also shows that the spanwise
streak’s spacing of 100 wall units in the inner region �y+�15� still holds for the considered high
Mach numbers. The probability density function of the velocity dilatation shows significant
variations as the Mach number is increased, but it can also be normalized by accounting for the
variable-density effect. The compressible boundary layer also shows an additional similarity to the
incompressible boundary layer in the sense that without the linear coupling term, near-wall
turbulence cannot be sustained. © 2011 American Institute of Physics. �doi:10.1063/1.3541841�

I. INTRODUCTION

The design of supersonic and hypersonic vehicles de-
pends critically on the accurate prediction of turbulent flow
characteristics in high Mach number boundary layers. Basic
knowledge and understanding of both aerodynamic and ther-
modynamic phenomena are the prerequisites in order to use
design tools effectively. The understanding of complex flow
phenomena can best be obtained through a coordinated study
involving both computational and theoretical analyses. Rela-
tively few numerical simulations of a turbulent supersonic
boundary layer are available in the literature. Most of these
studies were primarily focused on the effects of compress-
ibility on turbulence statistics at relatively low Mach num-
bers ��5�. Very few studies aimed at improving the under-
standing of the fundamental physics of supersonic boundary
layers have been conducted.

It is known that for supersonic flows with moderate
Mach numbers, the direct effects of compressibility on wall
turbulence at zero pressure gradient are small, the most no-
table differences being due to the variation of the thermody-
namic properties across the layer. This is known as the
Morkovin hypothesis. All available experimental data �see
Ref. 1 and references therein� confirm indeed that supersonic
boundary layers at zero pressure gradient exhibit close simi-
larities to incompressible ones and that the main turbulence
statistics can be correctly predicted as variable-density exten-
sions of incompressible results.

These similarities have been confirmed by recent direct
numerical simulations, which include the extended temporal
simulation of Maeder et al.2 �M�=2.5�, the quasiperiodic
simulation of Guarini et al.3 �M�=2.5�, and the fully spatial
simulations of Martin4 �M� up to 8� and Pirozzoli et al.5

�M�=2.25�. These studies have further confirmed the valid-

ity of the van Driest transformation for the mean velocity
profile and that the distributions of the density-scaled root-
mean-square fluctuations of the velocity and vorticity closely
follow the universal distribution found in the incompressible
case.

Regarding fundamental physics of turbulent flow, most
of our present understanding has been achieved due to a
great deal of work conducted over the past few decades on
incompressible flows. The fundamental physics of high
Mach number turbulent boundary layers is, however, not
well understood. Knowledge obtained from experimental
studies is limited to the large-scale motions in the outer layer,
mainly due to difficulties in resolving the very small flow
scales found at the high Reynolds numbers typical of super-
sonic experimental arrangements.

The objective of the present study is to investigate the
effects of high Mach number on turbulent boundary layers.
The present paper is organized as follows. In Sec. II, the
numerical methods, including the generation of inflow
boundary conditions, are presented. The effects of Mach
number on various turbulence statistics and turbulence struc-
tures are presented in Sec. III, followed by a summary and
concluding remarks in Sec. IV. In this paper, we use x, y, and
z to denote the streamwise, wall-normal, and spanwise direc-
tions, respectively, and u, v, and w to denote the velocity
components in x, y, and z directions.

II. NUMERICAL PROCEDURES

A. The governing equations

The compressible Navier–Stokes equations are solved
in conservative form, nondimensionalized with the free-
stream quantities ���, T�, U�, and ��� as given in Ref. 2.
For all cases, ��=0.003 937 kg m−3, T�=161.5 K, and
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��=1.1011�10−5 kg m−1 s−1, while U� is increased as
shown in Table I. The lengths are nondimensionalized
using the boundary layer thickness at the inlet �99 and the
time by �99 /U�. The computational Reynolds number
R�99

=�99��U� /�� is given in Table I for each free-stream
Mach number M�. The value of this Reynolds number was
adjusted such that it gives approximately the same Reynolds
number based on the friction velocity R� as the Mach number
is varied. The ratio of specific heats 	 is assumed to be
constant and equal to 1.4. The perfect gas state equation
reads under this normalization as 	M�

2 p=�T, where p is
the pressure, � is the density, and T is the temperature.
The dynamic viscosity � obeys Sutherland’s law: ��T�
=T3/2�1+S� / �T+S�, with S=110.4K /T�. The Prandtl number
is Pr=0.72.

The compressible Navier–Stokes equations are solved
using a shock-capturing hybrid finite-difference scheme.6

Conventional finite-difference schemes are not suitable for
the numerical simulations of compressible flows since high
gradient regions generate large spurious oscillations. The
weighted essentially nonoscillatory �WENO� scheme has
been proven to be efficient for some test problems.7 How-
ever, due to the way the Euler flux are evaluated, this scheme
is computationally expensive and highly dissipative. There-
fore, problems involving a few number of shocks and a large
number of complex structures in the smooth regions require
less dissipative and computationally more efficient numerical
schemes.

We use an alternative approach, where high gradient re-
gions are resolved by a WENO scheme and the smooth re-
gion are computed using a less dissipative and more efficient
finite-difference scheme. Around high gradient regions, the
Eulerian fluxes are computed using a fifth-order WENO
decomposition/reconstruction,7 whereas in the smooth re-
gions, they are discretized by means of a fifth-order upwind
scheme with global Lax–Friedrichs flux splitting. The choice
of using one scheme instead of the other for a given cell is
based on the smoothness property of the solution. In the
present work, we have used the smoothness indicator used in
Ref. 8, which reads for a given cell and a given quantity f

rj+1/2 = min�rj,rj+1� ,

where

rj =
2
f j+1/2
f j−1/2 + �

�
f j+1/2�2 + �
f j−1/2�2 + �
.

The � is a positive real number and 
 denotes the standard
difference operator. Above a certain threshold rthres, the solu-
tion is considered as nonsmooth and the WENO scheme is

applied. The task of chosen this threshold is simplified since,
from the definition above, the value returned by the smooth-
ness indicator is bounded and we have rj+1/2� �0,1�.

The viscous fluxes are approximated using a sixth-order
finite-difference scheme and the time integration is per-
formed by means of a classical four-stage fourth-order ex-
plicit Runge–Kutta scheme. This numerical scheme was vali-
dated against various compressible flows and the interested
reader is referred to Lagha et al.6 for further details.

The parameters of the simulations are given in Table I.
First, our approach with M�=2.5 is validated against pub-
lished results. Then, two cases with higher free-stream Mach
numbers M�=10 and M�=20 are considered. It should be
noted that the high Mach number flows considered in the
present paper �e.g., M�=20 flow over a flat plate with the
perfect gas law� are not realistic for various reasons. First,
real gas effects must be accounted for at high Mach numbers.
A study of real gas effects at high Mach number is currently
underway. It is worth noting in passing, however, that real
gas effects are not present in most ground-based hypersonic
experimental facilities because of relatively low stagnation
temperatures. Also, it should be pointed out that most bound-
ary layers in a realistic situation will be behind a bow shock
and therefore the free-stream Mach number may be well be-
low M�=20. Nevertheless, the present problem, its some-
what academic nature notwithstanding, provides an excellent
test case for studying the effect of high Mach number on
turbulent boundary layer flows.

B. Inflow boundary conditions

The generation of a turbulent inflow for the numerical
simulation of a boundary layer is in itself an issue, owing to
the difficulty of obtaining a physical turbulent flow at a rea-
sonable computational cost. Different approaches, including
temporal boundary layer �TDNS�, extended TDNS, and spa-
tial boundary layer, have been developed. In the latter case,
the simulation generates its own inflow conditions by rescal-
ing the flow field at a downstream station xre and prescribing
it at the inlet. This method was applied by Lund et al.9 for an
incompressible boundary layer and its extension to the com-
pressible flow was developed by Urbin and Knight.10 Further
development of the method has been carried out �among oth-
ers, Refs. 11–14�. The inlet profile is obtained through a
blending between two profiles, one for the inner region and
another for the outer region. If the initial condition is not an
already turbulent state taken from another simulation, a mis-
match between the inner and outer region can occur at the
inlet and the flow downstream will not reach a physical state.

TABLE I. Simulation parameters.

M� 2.5 5 7.5 10 15 20

R�99
24 500 98 000 294 000 632 058 1 969 104 5 119 672

R��10 340 300 310 300 302 345

U� �m/s� 636 1 272 1 908 2 544 3 817 5 089

u� /U� 0.052 0.0558 0.0607 0.0613 0.0634 0.0644
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Moreover, empirical formulas are used to approximate the
value �at the inlet� of x-dependent local quantities, such as
the friction velocity and the boundary layer thickness. Addi-
tionally, the friction velocity at the inlet can drift away from
the correct value, leading to a temporal drift of the simula-
tion �see Ref. 12�.

In this section, we present a systematic method to obtain
a supersonic/hypersonic turbulent boundary layer starting
from a laminar flow field. The main idea is to use only quan-
tities that are slowly streamwise dependent, such as Coles’
parameter. The mean velocity profile at the inlet across the
whole boundary is obtained through a composite profile.
Some parameters of this composite profile will be adjusted
during the simulation according to the downstream evolution
of the flow. First, the van Driest velocity uvd is defined by a
density-weighted transformation

uvd = �
0

ū � �̄

�w
	1/2

dū .

The mean quantities �averaged in the spanwise direction� are
denoted by an overbar and the subscript “w” refers to wall
quantities, which are also averaged in the spanwise direction.
The subscript “re” denotes the recycled downstream station
and “in” denotes the inlet.

The mean temperature profile of the initial condition
is estimated using the Crocco–Busemann approximation

across the entire boundary layer T̄in /T�=Tw /T�−r�	
−1� /2M�

2 �ūin /U��2, with r=0.82.14 Because the pressure is
nearly constant �except in the region very near the wall�
throughout the boundary layer, the mean density profile can

be deduced with the perfect gas law: �̄in /��=T� / T̄in.
The composite profile uses Reichardt’s inner layer solu-

tion and Finley’s wake function3

uvd
+ =

1

k
log�1 + ky+� + 
�1 − e−y+/a −

y+

a
e−by+	

+
1

k

� y+

�99
+ 	2

− � y+

�99
+ 	3

+ 6�� y+

�99
+ 	2

− 4�� y+

�99
+ 	3� ,

with

y+ = yu�/�w, �99
+ = R� = �99u�/�w, a = 11,

b = 0.33, 
 = �− 1/k�log�k� + C .

The values of the constants k and C are similar to the incom-
pressible values, i.e., C=4.7 and k=0.4.

To construct the profile, we need �99, Tw, and an
estimation for the friction velocity u�. The boundary layer
thickness �99 is obtained by fixing R�99

=�99��U� /�� at the
inlet. Then, the temperature at the wall is estimated as
Tw=1+0.896�	−1� /2M�

2 , which gives an estimation of
�w. Coles’ parameter is chosen as �=0.1 �usually
�� �0.1,0.5�� and we solve for the friction velocity u�,
knowing that at y+=�99

+ , the composite profile is equal to the
free-stream velocity

1

k
log�1 + k�99

+ � + 
�1 − e−�99
+ /a −

�99
+

a
e−b�99

+ 	 +
2�

k
= uvd

�,+.

Then, during the simulation, we estimate the new value of �
by solving the above equation at a downstream location xre

�where the friction velocity is now computed from the simu-
lation and with the local value of �99�. The friction velocity is
re-estimated at the inlet by solving the above equation with
the new value of �. The new composite profile is then re-
constructed at the inlet. The procedure is performed only two
times, the first time with the chosen �=0.1 and the second
time with the estimated �. Further refinement is not neces-
sary. Note that Pirozzoli et al.15 estimated the wake law con-
stant to be �=0.175, whereas Guarini et al.3 found
��0.25. In our case, we found a similar value of ��0.2
for M�=2.5.

The perturbations, denoted with a prime and computed
by subtracting the mean value from the flow field, can be
assumed to satisfy a similarity law across the boundary layer.
Therefore, they are rescaled and introduced at the inlet ac-
cording to, for example,

uin� �y� = ure� ��99
re

�99
y	 ,

where �99
re represents the boundary layer thickness at the res-

caling station. The same procedure is applied to the spanwise
w� and wall-normal v� perturbations and to the thermody-
namic perturbations T� and �� �further details are given in
Refs. 10 and 11�. For all cases, the streamwise Lx, wall-
normal Ly, and spanwise Lz extents of the domain are
Lx�Ly �Lz=14�99�5�99�2�99. The recycling station is lo-
cated at xre=xin+8�99. Two sponge regions are added near
the outlet �starting at x=xin+13�99� and the top of the do-
main �starting at y=4�99� to prevent artificial reflections from
the boundaries.6,14 Periodic boundary condition is used in the
spanwise direction. In all cases, the number of points in
the streamwise, wall-normal, and spanwise directions is
Nx�Ny �Nz=512�128�256. The grid resolutions in wall
units are 
x

+�
y
+�
z

+�8�0.3�3. A hyperbolic stretching
is used in the y-direction and at the boundary layer edge

y

+�11. Higher resolutions �up to 1024�180�512� were
used to validate the accuracy of the simulations.

III. RESULTS

A. Mean flow and turbulence fluctuations

To validate the present simulation, the computed mean
velocity, Reynolds stress, and the root-mean-square �rms� of
the velocity and vorticity components are compared with the
results of Guarini et al.3 at M�=2.5. A few other studies of
boundary layers at this Mach number or similar Mach num-
bers have been made recently, each conducted with different
approaches �temporal and spatial simulations�.2,4,5,16 All the
following results are computed at the recycling station
xre=xin+8�99.

The distribution of the van Driest-transformed mean
streamwise velocity, expected to satisfy the incompressible
logarithmic law, is shown in a semilogarithmic plot in Fig. 1.
The linear scaling in the viscous sublayer �uvd

+ =y+� and the
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logarithmic scaling in the overlap region �uvd
+ = �1 /k�log y+

+5.1,k�0.4� are also plotted as references. The figure
shows that the viscous sublayer law holds up to y+�5 and
the logarithmic region extends from y+�40 to y+�140.

The distributions of the density-scaled Reynolds-stress
components ���̄ /�w

�ui�
2 /u�� are shown in Fig. 2 and they

agree well with the DNS �Direct Numerical Simulations�
data of Ref. 3. Here ui� denotes
u�, v�, and w� for i=1,2 ,3. A similar agreement holds for
the Reynolds stress �̄

�w
u�v� /u�

2. Note that this density scaling
is equivalent to the local scaling since ��̄ /�w

�ui�
2 /u�

=�ui�
2 /u�

�, where the y-dependent friction velocity u�
��y�


u���w / �̄�y� takes into account the mean property varia-
tions �e.g., Refs. 17 and 18�.

Figure 3 shows the distribution of the computed rms of
the vorticity components normalized by the friction velocity
and the kinematic viscosity at the wall ��i

+=��i�
2�w /u�

2� as
used in Ref. 3. Here, �i� denotes �x�, �y�, and �z� for
i=1,2 ,3, respectively. This scaling collapses the rms of the

vorticity fluctuation components for different Mach numbers.
However, other scaling possibilities exist. A possible scale
is to use the local friction velocity u�

� and the mean
viscosity ��i�

2�̄�y� / �u�
��2, which is equivalent to �i

+��̄ /�w�
���̄ /�w�=�i

+�̄ /�w. Using Sutherland’s law and assuming

that T̄+S� T̄ �especially near the wall� gives �̄ /�w

���w / �̄�1/2 and, therefore, the scaling �i
+��w / �̄�1/2. Another

possibility is to use the local friction velocity u�
� but use the

kinematic viscosity at the wall, as in ��i�
2�w / �u�

��2, which is
equivalent to the scaling �i

+�̄ /�w. However, we have found
that the scaling used by Ref. 3 gives a better collapse
�see Fig. 8 below�. This might be due to the fact that in this
scaling, the density at the wall is replaced by the mean
density, whereas the dynamic viscosity is taken at the wall ,
which is equivalent to ��i�

2��w / �̄� / �u�
��2

=��i�
2��w / ��wu�

2����w / �̄����̄ /�w�2=��i�
2�w /u�

2=�i
+.19

For y+�30, the vorticity fluctuations become nearly iso-
tropic ��x���y���z��. Consistent with the DNS data in the
literature, �x� attains a peak at y+�16 and �y� has its maxi-
mum at y+�12. The computed results show also that �x� has
a local minimum at about y+=5 before it attains its maxi-
mum value at the wall. This behavior is usually attributed to
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FIG. 3. �Color online� rms of the scaled vorticity fluctuation components:
�x� �- - - -�, �y� �-.-.-.-�, and �z� �—�. Symbols correspond to Ref. 3 results.
M�=2.5.
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spond to Ref. 3 results.

0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

y

r.
m

.s
.

v
e

lo
c

it
y

FIG. 2. �Color online� rms of the scaled streamwise �—�, spanwise �- - -�,
and wall-normal �.....� velocity fluctuations. Reynolds shear stress �-.-.-.�.
Symbols correspond to Ref. 3 results. M�=2.5.
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the presence of streamwise vortices in the wall region. The
location of the local maximum corresponds to the average
location of the center of the streamwise vortices. Kim et al.20

have estimated that the centers of the streamwise vortices are
located on the average at y+�20 and they have a radius
r+�15. This observation is further developed in a compan-
ion paper.

The turbulent Mach number, defined as Mt=�ui�ui� / c̄,
where c̄ is the local speed of sound, is given in Fig. 4. The
peak value of Mt is approximately 0.3, in agreement with
Ref. 3. The effect of the Mach number on this quantity is
addressed in the next section.

To further assess the quality of the simulations, the bud-
get of the turbulent kinetic energy was compared to the lit-
erature results. This energy is defined as k=1 /2�ui�ui� / �̄,
where the superscript refers to fluctuations from the Favre
averages, commonly used to simplify the resulting energy
equation. The explicit forms of the different terms are given
in Ref. 3. Namely, P is the rate of generation of turbulent

kinetic energy by velocity gradients, T is the turbulent trans-
port, � is the pressure diffusion and dilatation, D is the vis-
cous diffusion, and −� is the viscous dissipation. Figure 5
compares the distributions of these different terms, after nor-
malization by the wall quantity �wu�

4R�99
/�w,2 to the DNS

data of Guarini et al. and confirms the quality of the present
simulation. Note that the contribution from the convective
terms was not computed directly, but it is considered to be
negligibly small since the balance of the terms shown in Fig.
5 is nearly zero �dashed line in Fig. 5�.

Finally, the results for the higher Mach numbers M�

=10 and M�=20 are given in Figs. 6–9. To increase the
Mach number, the free-stream temperature is maintained
fixed but the velocity U� is increased, as shown in Table I.
Then, the free-stream Reynolds number R�99

is adjusted �by
changing �99�, so that R�=�99u� /�w keeps the same value.
The targeted value was R�=350, which is high enough to
give a developed logarithmic region to the mean profile.
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FIG. 5. �Color online� Turbulent kinetic energy budget. Letters are P, pro-
duction term; T, turbulent transport; � pressure term; D, viscous diffusion;
and −�, viscous dissipation. Lines correspond to simulation results. Sym-
bols correspond to Ref. 3 results. The green dashed-dotted line corresponds
to the sum of the five terms.
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Note that since R� is similar for these cases, the domain
extent in wall units is similar: Lx

+�Ly
+�Lz

+�4100�500
�760.

The results shown in Figs. 6–9 illustrate that turbulent
boundary layers at M�=10 and M�=20 exhibit close simi-
larities with the low supersonic case M�=2.5 and that the
main turbulence statistics can be correctly described as
variable-density extensions of incompressible results.

B. Turbulent Mach number and fluctuating Mach
number

In addition to the turbulent Mach number �Mt�, we also
examined the rms perturbations of the local Mach number,
called the fluctuating Mach number M�, since it presents
different information in compressible flows.

The turbulent Mach number is shown in Fig. 10 �left� for
different M�. Its maximum value slowly increases with M�,
in agreement with the observation of Martin.4 Its value is
about 0.6 for M�=20 and is located near the wall. The fluc-
tuating Mach number M� is, however, more sensitive to M�.
For low M� ��5�, the maximums of both Mt and M� are
approximately similar, but for higher M�, they become dif-
ferent. Additionally, M� starts to build a second maximum

which moves away from the wall, as seen in Fig. 10 �right�,
in agreement with the observations of Spina et al.21

To study the origin of this behavior and, more specifi-
cally, to differentiate between a true compressibility effect
and a variable-property effect, we follow the approach of
Coleman et al.17 They introduced a separate Mach number
Md in the temperature equation, referring to it as the dissipa-
tion Mach number. The temperature equation becomes

�T

�t
+ uj

�T

�xj
= − �	 − 1�T

�uj

�xj
+ 	

	 − 1

R�99

M�
2 �ij

�ui

�xj

−
	

R�99
Pr �

� q̃j

�xj
+ L ,

where the heat-flux vector is q̃i=−��T /�xi and L= �Md
2

−M�
2 �	�	−1��ij /�R�99

�ui /�xj.
Setting Md�M� is equivalent to adding a nonzero heat

source/sink term L to the temperature equation. Such non-
physical simulations are used to determine the relative im-
portance of turbulent-fluctuation and variable-property influ-
ences at a given M�, since cases with different mean
temperature profiles �i.e., different mean property variations�
at the same free-stream Mach number M� can be considered.

In our current simulation, the governing equation for the
total energy E becomes

�E

�t
+

��ui�E + p� + qi�
�xi

= 
 �ui�ij

�xj
+ �Md

2

M�
2 − 1	�ij

�ui

�xj
� ,

where �ij is the stress tensor and is given by �ij

=� /R�99
��ui /�xj +�uj /�xi−2 /3�uk /�xk�ij�. The heat flux

is qi=−� / ��	−1�M�
2 Pr R�99

��T /�xi. Therefore, in a normal
simulation, M�=Md, whereas in a nonphysical one,
M��Md.

For M�=Md=2.5, we have found that M� and Mt have
similar values. However, by increasing the mean variation of
the mean temperature by setting Md=7.5, M� increases to
roughly twice its initial value. Therefore, the apparent in-
crease in the value of M� with M� is not a true compress-
ibility effect but, rather, is due to the variation of the mean
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property. This suggests that the variation of M� is due to the
variable-density effect. In fact, we have found that the
simple scaling M�→M��̄ /�w collapses the profiles of M� for
different M� into a single one, as shown in Fig. 11. This
scaling seems to work better for the hypersonic Mach num-
bers 10, 15, and 20.

C. Dilatation

The dilatation term �
�xu+�yv+�zw, which is zero for
M�=0, is another measure of the effect of the Mach number
�e.g., Refs. 22 and 23�. The plot of the probability density
function �pdf� of � in Figs. 12 and 13 confirms the increase
of the probability of observing higher values of ��� with
increasing free-stream Mach number. To check whether this
behavior is a true compressibility effect or a variable-
property effect, we have computed the pdf of � for the non-
physical case M�=2.5 and Md=7.5. The result, shown in
Fig. 12, suggests that the increase in the pdf tail is a variable-
property effect since the pdf of this nonphysical case is very
close to that of the physical case M�=7.5. This implies that
a scaling using the mean density would collapse the different

pdf curves. We have found in fact that by computing the pdf
of ��̄, the different pdf curves collapse �Figs. 14 and 15�. It
is worth noting that the collapse to a single curve of the
compression part ���0� of the different pdf curves is
slightly better than the collapse of the dilatation part
���0�.

D. Turbulence structure

In a numerical study of channel flow, Coleman et al.17

observed an increase with the Mach number of the stream-
wise coherence of the near-wall streaks �longer streaks�.
They showed that this modification of turbulence structure
represents a confirmation of, and not an exception to, the
Morkovin hypothesis, which postulates that at supersonic
Mach numbers, only mean property variations are important
and not the thermodynamic fluctuations. In fact, Coleman et
al.17 were able to show, using an artificial simulation with
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constant density and temperature profiles, that the enhanced
streak coherence has its source in the mean property varia-
tions. The method that they used, which was described ear-
lier in this paper, consisted of differentiating between com-
pressibility effects due to thermodynamic fluctuations and
those caused by mean property variations using an artificial
heat source defined by a dissipation Mach number. They con-
cluded that nonzero near-wall gradients of mean properties
are required for the streaks modification to occur. In other
words, the enhanced streak coherence has its source in the
mean property variations rather than in the thermodynamic
fluctuations. A few conclusions can be drawn from this. First,
the near-wall streaks become longer when the wall becomes
colder, independently from the free-stream Mach number.
This point was confirmed by Duan et al.24 who performed a
parametric study of a turbulent boundary layer by varying
the temperature at the wall from Tw /T�=1 �cold wall� to
Tw /T�=5 ��Tadiab /T��. The free-stream Mach number was
fixed at M�=5. Second, the streaks become shorter when the
wall is heated. Third, the streaks are not modified when the
gradients of mean properties are zero, namely, for an adia-
batic wall. To confirm the first two points, we have per-
formed three isothermal simulations where the wall tempera-
ture Tw /T� was varied but the free-stream Mach number was
fixed to M�=2.5. The considered wall temperatures are
Tw /T�=1 �cold wall�, Tw /T�=2.14 �near adiabatic value�,
and Tw /T�=11.6 �hot wall�. For the three cases, R��380.
The streamwise velocity perturbations in a horizontal plane
located at y+=15 are shown in Fig. 16 and they confirm the
results of Refs. 17 and 24: the streaks become longer when
the wall is cooled. They also become shorter when the wall is
heated. Note that these results are presented in terms of vis-
cous units since they are more suitable to describe near-wall
structures.

It is worth noting that two inner layer parameters can be
used to quantify these three isothermal simulations. The first
parameter is the friction Mach number M�=u� /cw,
where cw is the speed of sound based on the wall tempera-
ture. The second parameter is the nondimensional heat flux

�q=−1 / �PrR�99
�wu���dT̄ /dy�w.17,25 The values of these

parameters are given in Table II for the three different
simulations. The value of �q is negative when the heat trans-
fer is from the flow to the wall �for the case with Tw /T�=1�.
It is positive when the wall is heating the flow and, respec-
tively, indicates moderate and strong heating conditions for
the cases with Tw /T�=2.14 and Tw /T�=11.6.

To study the third point, that streaks are unaffected in the
adiabatic case, we examined two-point correlations of the
adiabatic simulations with three Mach numbers M�=2.5,
M�=7.5, and M�=20. To further study the role of R�, we
have also performed two additional simulations for the
M�=2.5 case with R��200 and R��1200. For the latter
case, the resolution used is Nx�Ny �Nz=1024�180�256.
Although this resolution is marginal to capture all relevant
scales in this high Reynolds number flow, it should be ad-
equate for the present purpose of examining the dependence
of the streak spacing on the Reynolds number and as such,
this simulation was not used for any other purposes. In all
cases, two-point correlations of the velocity perturbation u�
in the streamwise direction are computed for a fixed wall-
normal location y+=15.

Figure 17 �left� shows that the two-point correlations for
different Mach numbers collapse, indicating that the streak
coherence remains the same. The streamwise length of the
streaks, measured in terms of viscous units, is therefore in-
dependent of the Mach number. However, if it is measured in

TABLE II. Isothermal parameters.

Tw /T� 1 2.14 11.6

M� 0.0912 0.0896 0.055

�q �0.0498 +0.0012 +0.1422
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FIG. 15. �Color online� Legend similar to Fig. 13. Using the mean density
scaling.

FIG. 16. Streamwise velocity perturbations for the three different wall
temperatures at y+=15. Top to bottom: Tw /T�=1, Tw /T�=2.14, and
Tw /T�=11.6.
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terms of the outer length scale �99, it becomes a function of
the friction Reynolds number R�. The streak length in terms
of x /�99 decreases when R� increases, as shown in Fig. 17
�right�. Therefore, one should use the viscous units to rule
out the Reynolds number effect.

Finally, regarding the streaks width for an adiabatic wall,
we examined two-point correlations in the spanwise direc-
tion of the streamwise velocity perturbation. At y+=15, the
typical spanwise streak spacing of 100 wall units is still
valid, even at a free-stream Mach number of 20, as shown in
Fig. 18. The minimum of the wall-normal velocity is found
to be at 25 wall units and it represents the typical width of
the streamwise vortices �e.g., Ref. 20�.

Therefore, when computed at the same wall-normal lo-
cation, say y+=15, the streamwise and spanwise extents of
the streaks, expressed in wall units, are not affected by the
change in the free-stream Mach number for an adiabatic
wall. This can also be deduced by comparing instantaneous
snapshots of the streamwise velocity perturbations at
y+=15 for two different Mach numbers, as shown in Fig. 19.
This concludes the proof of the third point.

To summarize, compared to an adiabatic simulation
��q=0�, the near-wall streaks are longer in a simulation with
negative �q and shorter in a simulation with positive �q. We
postulate that this parameter �q �and eventually M�� can
uniquely characterize isothermal simulations in the sense that
two simulations with different free-stream Mach numbers
but with the same �q will have near-wall streaks with similar
lengths.

E. Self-sustaining mechanism of near-wall turbulence

Kim and Lim26 investigated the role of a linear coupling
term �see definition below�, which is a source of the non-
normality of the eigenmodes of the linearized Navier–Stokes
equations. They have found that near-wall turbulence in an
incompressible channel flow decays without this linear cou-
pling term. This shows that the maintenance of the turbulent
state relies on a linear process. Whether the same behavior
occurs in high Mach number compressible boundary layers

is the subject of this section. For the wall-normal velocity v
and the wall-normal vorticity �y, the linearized Navier–
Stokes equations in the incompressible case can be written in
an operator form

�LOS�v� = 0

LSq��y� =
dUb

dy
�zv � ,

where LOS and LSq represent the Orr–Sommerfeld and
Squire operators. The coupling term is given by dUb /dy�zv,
where Ub is the mean velocity about which the Navier–
Stokes equations are linearized. The nonlinear equations can
be written in a similar form �see Ref. 26 for details�. By
running a fully nonlinear simulation and dropping only the
linear coupling term, Kim and Lim26 showed that the turbu-
lence could not be sustained and the flow became laminar.
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For the compressible case, the three velocity equations
can be written in wall-normal velocity-vorticity form, which
formally reads �see the Appendix�

�LOS
c �v� = 0

LSq
c ��y� = 
hC −

dUb

dy
�zv � ,

where LOS
c and LSq

c are the corresponding operators in the
compressible case to the operators LOS and LSq. The term

hC in the �y equation originates from adding a term to the
u-equation and another to the w-equation. To remove the
coupling term, we set 
hC=dUb /dy�zv and we solve this
two-dimensional �2D� Poisson equation at every iteration to
determine C. A Fourier spectral method with modified wave
number has been used to solve this Poisson equation.

The turbulence decays as a result of removing the cou-
pling term for both M�=2.5 and M�=7.5. For the lower
Mach number, this result is expected from the behavior of
the incompressible case. However, the decay at higher Mach
number, shown in Fig. 20, constitutes a more interesting re-
sult. To our best knowledge, this result is the first direct
demonstration that compressible turbulence decays when the
non-normality of the underlying linear operator in the non-
linear flow is removed. Therefore, while the formation of the
commonly observed near-wall turbulence structures, i.e.,
streamwise vortices, is known to be essentially nonlinear
�e.g., Refs. 27 and 28�, the maintenance of the turbulence
relies on a linear process. The linear coupling term is neces-
sary to generate the wall-layer streaks, the instability of
which in turn is believed to strengthen the streamwise vorti-
ces through a nonlinear process. A companion paper ad-
dresses this issue and discusses the process of streamwise
vortices generation.

IV. CONCLUSION

Predicting the turbulent flow characteristics in a high
Mach number boundary layer and studying the associated
physical phenomena requires accurate numerical simula-
tions. This represents a twofold challenge for the numerical
study: the numerical scheme on one hand and the inflow

boundary condition generation algorithm on the other. We
have presented a robust and easy-to-implement method for
generating the inflow turbulent conditions for compressible
turbulent boundary layers. This method allows us to gather
turbulence statistics after a short transient time and gives full
control of the value of the final R�.

To improve our understanding of the fundamental phys-
ics of supersonic boundary layers, we have used this method
to perform a parametric study varying the free-stream Mach
number from 2.5 up to 20 �without taking into account the
real gas effects�. The turbulence statistics given by the direct
numerical simulations are in good agreement with existing
results. The van Driest-transformed mean velocity, that is,
the density-weighted mean velocity, is found to satisfy the
incompressible logarithmic law uvd

+ =1 /k log�y+�+C, with k
and C similar to their incompressible values. When rescaled
using the wall quantities, the fluctuations of the velocity and
vorticity for different Mach numbers collapse into Guarini’s
result at M =2.5 and therefore into their incompressible
counterparts. The budgets of the turbulent kinetic energy are
nearly unchanged with increasing Mach number. The maxi-
mum of the turbulence production is located around y+�10
and the contribution of the pressure dilatation term remains
negligible, consistent with previous observations �e.g.,
Refs 2 and 4�.

We have shown that the apparent increase in the magni-
tude of the fluctuating Mach number with increasing free-
stream Mach number is a variable-property effect. Using the
mean density to scale the fluctuating Mach number collapses
results for different free-stream Mach numbers. The increase
in the pdf tails of the dilatation �, a direct measure of the
compressibility, has also been shown to be a variable-
property effect. Compressible boundary layers are also
shown to be similar to incompressible boundary layers in
that, without the linear coupling term, the turbulence cannot
be sustained. The linear coupling term is necessary to gener-
ate the wall-layer streaks, in spite of the fact that the genera-
tion of the streamwise vortices is essentially nonlinear. For
an adiabatic wall, the near-wall structure exhibits the same

FIG. 19. �Color online� Streamwise velocity perturbation at y+=15 for
M�=2.5 �top� and M�=20 �bottom�. The arrow indicates the typical streaks
spacing of 100 wall units.

FIG. 20. �Color online� Simulation without the coupling term. M�=7.5.
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characteristics as in incompressible turbulent flow in terms
of the spanwise spacing of the streaks ��100+� and the span-
wise spacing of wall-normal velocity ��20+�. Finally, in an
isothermal simulation with a cold wall ��q�0�, the streaks
are longer, whereas for a hot wall ��q�0�, they are shorter,
in comparison with the simulation with an adiabatic wall
��q=0�.
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APPENDIX: WALL-NORMAL VELOCITY-VORTICITY
FORM

Consider the governing equations for incompressible
flow

�tu + Ub�xu + v
dUb

dy
− �zC = − �xp + r . h . su,

�tv + Ub�xv = − �yp + r . h . sv,

�tw + Ub�xw + �xC = − �zp + r . h . sw,

where u, v, and w are the streamwise, wall-normal, and span-
wise velocity perturbations and Ub is the base flow. The
terms r .h .su, r .h .sv, and r .h .sw contain the remaining vis-
cous and nonlinear terms. The terms −�zC and �xC are de-
fined below. By taking the sum of the derivatives of the
three equations above, we obtain the pressure equation

p=−2dUb /dy�xv. Then, from the equations of u and w, we
get the equation for �y. Multiplying the v-equation by v and
replacing the pressure term by the equation above, we get the
following system for v and �y:

�LOS�v� = 0

LSq��y� = 
hC −
dUb

dy
�zv � .

Note that Kim and Lim’s virtual flow, in which the linear
coupling term is not present, is equivalent to setting 
hC
=dUb /dy�zv, where 
h=�xx+�zz is the horizontal Laplacian.
Hence, this manipulation corresponds to adding the terms
−�zC and �xC in the equations above, where C is computed
at every iteration by solving the 2D Poisson equation at ev-
ery y-location.

For the compressible case, the three velocity equations

�tu + Ub�xu + v
dUb

dy
− �zC = −

T

	M�
2 �xp + r . h . su,

�tv + Ub�xv = −
T

	M�
2 �yp + r . h . sv,

�tw + Ub�xw + �xC = −
T

	M�
2 �zp + r . h . sw

give formally

�LOS
c �v� = 0

LSq
c ��y� = 
hC −

dUb

dy
�zv � .

To drop the coupling term between the velocity v and the
vorticity �y, we set 
hC=dUb /dy�zv. A Fourier spectral
method with modified wave number is used to solve this
Poisson equation.
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