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Canonical problem of interaction of a normal shock and isotropic turbulence is 
fundamental to many important scientific and engineering applications. Most widely used 
shock capturing methods for the numerical simulation of compressible flows are inherently 
dissipative, only first order accurate and may incur numerical oscillations near the shock 
waves. Since high order methods are critical for direct numerical simulation of turbulent 
flows, we use a shock-fitting method that has been shown to be fifth-order accurate near as 
well as away from the shock. Moreover, unlike shock-capturing schemes, there are no 
spurious oscillations even with very strong shock waves. We carry out Direct Numerical 
Simulation (DNS) of canonical shock-turbulence interaction problem for flows with mean 
Mach numbers ranging from 2 to 20 and turbulent Mach number varying from 0.12 to 0.38. 
A Reynolds number based on Taylor microscale, Re , of up to 40 is used, requiring more 
than 30 million grid points per simulation. Such high mean Mach number values have never 
been considered in past for study of shock turbulence interactions. Some new trends are 
observed in turbulent statistics as mean Mach number is increased. Maximum value of 
streamwise velocity fluctuations downstream of the shock is found to be initially decreasing 
as Mach number is increased but for stronger than Mach 8 shocks this trend reverses. 
Similarly maximum streamwise vorticity fluctuations in post-shock flow first increase and 
then decrease as mean Mach number is increased. We observe that vorticity fluctuations 
return to isotropy behind the shock for some cases. Increasing mean Mach number and 
Reynolds number leads to delay in the return to isotropy in the vorticity fluctuations. 
Overall, the results generally confirm the findings by earlier numerical simulations and 
provide new trends for stronger shocks than those considered by numerical studies in the 
past.   

1 INTRODUCTION 

Many important scientific and engineering applications involve complex interactions 
between turbulent flows and strong shocks. Very high rates of compression and expansion waves 
in turbulent flows are observed in a number of explosive phenomena such as volcanic eruptions, 
detonations, shock wave lithotripsy to break up kidney stones, supernova explosion, as well as 
the implosion of a cryogenic fuel capsule for inertial confinement fusion (ICF). These processes 
are strongly nonlinear and proven to be very complex to understand with existing tools. The 
problem of interaction of the turbulence and normal shock is fundamental for better 
understanding of such complex phenomena. The relevant problem for the present study is 
interaction of normal shocks with free turbulence as shown in Fig. 1. Complex linear and non-
linear mechanisms are involved in this problem that significantly affect the shock wave as well 
as the turbulence statistics. This fundamental shock-turbulence interaction problem has been a 
challenge for experimentalists, theorists and computational researchers for more than fifty years. 
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Numerical simulation of such complex problems warrants very high-order numerical 
methods. High-order shock capturing schemes have been the methods of choice in most previous 
numerical simulation studies of shock turbulence interaction[1-4]. However, popular shock-
capturing schemes reduce to first order accuracy near the shock due to the use of dissipation near 
the shock [5-7]. Moreover, spurious numerical oscillations have been observed when solving 
strong-shock and turbulence interaction problems with shock-capturing schemes[7, 8]. In our 
previous work [6, 9, 10], we presented shock-fitting algorithms that converge with high-order 
accuracy near as well as away from the shock. These methods were also extended for direct 
numerical simulation of shock-turbulence interactions [10]. In this paper, we present extensive 
results to estimate effects of mean Mach number, turbulent Mach number and Reynolds number 
on post-shock flow in shock-turbulence interactions. A brief summary of the literature in the 
field is presented in ensuing sections followed by the scope of current study. 
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Fig. 1: A schematic of typical setting of isotropic shock and turbulence interaction.

 

1.1 Theoretical Studies 
Theoretical studies in this field have been attempted mostly through linear interaction 

analysis, where small perturbations in flow are considered. Kovasznay [11] showed that weak 
turbulent fluctuations of velocity, pressure and entropy about mean uniform flow can be 
decomposed into vorticity, acoustic and entropy modes. Each of these modes were shown to 
evolve independently for the first order approximation under inviscid flow assumption for mean 
uniform flow. Ribner [12-14] and Moore [15] were among the earliest researchers to carry out 
theoretical shock-turbulence interaction analysis. Ribner [12] analyzed interaction of a plane 
sinusoidal disturbance in velocity passing through a shock as a boundary value problem. In his 
analysis the shock was kept steady by solving the equations in a moving reference frame. It was 
found that initial velocity wave is amplified and refracted by the shock. He later generalized this 
result from single wave to obtain shock-interaction effects of a completely turbulent velocity 
field [13] and obtained significant turbulent amplification due to shock turbulence interaction. 
Moore [15] performed unsteady analysis of interaction of obliquely traveling weak plane 
disturbances of arbitrary profile with a plane normal shock. Unlike Ribner's analysis, unsteady 
shock was considered for linear analysis the interaction of sound and vorticity waves with an 
unsteady shock. It was found that amplification of disturbances depends on impingement angle 
and Mach number of the shock. McKenzie and Westphal [16] derived formulas for amplification 
and Snell's Laws for refraction and reflection of acoustic, vorticity and entropy waves interacting 
with shock and applied the results to the amplification of small disturbances in the solar wind on 



a passage through the bow shock of earth. More recent theoretical studies of shock and 
turbulence interaction are by Goldstein [17], Lee et al. [1, 18, 19], Mahesh et al. [2, 3, 20] and 
Fabre et al. [21, 22]. It was found in these studies that different components of the turbulent 
kinetic energy, as well as fluctuations in pressure, temperature and density are amplified across 
the shocks. Despite several assumptions, Linear Interaction Analysis (LIA) satisfactorily predict 
essential characteristics of the interaction. 

1.2 Numerical Studies 
Since the early 80s, various attempts have been made towards the numerical simulation 

of shock and turbulence interaction. Initial efforts in this regard considered interaction of the 
shock with simple waves. In 1981, Pao and Salas [23] fitted the shock at inflow boundary and 
solved Euler equation with finite difference discretization for study of shock/vortex interaction. 
Shock fitting computations with pseudo-spectral (Zang et. al [24]) and spectral techniques 
(Hussaini et al [25, 26]) were later used to treat the problems in which a single vortex, a vortex 
sheet, an entropy spot or acoustic wave interacts with the shock. The results obtained from these 
numerical efforts confirmed the linear theory in the regime of weak shocks. With the advent of 
essentially non-oscillatory (ENO) and related schemes, shock-capturing methods gained 
popularity for simulations of compressible flows. A number of new schemes for compressible 
flows has since been tested for interaction of shock with small disturbances against the results 
obtained from linear theory [26-28]. Although limited to low Mach numbers, these studies 
mostly confirm the LIA results. 

The numerical studies of fully turbulent field interacting with shocks are more recent. For 
the simulation of the turbulent field DNS methods and large eddy simulations (LES) have been 
used. However these different types of methods give different results when interaction with 
shock is considered [29]. Most of the recent direct numerical simulation (DNS) studies have 
been on various aspects of interaction of a normal shock with freestream turbulence for relatively 
weak shocks of small Mach numbers. For example, Mahesh et al. [2, 3] did extensive direct 
numerical simulation (DNS) study of the interaction of a normal shock with an isotropic 
turbulence. The mean shock Mach numbers were in the range of 1.29 to 1.8. They found that the 
upstream correlation between the vorticity and entropy fluctuations has strong influence on the 
evolution of the turbulence across the shock. They also used linear analysis to analyze the 
simulation results. Other shock/turbulence interaction studies have been conducted by the same 
group of workers [18, 30]. Lee et al. [18] investigated the effect of Mach number on isotropic 
vertical turbulence interacting with a shock wave. The range of Mach numbers was in the range 
from 1.5 to 3.0. A shock-capturing scheme was developed to accurately simulate the unsteady 
interaction of turbulence with shock waves. It was found that turbulence kinetic energy is 
amplified across the shock wave, and this amplification tends to saturate beyond Mach 3. 
Hannapel et al. [31] computed interaction of a Mach 2 shock with a third order in space shock-
capturing scheme based on the essentially non-oscillatory ENO algorithm of Harten together 
with an approximate Riemann solver. Jamme et al. [4] carried out a Direct Numerical Simulation 
(DNS) to study the interaction between normal shock waves of moderate strength (Mach 1.2 and 
Mach 1.5) and isotropic turbulence. Adams and Shariff [32, 33] proposed a class of upwind-
biased finite-difference schemes with a compact stencil for shock/turbulence interaction 
simulation. They used this nonconservative upwind scheme in smooth region while a shock-
capturing ENO scheme was turned on around discontinuities. This idea of hybrid formulation 
was improved by Pirozzoli [34] who used similar hybrid formulation for a compact weighted 



essentially non-oscillatory (WENO) scheme with conservative formulation for the simulation of 
shock turbulence interaction. Ducros et al. [35] developed larger-eddy simulation(LES) on the 
shock/turbulence interaction by using a second-order finite volume scheme. The method was 
then used to simulate the interaction of a Mach 1.2 shock with homogeneous turbulence.  

Recently, there has been more focus towards the strong shock and turbulence interactions. 
Larsson et al.[36] considered shock-turbulence interaction problem with a hybrid scheme which 
uses flow paramters based sensor to switch between high order WENO scheme and a high order 
central difference scheme. They investigated shock waves as strong as Mach 6 shocks and 
carried out highly resolved simulations. They observed that vorticity fluctuations return to 
isotropy behind the shock. Grube et al.[37] used 4th order bandwidth-optimized WENO schemes 
to compute interaction of highly compressible turbulence with a Mach 5 shock. They reported 
results of turbulence statistics being similar to the case of weakly compressible flows but also 
observed highly distorted shock shapes in some instances. 

It is observed that most of the studies in field of shock-turbulence interaction used shock 
capturing and did not go beyond computations of Mach 3 shocks. The reason for that could be 
decrease in shock thickness as shock gets stronger since shock-capturing schemes will need a 
finer resolution for that case. Recently, Sesterhenn et al. [38] revisited shock-fitting schemes and 
applied them for solving Navier-Stokes equations in non-conservative form for problem of 
interaction of Mach 3 shock with isotropic turbulence. Shock-fitting considers the shock as a 
discontinuity. Hence, unlike shock-capturing schemes, it is not limited by need of finer 
resolution around the shock and should be easily applicable for DNS studies of strong shocks. 

 
1.3 Shock-Fitting Methods 
 

Shock fitting schemes have been used for simulations of compressible flow with well-
defined shocks since 1960s. Moretti and collaborators developed efficient and reliable codes 
using shock fitting for steady and time-dependent flows [39-42] . In order to compute shock 
velocities, the Rankine-Hugoniot conditions were used with a compatibility equation along a 
generator of the characteristic conoid reaching the shock. Later a modification of the scheme was 
used by de Neef and Moretti [43] where temporal derivatives of the Rankine-Hugoniot 
conditions were used with characteristic equations to find the shock velocity. Since such flows 
do not need any shock capturing, conservative forms of the governing equations were not 
required. Moretti used Reimann's characteristic equations; discretizing them based on the 
direction of propagation of the associated waves. Such methods were named -schemes [44] 
and were used exclusively with shock-fitting method [45-49]. Moretti also considered multi-
dimensional flows where shocks are not aligned with any grid lines but float across the grids 
[50]. Further work was done on this floating shock-fitting technique to make it simpler [51, 52]. 
However, topological problems were encountered if more than one shock were present. A review 
of the development of the shock fitting methods can be found in Refs. [53, 54]. 

Original shock-fitting schemes with grids aligned with the shock were adopted by a 
number of researchers. In the 1990's shock-fitting was used mostly for solving flow over blunt 
bodies. The bow shocks were treated as a computational boundary. Pseudo-spectral 
approximations to the Euler equations employing shock fitting were first performed by Hussaini 
et al. [25]. Kopriva [55, 56] used Chebyshev spectral collocation method, in conjunction with 
shock-fitting and extended it to multidomain [57]. Cai [58] used a shock-fitting algorithm to 
compute two-dimensional detonation waves. Zhong [59] developed new high-order finite 



difference schemes and coupled them with shock-fitting algorithm for the study of hypersonic 
boundary layers. These schemes were used for the receptivity studies for supersonic boundary 
layers [60-64]. Recently, Brooks and Powers [65] have extended Kopriva's spectral method with 
shock fitting to solve two-dimensional axisymmetric Euler equations in a cylindrical coordinate 
frame for blunt body problem. 

As discussed earlier, shock-fitting method has also been applied to problem of shock and 
disturbance interactions. Sesterhenn et al. [22, 38] decomposed inviscid part of the three-
dimensional Navier-Stokes equations in characteristic (acoustic and convective) waves aligned 
with the numerical grid. Variables representing these characteristic waves are discretized using a 
compact fifth-order upwind scheme. This method is an extension of Moretti's -schemes and 
has been validated for the problems of shock and entropy spot interaction and the shock and 
isotropic turbulence interaction. This scheme is different from the shock-fitting scheme we are 
using [59]. We solve the Navier-Stokes equation in conservative form as opposed to the non-
conservative formulation used by Sesterhenn et al. [38] since it enables us to capture weak 
discontinuities behind the main shock. 

It has been discussed in literature [38, 66] that smallest length scale  (Kolmogorov length 
scale) and shock thickeness  in the compressible flow are related as: 

0.13 Re ( 1) tM M .  For the stronger shocks and small turbulent Mach numbers shock 
thickness is actually one to two orders of magnitude lesser than the smallest length scales 
captured in the simulations. Moreover, the Navier Stokes equations are considered invalid inside 
the shock. Shock capturing schemes spread the shock artificially over finite number (generally 5-
6 grid points). On the other hand, shock fitting algorithm considers the shock a sharp interface 
and exact jump conditions across the shock are implemented. Hence, results from shock fitting 
algorithm are expected to approximate the real physics of the problem well for strong shocks. 
These shock fitting schemes have been widely used in past for highly accurate simulations of 
hypersonic flows [60, 61, 64, 67]. Shock fitting methods consider the shock as a sharp 
discontinuity and there is no numerical smearing of the shock fronts. Compared to shock 
capturing methods, the main advantage of shock fitting methods is the possibility of achieving 
uniform high-order accuracy for flow containing shock waves and avoiding possible spurious 
oscillations. On the contrary, most of the popular shock-capturing methods are only first-order 
accurate at the shock and may incur spurious numerical oscillations near the shock 

1.3 Motivation and Scope of Current Study 
A study of the literature in the field of shock interactions with turbulence shows that 

current scientific understanding of shock-turbulence interactions in complex configurations and 
the ability to reliably predict these strongly nonlinear flows remains limited. Most of the popular 
methods for solving compressible flow involve shock-capturing algorithms for treatment of 
shock. However, it has been observed that even high-order shock capturing methods give low 
accuracy at the shock [5] and might lead to spurious oscillations [8]. Many shock capturing 
method introduce some dissipation to avoid spurious oscillations which, however, is not accurate 
enough for simulation of turbulent flow. On the other hand, conventional high-order methods 
generally used for DNS studies have numerical problems due to strong gradients around shock. 
Thus, DNS of shock and isotropic turbulence interaction has not been possible for stronger than 
Mach 6 shocks due to limitations of computational resources for the used shock capturing 
algorithms.  



Current work is continuation of our efforts presented in Refs.[6, 9, 10]. Here, underlying 
idea is to develop and use shock-fitting along with high order schemes to gain knowledge about 
nonlinear phenomena involving interaction of strong shocks and turbulent flows. Shock fitting 
algorithms treat the shock interface sharply without any dissipation hence they are compatible 
with low dissipation schemes used for DNS of turbulent flow. Shock fitting methods are ideally 
suited for the cases where there is a clearly demarcated interface which is indeed the case for the 
problem of turbulent flow incoming to a strong shock as shown in Fig. 1. In our previous work [6, 
9], some simple canonical problems were considered by us and results obtained point to the high-
order accuracy of the shock-fitting methods for such problems.  

In our previous work we have developed and evaluated the shock-fitting methodology for 
canonical problems where flow disturbances interact with a strong shock [6, 9] in one and two 
dimensional setups. It was observed that results from shock-fitting methods for such problems 
showed uniformly high-order convergence and did not incur any spurious numerical oscillations. 
On the other hand, the popular shock-capturing methods were found to be only first order with 
non-physical oscillation around the shock. Since high-order accuracy is desired for the 
simulation of turbulent flow, shock-fitting methods provide a very good alternative to the shock-
capturing method when a well defined strong shock is present in the flow. We extended this 
method for simulation of shock and turbulence interactions [10]. Focus of the current study is to 
carry out extensive parametric study of canonical shock turbulence interaction problem using 
shock-fitting DNS as a tool. Thrust is mainly on strong shocks which have not been considered 
in past due to computational limitations of the prevalent numerical methods. In remaining part of 
this paper we briefly present the governing equations and numerical method for shock-fitting 
algorithm. This is followed by the discussions on shock fitting implementation for shock 
turbulence interactions and results for shock and turbulence interactions. 

2 GOVERNING EQUATIONS 

The governing equations are compressible Navier-Stokes equations which are given as 
follows : 
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All the terms in the above governing equations are in nondimensionalized form where 
important characteristics of the flow upstream of the shock are used for nondimensionalization. 
Simulation of incoming isotropic turbulence is carried out as a temporal simulation in a periodic 
box. Initial conditions for periodic box are random fluctuations in flow variables with prescribed 



spectra (with 0k  as the most energetic wave number) and given velocity fluctuations. Root mean 
square (rms) values of these velocity fluctuations *

0u , upstream fluid density *
1  and temperature 

*
1T  are chosen to nondimensionalize all the flow variables and functions. Length is 

nondimenionalized by *
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0  is the Taylor microscale.  
The viscous stress and the heat flux are given by the usual constitutive equations in 

Newtonian fluid as follows 
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where μ is the viscosity coefficient determined by the power law, 
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where 0  and 0T  are reference values. The thermal conductivity k is computed from the Prandtl 
number, which is assumed constant at 0.7 in this paper. 

3 NUMERICAL METHOD 

We use a fifth-order shock-fitting algorithm treating the shock as a sharp entity. For the 
preliminary results presented in this paper, the shock is taken as boundary of the computational 
domain and fifth-order shock-fitting method of Zhong [59] is used for solving the flow between 
shock and exit boundary (Fig. 1). The flow variables behind the shock are determined by 
Rankine-Hugoniot relations across the main shock and a characteristic compatibility relation 
from behind the shock. The velocity and location of the shock are solved as part of the solutions. 
In the interior, solution of conservative compressible Navier-Stokes equations is carried out 
using the numerical method described in this section. 

In numerical simulation, the compressible Navier-Stokes equations (2) to (4) are written 
in the following conservative form, 
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where U is the solution vector given by  
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E, F, G are the inviscid flux terms, and Ev, Fv, Gv are the viscous terms. They are written as 
follows 
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In the conservative equation (7), the inviscid fluxes and the viscous fluxes have the same 

forms as those of the Navier-Stokes equations. Before discretizing the governing equations by a 
finite difference method, equation (7) in the physical domain is transformed to the shock and 
boundary fitted computational domain by the following transformation relations, 
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and the transformed governing equation in the computational domain is expressed as follows 
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An explicit finite difference scheme is used for spatial discretization of the governing 

equation (16), the inviscid flux terms are discretized by a fifth-order upwind scheme, and the 
viscous flux terms are discretized by a sixth-order central scheme. For the inviscid flux vectors, 
the flux Jacobians contain both positive and negative eigenvalues. A simple local Lax-Friedrichs 
scheme is used to split vectors into negative and positive wave fields. For example, the flux term 
F  in Eq (18) can be split into two terms of pure positive and negative eigenvalues as follows 
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The parameter  is a small positive constant added to adjust the smoothness of the splitting. The 
fluxes F + and F - contain only positive and negative eigenvalues respectively.  Therefore, in the 
spatial discretization of Eq. (7), the derivative of the flux F is split into two terms 
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where the first term on the right hand side is discretized by the upwind scheme and the second 
term by the downwind scheme. 

The fifth-order explicit scheme utilizes a 7-point stencil and has an adjustable parameter 
 as follows 
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where 3 2 1
1 1 5 51 ,  9 ,  45 ,  

12 2 4 3i i i i and 60ib . The scheme is 

upwind when  <  0 and downwind when  > 0. It becomes a 6-order central scheme when  = 0 
which is used for discretizing viscous terms. 

4 DNS OF SHOCK-TURBULENCE INTERACTION: IMPLEMENTATION 

As shown in Fig. 1, incoming flow to the shock wave is supersonic for the problem under 
consideration and shock fluctuations are small for the cases considered in this study. Hence, the 
flow upstream of the shock is not affected by the nominally normal shock wave or the flow 
downstream. For computational efficiency, supersonic turbulent flow ahead of the shock wave 
can be computed in separate simulation. Hence, computational domain for the shock fitting 
method for shock-turbulence interaction problem consists of flow only downstream of the shock. 
A schematic of the shock-fitting implementation for the shock-turbulence interaction problem is 
shown in Fig. 2. We first compute decaying isotropic turbulence in a periodic box to generate the 
realistic turbulent fluctuations that can be used as incoming turbulence for the shock-fitting 
algorithm. This is shown schematically in Fig. 2(a). Using the Taylor hypothesis, the turbulent 
fluctuations generated from Fig. 2(a) are imposed on supersonic flow and used as inflow 
condition at the shock. The computational domain for implementation of shock-fitting algorithm 
is shown in Fig. 2(b) where the shock front forms the left boundary. Periodic boundary conditions 
are used in the transverse directions and non-reflecting characteristic boundary conditions are 
used at the subsonic exit of the computational domain. 

Reliable numerical simulation of shock and turbulence interaction needs good 
approximation to realistic turbulence as the inflow condition. Ideally, one should generate 
spatially evolving turbulence and prescribe it just behind the shock. Such turbulence should be 
statistically stationary and homogeneous in transverse directions while evolving in streamwise 
direction. Obtaining spatially evolving turbulence with desired statistics is expensive since fields 
for these computations are needed to be computed and averaged over time as well as transverse 
directions. On the other hand, computation of temporally decaying isotropic turbulence is much 



simpler and computationally inexpensive as periodic boundary conditions are used and all the 
statistics are obtained from only one snapshot of the flow field. A common practice [1-4, 36, 37] 
for providing inflow conditions has been to compute decaying isotropic turbulence and convect 
the flow field with mean streamwise velocity using Taylor's hypothesis [68] of ``Frozen 
Turbulence''. Lee et al. [69] investigated validity of Taylor's hypothesis for solenoidal turbulence 
in compressible flows and found that spatially evolving turbulent statistics can be approximated 
really well by those obtained from a temporal simulation using Taylor's hypothesis if the 
turbulent fluctuations are small enough. It is recommended to have turbulent Mach number, 

0.5tM , and turbulent intensity, 1 1/ 0.15rmsu u , with solenoidal incoming turbulence for 
application of Taylor's hypothesis. These requirements align well with the scope and utility of 
our shock-fitting method. Hence, in this study, we generate the inflow conditions from temporal 
simulation of initially solenoidal turbulence in a periodic box and use Taylor's hypothesis to 
convect the turbulent fluctuations with mean flow velocity as inflow condition for shock-fitting 
computation.  

 
Fig. 2: Schematic showing computational domains and typical streamwise vorticity iso-contours 
(colored by transverse vorticity contours) for simulation of shock-turbulence interaction using 
shock-fitting algorithm. The inflow turbulence is generated by simulation of decaying isotropic 

turbulence in a periodic box as shown in (a). The turbulent fluctuations are imposed as left 
boundary condition of the actual computational domain for shock-fitting algorithm as shown in (b). 

 

4.1 Inflow Computation: Decaying Isotropic Turbulence 
Simulation of decaying isotropic turbulence in a periodic box is started with initial 

conditions generated using the algorithm given by Erlebacher et al [70]. The algorithm is based 
on generating random fields for fluctuations of flow variables and imposing a given spectrum. 
Following spectrum is imposed on the fluctuations of flow variables: 

 
 24
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 Where 2 2 2
1 2 3k k k k  is the wave number of fluctuation and 0k  is the most energetic wave 

number. This method offers flexibility to generate various turbulent regimes.  



The most important parameters that govern the physics of shock turbulence interactions 
are turbulent Mach number tM  and Reynolds number based on Taylor microscale . These 
quantities are defined as follows: 
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In this paper, for any given variable f , f  denotes an ensemble average and f is mass-
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With the nondimensionalized governing equations following parameters are used as 
initial condition for generating initial random fluctuations: upstream mean density, 1 1 , 
temperature 1 1T , initial rms value of velocity fluctuations 0 1rmsu , Pr 0.7 , 1.4 . Any 
values of initial turbulent Mach number, 0tM , and initial Reynolds number, 0Re  are can be 
chosen. Nodimensionalized gas constant is given by 2

03 / tR M  and reference viscosity is 
given as 0

0 1 0 ,0Rermsu  0 02 k . 

The initial conditions are assigned in a box of dimension 32 and compressible Navier-
stokes equations are solved using periodic boundary conditions in all three directions until 
reasonably realistic turbulence is achieved. We use a fifth order upwind finite-differencing 
scheme [59] for this purpose. Skewness of streamwise velocity derivatives is an important 
parameter that is monitored during the simulation of decaying isotropic turbulence. This 
parameter is defined as follows: 
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Skewness of velocity derivatives is a measure of inertial non-linearity of turbulence. For 
the parameters considered here, a realistic turbulence should have 1S  in the range -0.4 to -0.6 [1, 



3, 4]. In all of our calculations of inflow turbulence we found that 1S  reaches steady state in 
0

0 / rmst u . A representative variation of various statistics obtained from simulations is shown in 
Fig. 3 for flow with initial parameters 0 0.175tM  and 0Re 135 . These computations were 
performed with 3512 grid points. Apart from 1S , we also plot variance of dilatation fluctuations, 

/i id u x , variance of velocity fluctuations, turbulent Mach number, tM , and Reynolds 
number based on Taylor microscale, Re . It can be seen that velocity fluctuations are dissipated 
with the time, leading to decay in turbulent Mach number as well as Taylor microscale. Sudden 
increase in dilatation is due to completely solenoidal initial conditions and has been reported in 
previous studies as well[71, 72]. 
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Fig. 3: Evolution of various turbulence statistics in simulation of decaying isotropic turbulence. 

( 0 0.175tM , 0Re 135 ) 
 
After the skewness of velocity derivative, 1S , becomes steady to have value between -0.4 

and -0.6, we choose a flow-field with desired values of tM  and Re  as inflow condition for the 
shock-fitting computations. For example, for the case shown in Fig. 3, flow field at 

0
02.8 / rmst u  is prescribed upstream of the shock which corresponds to 0.122tM , 

Re 40.5  and 1 0.49S  for the incoming turbulence. One can vary the flow conditions of 
decaying isotropic turbulence to obtain well developed realistic turbulence with desired 
statistical properties.  

4.2 Shock-fitting implementation 
The computational domain for implementation of shock-fitting algorithm is shown in Fig. 

2(b). The shock forms the left boundary of the computational domain. The turbulent fluctuations 
generated from Fig. 2(a) on a periodic box of dimensions 32  are imposed on supersonic flow 



and used as inflow condition at the shock. For shock-fitting computations we use a domain of 
size 24 2 and same non-dimensionalization is used as used for inflow computations. Periodic 
boundary conditions are used in the transverse directions and non-reflecting characteristic 
boundary conditions are used at the subsonic exit of the computational domain.   

In the shock-fitting algorithm, the grid distorts with movement of the shock front. 
Turbulent fluctuations described in the previous section are imposed on corresponding 
supersonic flow following Taylor’s hypothesis that is valid for small turbulent intensities 
( 0.5tM  and 1 1/ 0.15rmsu u ). For higher turbulent intensities, it is advisable to carry out 
simulation of spatially decaying turbulence which is more expensive. From the temporal 
simulations inside a periodic box, we obtain values of flow variables at fixed grid points of the 
box while due to shock-movement grid points in shock-fitting computations are not stationary. 
Moreover, when the turbulent box is convected through the shock in the shock-fitting 
computations, the shock-points generally do not align with grid points of the turbulent box. 
Hence, values on the supersonic side of the shock are computed using interpolations. Since in 
our shock-fitting formulation the grids move in only one direction (X-direction in Fig. 2(b)), one 
dimensional interpolation using Fast Fourier Transform (FFT) is sufficient for this purpose. As a 
boundary condition, shock-fitting formulation needs the values of the time derivatives of 
conservative variables ahead of the shock according to the isotropic field which using Taylor’s 
hypothesis are taken as appropriate spatial derivatives. Together with one characteristic coming 
to the shock from the high pressure side, these values determine the shock velocity. Thus, 
downstream flow variables are calculated from the corresponding upstream values, using the 
Rankine–Hugoniot conditions. 

Uniform conditions corresponding to laminar Rankine-Hugoniot jump conditions are 
used as initial condition for simulation of post-shock flow. As the shock interacts with the 
incoming flow, transients are generated. Several flow-through of inflow box are needed before 
turbulence statistics in post-shock flow reach a steady state. Periodic boundary conditions are 
used in the transverse directions and non-reflecting characteristic boundary conditions [73] are 
used at the subsonic exit of the computational domain. This involves prescribing a back pressure 
at the exit. Since, the value of the back pressure is not known beforehand, we assign the laminar 
value of pressure for this purpose. This was found to be sufficient for the low turbulence 
fluctuations suitable for shock-fitting method. To present the effect of the boundary conditions, 
we present results from our normal domain of size 24 2  and a longer domain 26 2  for 
same inflow in Fig. 4. The presented results are computed with incoming flow having mean 
Mach Number, 1 20M , turbulent Mach number, 0.275tM , and incoming Taylor Reynolds 
number of Re 22.4 . Instantaneous results are shown for spanwise mean of pressure values 
after 4t T  and 8t T , where T  represents the time needed for flow-through of one length of 
periodic box. Pressure values are chosen for plotting as they are good indicators of the reflection 
in acoustic waves. As shown in Fig. 4 (a), after time 4t T  the disturbance in the postshock flow 
pass through the exit boundary of the normal length of computational domain ( 1 4x ) but do 
not reach the subsonic exit ( 1 6x ) of the longer domain. It can be seen that the results 
obtained from normal length of computational domain with non-reflecting boundary conditions, 
match well to those obtained from a longer computational domain with no effect of exit 
boundary. As can be seen from Fig. 4(b), even for later times, there is no significant deviation 
between the results from a longer computational domain and normal computational domain.  
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Fig. 4 Streamwise variation of instantaneous spanwise mean of pressure values obtained from two 
different sizes of computational domain using same inflow conditions after (a) 4 flow-through of 

inflow box and (b) 8 flow-through of inflow box. 
 
It is also important to note that the region where significant statistical variations occur 

stays close to the shock-boundary. For computations of statistics, we need averaging over 



transverse directions as well as in time as the turbulence behind the shock is stationary and 
homogeneous in spanwise directions. We found that storing and computing averages from 60 
instantaneous flow-fields during flow-through of one length of inflow box is necessary for 
statistical convergence. 
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Fig. 5: Profile of streamwise-streamwise Reynolds stress computed using 60 snapshots of flow-fields 

at different points in time. 
 

In Fig. 5, we show streamwise-streamwise Reynolds Stress, " "
11 1 1R u u  (normalized by 

inflow Reynolds Stress), computed for one flow-through of inflow box at several different points 
in time. These calculations are for inflow conditions of 1 20M , 0.126tM  and Re 15.8 . 
All of these cases used 60 snapshots for averaging the statistics. It can be seen that statistics 
reach steady state in longer region behind the shock wave as time progresses. It was observed 
that for 1 20M , we obtain steady state in a region of length 025 / k  behind the shock after 8 
flow-through lengths of the inflow. For lower Mach numbers, this region is larger. In our study, 
for most of the inflow cases, statistics are gathered for 8 flow-through lengths of the inflow and 
they were found to be converged for around half the computational domain behind the shock. 

4.3 Computational Considerations: Grid Convergence 
It is observed from shock-turbulence interaction simulations that turbulent fluctuations 

are generally much stronger just behind the shock. A typical distribution of density values in X-
Y plane is shown in Fig. 6(a). Regions of highest gradients are observed just behind the shock 
while fluctuations attenuate moving towards the exit. Hence, to appropriately resolve the flow it 
is advisable to stretch the grid to cluster it near the shock wave. The grid-spacing in transverse 
direction is determined by the need to resolve all the lengthscales in DNS of turbulent flow. 



 DNS of the shock and turbulence interaction needs a large number of grids to fully 
resolve all the scales involved. For simulation of isotropic flows, it has been suggested [66] that 
one should resolve a wavelength of 4.5 s  where s  is the Kolmogorov length scale for the flow 
in the computational domain. With our high order finite difference scheme such resolution will 
require a grid spacing of 2.0 s  in transverse direction. On the upstream side of the shock, the 
Kolmogorov length scale is defined as 0 0.51 Re . Larsson and Lele [36] have recently 
presented the relation for change in Kolmogorov length scale across the shock which leads to  

11/8 3/8
0 ( ) ( )s s u s up p [74]. Assuming 02 / k , more than 11/8 3/8

06.1 Re ( ) ( )s u s uk p p  
grids are needed in transverse directions. Based on these requirements, we chose to use 128 grid 
points in transverse direction for the inflow Reynolds number of Re 6.2  and Mach number 

1 2 20M . While 256 grid points in transverse direction were found to be sufficient for 
Re 40.5  and 1 2 20M .  
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Fig. 6: Instantaneous iso-contours of density in X-Y plane at the top plane (Z=2 ). 

 
The grid convergence results for the highest Reynolds number case considered in this 

study are presented in Fig. 7 and Fig. 8. Convergence of inflow computation is presented in Fig. 7 
presents result for the case 0Re 135 and 0 0.175tM  for three sets of grids: 3128 , 3256  and 

3512 . As an initial field for these computations, we first generate a randomized turbulence 
having desired spectra for the finest grids. The results are then spectrally filtered for coarse grid 
cases. This procedure is necessary to ensure spectrally same initial conditions for the decaying 
isotropic turbulence. It can be observed from Fig. 7 (a) that fairly converged values of turbulent 
Mach number are obtained for even the coarse grid for decaying isotropic turbulence. This was 
generally found to be true for the values of all the flow variables. However, the quantities 
involving the derivatives of the flow variables are seen to require more grid resolution. Skewness 
of streamwise velocity derivatives, 1S , is plotted in Fig. 7 (b) for the three sets of grids. The 
results from the coarsest grid 3128  are within 5% of the finest grid results but converge to within 
0.4% of the results from the finest grid as grids are doubled in each direction.  
 



 
(a) 

 
(b) 

 
Fig. 7: Variation of (a) turbulent Mach number and (b) skewness of velocity derivatives with time 

in computation of isotropic decay of turbulence with three different sets of grids. 
 

Similar to the inflow results, the main shock-fitting computations also show a better 
convergence for values of the variables as compared to the values of derivatives. These results 
are presented in Fig. 8 for various statistical quantities for three grids: 2256 128 , 2512 256 and 

21024 512 . These grids use snapshots from decaying isotropic turbulence case of Fig. 7(a). The 
inflow conditions are: 1 4M , 0.122tM and Re 40.5 . Results for variation of streamwise-

streamwise Reynolds stress, " "
11 1 1R u u  (normalized by inflow Reynolds Stress 2

0u ) are shown in 
Fig. 8 (a). The results from all three grids are within 0.015% of each other.  
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Fig. 8: Grid convergence of (a) variance of streamwise velocity, (b) variance of streamwise vorticity, 

and (c) transverse Taylor microscale in shock-fitting DNS of shock turbulence interactions. 
 

Streamwise variation of of vorticity variance, " "
1 1  is presented in Fig. 8(b). It is 

observed that there is significant difference between the results from the coarsest grid and the 
finest grid ( 10% ). The results obtained from 2512 256  still stay within 1% of the finest grid. 
Similar results are obtained for transverse Taylor microscale as plotted in Fig. 8 (c). It should be 
noted that the value of mean inflow Mach number chosen puts most stringent requirement on the 
grid resolution. Increasing shock number beyond Mach 4 increases Kolmogorov scale in the 



post-shock flow and thus resolution requirements are relaxed. Based on these findings we use 
2512 256  grids for computing post-shock flow for all the cases having inflow Reynolds number 

in the range 10 Re 40.5 . 

5 DNS RESULTS 

As discussed in previous sections, the shock-fitting method is best utilized for incoming 
turbulence of low turbulence intensities interacting with very strong shocks. Reynolds number 
chosen for the incoming flow is constrained by the availability of computational resources. In 
this study, we present results from 7 different cases of inflow conditions which are listed in Table 
1. We compute 4 cases of DNS computations with incoming flow of turbulence intensities 

0.12tM  while varying mean Mach number from 2-20 and Reynolds number, Re , from 6.2 to 
40.5. These inflow conditions are listed as Cases I-IV. For Re 40 , we also compute 3 cases: 
Cases IV, V and VI, by varying the turbulent Mach number from 0.122 to 0.376 to observe the 
effects of increase in fluctuation amplitude. Case VII has turbulent Mach number and Reynolds 
number within the range of other cases. 

 
Table 1: Cases of inflow conditions considered in this study. 

  M1 Mt Re  Grids 

Case I 2  - 20 0.121 6.2 1282×192 
Case II 2  -  20 0.126 15.8 2562×512 
Case III 2  -  20 0.124 29.2 2562×512 
Case IV 2  -  20 0.122 40.5 2562×512 
Case V 2  -  20 0.185 38.4 2562×512 
Case VI 3  -  20 0.376 39.7 2562×512 
Case VII 2  -  20 0.275 22.4 2562×512 

 
Results are presented here for the mean value of flow quantities along with some 

important statistics for post-shock flow. Following the literature, velocity and vorticity variances 
are considered along with Taylor miscroscales in the turbulent post-shock flow. Where possible, 
comparisons with previous numerical and theoretical studies have also been made. We have 
computed linear theory results based on analysis of Mahesh [20]. In this section, we use tM  and 
Re  to represent inflow values of turbulent Mach number and Reynolds number based on Taylor 

Microscale, respectively. Inflow values of variance of velocity fluctuations, " "
1 1u u , is referred as 

2
0u  in this section. Similarly, 2

0  has been used for denoting variance of vorticity fluctuations, 
" "
1 1  in the incoming turbulence. Taylor microscale in the isotropic turbulence upstream of the 

shock is denoted as 0u  in this section. Results are presented only for post-shock flows ( 1 0x , 
assuming shock at 1 0x ). 



5.1 Mean Profiles 
For the post-shock flows in shock turbulence interactions, the Linear theory results 

assume fluctuations around the mean values given by Rankine Hugoniot jump conditions. Lele 
[75] used results of rapid distortion theory (RDT) to find shock-jump relations in turbulent flows. 
A drift velocity in normal shock moving through a turbulent flow was found to be necessary to 
sustain the laminar density ratio corresponding to the stationary shock. This corresponds to a 
smaller jump in mean density and pressure of turbulence flow across the shock wave than that 
predicted by Rankine Hugoniot conditions. In the Fig. 9, we present the profiles of mean 
streamwise velocity, density and pressure behind the shock for inflow conditions of case IV. 
Mach number has been varied from 2 to 20. Just downstream of the shock wave mean values 
change rapidly. Mean velocity first decreases and then increases while mean values of density 
and pressure show a compression of the flow followed by expansion. As discussed earlier, sharp 
changes behind the shock waves are observed in instantaneous visualization of the flow as well 
and have lead us to use grid refinement near the shock. Similar profiles are observed in all the 
cases considered in this study. It is observed that, for all the cases, mean values of pressure and 
density behind the shock are lesser than those observed in corresponding laminar flow. These 
results are consistent with those reported in the literature [36]. We also observe from Fig. 9 that 
as mean Mach number value of incoming flow is increased at fixed value of turbulent Mach 
number and Reynolds number, the difference between laminar and turbulent post-shock mean 
values decreases. This observation was found to be true for all seven cases of inflow turbulence 
considered in this study.  

To gauge effects of varying inflow turbulence parameters, mean values of density, 
streamwise velocity and pressure resulting from interaction of all seven inflow cases with a 
Mach 5 shock wave are presented in Fig. 10. Cases I, II, III and IV correspond to approximately 
same turbulent Mach number 0.12tM  but different Re values ahead of the shock wave. 
Mean values of density and streamwise velocities for these cases are not much different from 
each other. On the other hand, changing tM  of the inflow has very pronounced effect on the 
deviation of turbulent mean values from corresponding laminar values. Higher turbulent Mach 
numbers at fixed value of mean Mach number lead to larger deviations from the laminar mean 
states. Effect of turbulent and mean Mach number values on mean profiles is consistent with 
RDT based prediction of Lele[75]. It should be noted that the results in this study are obtained by 
assigning laminar postshock pressure at the exit boundary since turbulent jump conditions are 
not known beforehand. This may be the reason the pressure values are observed to be increasing 
towards the laminar mean values downstream of the shock wave. However, the deviations from 
laminar values are very small (less than 1%) and specifying laminar value as exit pressure does 
not affect our solution, as discussed in previous section. From our results it seems that turbulence 
intensity or ratio 1/tM M  is an important factor in determining the deviation from laminar 
values. 
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Fig. 9: Profile of mean values of (a) streamwise velocity, (b) density and (c) pressure for case IV 
( Re 40.5 , 0.122tM ) behind the shock. All variables are normalized by respective laminar 

flow values. 
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Fig. 10: Profile of mean values of (a) streamwise velocity, (b) density, and (c) pressure behind a 

Mach 5 shock wave for the seven cases of inflow turbulence listed in Table 1. 

5.2 Fluctuations in shock-shape 
The shock waves get distorted with the passage of turbulence. To estimate effects of 

variation in inflow turbulence on shock deformations, we plot root mean square values of the 
fluctuations in shock position, rmsH , in Fig. 11 for all seven sets of inflow parameters. The shock 
deformations for the Cases I, II, III and IV which have approximately same turbulent Mach 
number, 0.12tM , at inflow show little variation as Reynolds number Re  is changed. 
However, as we change turbulent Mach number of the incoming flow (Cases V, VI and VII), 
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shock deformations increase appreciably. For all the cases, it is readily seen that increasing 
Shock-strength for a fixed turbulent Mach number, tM , reduces the shock deformation.  

 
Fig. 11: Root mean square values of fluctuations in shock-shape. 

 

 
Fig. 12: Comparison with LIA for RMS values of fluctuations in shock-shape. 

 
To further examine the dependence of shock deformation on inflow parameters, we also 

compute results using Linear Interaction Analysis (LIA) method of Mahesh [20]. The LIA results 
for RMS value of the shock fluctuations are compared with those obtained from this study in Fig. 
12. The rmsH  values has been scaled with '

1 0 1/u k U , where 1U  is the mean streamwise velocity 
ahead of the shock. This scaling comes naturally from LIA. LIA predicts the parameter 

'
0 1 1/rmsH k U u  to be approximately constant for stronger than Mach 2 shocks. This amounts to 
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rmsH  being almost linearly proportional to the turbulence intensity '
1 1/u U  (or 1/tM M ). The 

shock fluctuation predictions from LIA assume perfectly incompressible fluctuations in inviscid 
fluid. Our computations, on the other hand, solve relatively viscous flows using developed 
turbulence. Hence, small deviations from the LIA results are expected. However, as shown in Fig. 
12, for small enough mean Mach number (less than Mach 6), the computational results follow the 
trend predicted by LIA and RMS value of shock deflections, rmsH , vary linearly with 1/tM M . 
For stronger shocks, however, the difference between the linear theory and computations are 
seen to increase as mean Mach number of flow is increased. In general, for very strong shocks, it 
is seen that LIA underpredicts the shock displacement fluctuations. 

5.3 Reynolds Stress 

Linear interaction analysis (LIA) as well as DNS of shock turbulence interactions 
considered by various researchers [13, 76] show that turbulent velocity fluctuations are amplified 
across the shocks. Moreover, the amplification in turbulent kinetic energy is seen to saturate 
beyond Mach 3 shocks [1, 36]. In this study, we compare the shock-fitting results to those 
presented in the literature and extend the results to very strong shocks. For comparisons, we also 
present the results we computed using LIA theory of Mahesh et al. [20]. 

LIA results for evolution of the normal components of Favre’s Reynolds stresses, 
" "

ij i jR u u , behind the shock wave are plotted in Fig. 13 for 1 2.0M . The velocity fluctuations 
are observed to be axisymmetric behind the shock wave and non-diagonal components of 
Reynolds stress tensor, ijR , were found to be close to zero. These values are also compared 
against those obtained from our shock fitting method for case I, i.e. inflow conditions 
corresponding to 1 2.0M , Re 6.18  and 0.121tM . All the stresses are normalized by the 
upstream Reynolds stresses represented as 2

0u . Mean position of the shock wave is at 1 0x .  
It is observed that the turbulent fluctuations in the streamwise directions are reduced 

immediately behind the shock wave while the fluctuations in the transverse velocity increase. 
Just behind the shock, the computed amplification of Reynolds stresses match well to those 
obtained from LIA. However, in the far field LIA results and computed results differ 
significantly as viscous decay of stresses was not taken into account in LIA. For both the LIA 
and computed results, the streamwise fluctuations rapidly evolve behind the shock until a length 
of 03 / k . This can be attributed mainly to the contribution of evanescent acoustic waves to the 
streamwise velocity just behind the shock. Maximum streamwise Reynolds stresses reached 
behind the shock in the computed flow are significantly smaller than those predicted by LIA. In 
the far field behind the shock fluctuations in all the velocities components decay because of 
viscous dissipation. Fluctuations in both the transverse velocity components, " " 2

2 2 0/u u u  and 
" " 2
3 3 0/u u u  almost coincide with each other pointing to the axisymmetry of turbulence behind the 

shock. As compared to the streamwise components, transverse components decay at a higher rate 
and the flow does not seem to return to isotropy in the far field. Similar observations have been 
reported in the previous studies [1, 4, 18, 36] in the literature. The results similar to those shown 
in Fig. 13 were obtained for low values of mean Mach number and turbulent Mach numbers. 
Effect of changing various inflow conditions is discussed in the ensuing text. 
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Fig. 13: Evolution of diagonal components of the Reynolds Stress tensor " " 2

0ij i jR u u u  behind the 
shock compared against those obtained from Linear Interaction analysis. 

 

5.3.1 Effects of changing shock strength for fixed inflow turbulence. 
LIA predicts that the amplification in turbulent kinetic energy saturates for stronger than 

Mach 3 shocks. Moreover, amplification of variance of streamwise velocity fluctuations 
(streamwise-streamwise Reynolds stresses, 11R ) is expected to decrease beyond Mach 3 shocks. 
In past, simulations with very strong shocks have not been attempted to examine these 
theoretical results. We varied mean Mach number of the incoming flow from 2 to 20 for all cases 
of inflow conditions to see the effects of shock strengths on shock turbulence interactions. 
Streamwise variation of 11R  for various shock strengths is presented in Fig. 14 for inflow 
conditions of case III ( Re 29.2 , 0.124tM ). Similar variations were observed in all the 
inflow cases considered in this study. For better representation of the trends we show effects of 
variation of shock strength on amplification of 11R  in two parts. In Fig. 14(a), mean Mach 
number has been varied from 2 to 8. In general, the 11R  values evolve rapidly behind the shock 
wave for all the shock strengths considered and reach maximum value before 0 010 /x k . It is 
observed that maximum value in amplification of streamwise velocity fluctuations decreases as 
the Mach number of the mean flow is increased till 8. The decrease in 11R  is consistent with 
findings of LIA. This trend, however, reverses as shock strength is increased beyond Mach 8 as 
shown in Fig. 14(b). For stronger than Mach 8 shocks, the streamwise velocity fluctuations are 
amplified more as mean Mach number is increased. We also see that rate of decay of 2

11 0/R u  
behind the maximum value decreases as the shock strength is increased till Mach 8 while it is 



almost constant for stronger than Mach 8 shocks. Similar effects of changing the mean Mach 
number were observed in all the inflow cases.  
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Fig. 14: Amplification in variance of streamwise velocity fluctuations for (a) 1 2 8M  and (b)  

1 8 20M  for inflow conditions of case III ( Re 29.2 , 0.124tM ). 
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Fig. 15: (a)Amplification in variance of transverse velocity fluctuations for inflow conditions of case 

III case III ( Re 29.2 , 0.124tM ) with varying Mach number. (b) shows a zoomed view just 
behind the shock. 

 



 
Fig. 16: Streamwise of variation of ratio 11 22/R R  for case III ( Re 29.2 , 0.124tM )  for a 

number of varying mean Mach numbers. 
 
Streamwise profile of variance of transverse velocity fluctuations for the same inflow 

conditions (case III) is shown in Fig. 15. Variance of transverse velocity fluctuations, 22R , is 
amplified by a factor of 2 to 3 across the shocks for 1 2 20M . As can be observed from Fig. 
15, just across the shock, the amplification of transverse velocity fluctuations increases 
monotonically as mean Mach number of the incoming flow is increased. Downstream of the 
shock, 22R  values decay continuously. The decay rate is higher for stronger shocks. As discussed 
for Fig. 13, interaction of isotropic turbulence creates anisotropy in the Reynolds stresses behind 
the shock leading to a higher value of 11R  than 22R  for all the cases computed. We quantify the 
anisotropy in the velocity fluctuations as ratio 11 22/R R . The anisotropy for the inflow conditions 
of case III are shown in Fig. 16. In the far-field, variance of streamwise velocity fluctuations is 
always greater than that observed for transverse fluctuations. Thus, velocity fluctuations remain 
anisotropic. When the mean Mach number is increased while keeping tM  and Re  fixed, the 
anisotropy in the far-field further increases. 

5.3.2 Effects of changing shock strength for fixed inflow turbulence. 
As discussed before, we compute shock turbulence interaction for seven different cases 

of inflow conditions. These inflow simulations are generated using separate simulations each 
starting with different random fluctuations. The only parameters we have controlled are 
Reynolds number and turbulent Mach number of the incoming flow. Effect of these different 
inflow conditions on the velocity fluctuations of turbulence past Mach 4 shock wave are shown 
in Fig. 17. Profiles of 011

2/R u  as shown in Fig. 17(a), show similar evolutions just behind the main 
shock for all the cases and are close to the values predicted by LIA. Further downstream, cases 
with low Re  values show sharp decay in amplitude of velocity fluctuations and maximum value 
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of amplification reached is generally higher for less viscous post-shock flows. Effect of changing 
turbulent Mach number, tM , on the fluctuations is not clear from the cases computed here. The 
peak value of amplification in 11R  is not much different for cases having similar Reynolds 
numbers but different turbulent Mach numbers. Increase in tM , however, forces a higher rate of 
spatial decay of streamwise velocity fluctuations. Fig. 17(b) presents effect of changing inflow 
turbulence on variance of transverse velocity fluctuations. Amplification and initial decay in the 
spanwise-spanwise Reynolds stress, 22R , is predicted well by the LIA computations. Unlike the 
inviscid results from LIA, the transverse velocity fluctuations keep decaying further downstream. 
Higher decay is again observed with the cases of higher viscosity. Effect of increasing turbulent 
Mach number of incoming isotropic fluctuations is to induce faster decay in 22R . These 
observations are representative of the results for smaller than Mach 8 flows. 

In general, we observe that as the shock strength is increased, deviation from LIA results 
also increases. LIA predicts that amplification of turbulent kinetic energy should saturate for 
stronger than Mach 3 shocks. The results presented for 11R  and 22R , however, show an increase 
in velocity fluctuations as mean Mach number is increased. A direct comparison of computed 
streamwise Reynolds stresses with those obtained from LIA is not straightforward. It should be 
noted that, unlike LIA results, the streamwise-streamwise Reynolds stress 11R decays 
downstream of the shock. Hence, it is not clear which far-field value from the computations 
should be chosen for comparison with the LIA results. Researchers in past have made 
comparisons with LIA by extrapolating the 11R  values to the shock location [36]. The LIA 
results, however, spatially evolve behind the shock as well and are not same at shock location 
and far-field. Therefore, we do not extrapolate our results to the shock location for comparison. 
Since the values in the far-field are expected to be affected by viscosity, it is best to compare the 
values of velocity fluctuations just behind the shock, i.e. at 1 0x . This comparison is presented 
in Fig. 18. Here, we also plot values from earlier studies of Lee et al. [1] and Jamme et al. [4]. For 
low values of turbulent Mach numbers, our results match well to those obtained from LIA. Cases 

���������������� ������ �����J� ���� � � ��������r, 
are close to the LIA results only for weaker than Mach 6 shocks. With the stronger shocks, there 
are strong non-linear effects leading to large deviation from LIA in results for these two cases. 
These results are consistent with the observations for shock fluctuations.  

We also find the maximum postshock values of 11R , 22R  and turbulent kinetic energy, 
" "
i iu u  for all the cases computed and compare them against the LIA results. The maximum  

011
2/R u  values for different cases are plotted against far-field values in LIA results in Fig. 19. We 

also plot results from Larsson et al. [36], Lee et al. [1] and Jamme et al. [4] for comparisons. It 
should be noted that results by Larsson et al. [36] were obtained by extrapolating the velocity 
variances to the shock position. Their results are presented here as guideline only. Extrapolated 
values are expected to be higher than the maximum value in the far-field. We do not plot the 
Cases VI and VII from our computations for the sake of better presentation. As discussed 
previously, strong non-linear effects are noted for those two cases leading to high values of 
amplification in streamwise velocity fluctuations for very strong shocks. We observe from Fig. 
19 that LIA results predict that amplification in streamwise vorticity should slowly decrease as 
mean Mach number is increased beyond 2. Previous studies [1, 4, 36], carried out for weaker 



than Mach 6 shocks, support this argument. Our results in the same Mach number range also 
show a decrease in maximum amplification of streamwise velocity fluctuations. However, for 
stronger than Mach 8 shocks this trend reverses and we observe increased amplification of 
streamwise velocity fluctuations for stronger shocks. 
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Fig. 17: Amplification of variances of (a) streamwise velocity and (b) spanwise velocity for seven 

different cases of inflow turbulence on interaction with a Mach 4 shock. 
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Fig. 18: Comparison of results from present work, LIA and those available in literature for 

amplification of variance of streamwise velocity fluctuations just across the shocks of different 
shock-strengths. 
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Fig. 19: Comparison of maximum value of 2

11 0/R u  downstream of the shock wave as obtained from 
present work, LIA and those reported in literature. 
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Fig. 20: Comparison of amplification in variance of transverse velocity fluctuations across the 

shocks of different strengths as obtained from present work, LIA and those available in literature. 
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Fig. 21: Comparison of amplification in turbulent kinetic energy across the shocks of different 

strengths as obtained from present work, LIA and those available in literature. 
 

Maximum variance of transverse velocity fluctuations and turbulent kinetic energy is 
achieved just behind the shock. Result for transverse velocity fluctuations are shown in Fig. 20. It 
is again evident that the shock-fitting results follow LIA results for weak shock waves but 
consistently show higher values than that predicted by LIA for stronger than Mach 7 shocks. 



Consistent with results of the velocity fluctuations, turbulent kinetic energy amplification is 
predicted well by LIA for weaker than Mach 8 shocks, as shown in Fig. 21. We observe an 
increase in turbulent kinetic energy for stronger shocks while LIA predicts a constant value. 
Computations of shock-turbulence interaction problems for such Mach numbers have not been 
undertaken in past and hence such trends have never been observed. Current study supports the 
findings by previous researchers for lower Mach number flows but also finds new trends for the 
flow regimes that were never considered before. 

5.4 Vorticity variance 

For the quasi-incompressible inflow turbulence considered in this study, one of the most 
important contributions to the dissipation of turbulent kinetic energy is expected from the 
vorticity fluctuations. A typical postshock evolution of the variance of the different components 
of vorticity fluctuations, " " , behind the shock is presented in the in Fig. 22 for the inflow 
conditions: 1 3.0M , 40.5Re  and 0.122tM . It can be seen that, as expected, interaction 
of isotropic turbulence creates axisymmetric field in vorticity downstream of the shock. We 
observe that the streamwise vorticity fluctuations do not change significantly as the flow passes 
through the shock. This is in accordance with the linear theory and results obtained in previous 
studies [1, 18, 36]. On the other hand, transverse vorticity fluctuations are significantly amplified 
just behind the shock. For the case shown in Fig. 22, we observe that fluctuations in streamwise 
vorticity increase further downstream of the shock while variance of transverse vorticity 
monotonically decays behind the shock. Eventually, vorticity fluctuations become isotropic 
behind the shock. This confirms the recent DNS results [36, 37] and supports the argument that 
the smallest scales in flow behind the shock return to isotropy.  

 
Fig. 22: Streamwise variation of variances of vorticity components for inflow parameters: 1 3.0M , 

40.5Re  and 0.122tM . 
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Fig. 23:  Streamwise variation of variances of vorticity components for inflow parameters: 

1 20.0M , 40.5Re  and 0.122tM . 
 
Nature of vorticity fluctuations in the post-shock flow vary greatly depending on the 

characteristics of the incoming flow. For example, in the cases of low Reynolds number and high 
mean Mach numbers, return of vorticity values to isotropy is not clearly evident. Variances of 
streamwise and transverse vorticity components for incoming flow of mean Mach number 20 for 
same inflow turbulence as Fig. 22 are plotted in Fig. 23. Streamwise vorticity is unchanged across 
the shock wave but decreases further downstream and remains smaller than transverse vorticity 
over the computed domain. A discussion on effect of various inflow parameters on the variance 
of vorticity fluctuations is given in the following paragraphs. 

5.4.1 Effects of changing shock strength for fixed inflow turbulence. 
LIA predicts an increase in the transverse vorticity values which are expected to remain 

constant downstream of the shock. Amplitude of streamwise vorticity fluctuations is expected to 
remain unchanged throughout the computational domain. We observe these trends at the shock. 
However, downstream of the shock considerable non-linear effects are observed since both 
streamwise and transverse vorticity values change significantly moving away from the shock 
wave. Evolution of variance in streamwise vorticity fluctuations, " "

1 1 , is presented in Fig. 24 
with the varying shock strengths but using same inflow turbulence of case III ( Re 29.2 , 

0.124tM ). We see that, for weaker than Mach 8 shocks, streamwise vorticity increases behind 
the shock. Such increase is attributed to the non-linear tilting and stretching of vorticity and has 
also been reported in the past studies [18, 36]. We see that maximum values achieved by 
variance of streamwise vorticity fluctuations first increase and then decrease as the shock 
strength is increased. For the inflow of case III, as presented in Fig. 24, maximum peak 
streamwise vorticity fluctuations are observed for turbulence interactions with Mach 3 shocks. In 
past, researchers [18, 36] considered weaker than Mach 3 shocks for such comparisons and 
concluded that effect of increasing shock strength is to simply increase the amplification of 
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streamwise vorticity fluctuations. While our results agree to these trend for lower Mach numbers, 
we see that for stronger than Mach 3 flows there is a decrease in streamwise vorticity. It is 
observed that beyond Mach 10 shocks non-linear tilting and stretching is suppressed by the 
viscous dissipation and streamwise vorticity continuously decreases downstream of the main 
shock.  

 
Fig. 24: Effect of increasing mean Mach number on variance of streamwise vorticity for inflow of 

Case III ( Re 29.2  and 0.124tM ). 
 
We observe that effect of increasing shock strength on the streamwise vorticity values is 

also dependent on the inflow conditions being used. Effect of viscosity, in particular were seen to 
be very prominent in determining the variation of streamwise vorticity behind the shocks. As 
compared to Case III, inflow from Case I has lower Reynolds number while that from Case IV 
has a higher Reynolds number. Both of these cases have similar turbulent Mach number of 
incoming fluctuations. Effect of shock strength on the post-shock streamwise vorticity for these 
two cases are presented in Fig. 25 and Fig. 26, respectively. As shown in Fig. 25, for a lower 
Reynolds number case (Case I: Re 6.2 ), it is clearly seen that the streamwise vorticity 
fluctuations are never amplified. This is because of very strong viscous effects. Jamme et al. [4] 
also observe a constant decay in the streamwise vorticity for cases having similar Reynolds 
number. We observe that increasing Mach number increases decay in the streamwise vorticity 
fluctuations for strongly viscous case. As Reynolds number of the inflow is increased, viscous 
dissipation becomes less dominant. Variation of streamwise vorticity fluctuations with changing 
mean Mach number is presented for higher Reynolds number case (Case IV: Re 40.5 ) in Fig. 
26. Similar to the results of Case III, streamwise vorticity values are amplified downstream of the 
shock wave of mean Mach number less than 10. As mean Mach number of the incoming flow is 
increased, the maximum value of variance of streamwise vorticity fluctuations in post-shock 
flow first increases and then decreases. For the inflow conditions of Case IV, the maximum 
amplification in streamwise vorticity fluctuations decreases for stronger than Mach 4 shocks. 
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This reversal in trend was noted beyond Mach 3 shocks (Fig. 24) for the inflow of case III. Thus, 
lower viscosity seems to enable amplification in streamwise vorticity for stronger shocks. 
 

 

 
Fig. 25: Effect of increasing mean Mach number on variance of streamwise vorticity for inflow of 

Case I ( Re 6.2  and 0.121tM ). 
 

 
Fig. 26: Effect of increasing mean Mach number on variance of streamwise vorticity for inflow of 

Case IV ( Re 40.5  and 0.122tM ). 
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Fig. 27: Effect of increasing mean Mach number on variance of transverse vorticity for inflow of 

Case III ( Re 29.2  and 0.124tM ). 
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Fig. 28: Effect of increasing mean Mach number on anisotropy in vorticity fluctuations values for 

inflow of Case III ( Re 29.2  and 0.124tM ). 
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Transverse vorticity fluctuations are considerably amplified after interaction with the 
shock as predicted by LIA and noted by several researchers [1, 18, 36, 37]. The transverse 
vorticity values are seen to decay monotonically behind the shock wave. Effect of changing 
mean Mach number on variation of transverse vorticity is shown in Fig. 27. Increasing the mean 
Mach number leads to higher amplification in the transverse vorticity fluctuations as predicted 
by LIA. The spatial rate of decay in variance of transverse vorticity is seen to increase as the 
mean Mach number is increased. Consequently, far-field amplification of transverse vorticity is 
smaller for stronger shock waves. Such observations were made for all the inflow cases 
considered in this study. As noted before, the vorticity values return to isotropy behind the shock 
for some cases. The ratio of variances in streamwise fluctuations to the transverse fluctuations, 

" " " "
1 1 2 2 , can be used as a measure of anisotropy. Streamwise variation of this ratio is 

presented in Fig. 28 for the inflow of Case III. For stronger than Mach 3 shocks, we see that the 
return to isotropy behind the shock is delayed as the strength of the shock is increased. 

5.4.2 Effects of changing inflow conditions at fixed shock strength 
To examine the effect of varying turbulent Mach number and Reynolds number of the 

flow, we computed seven different inflow cases listed in Table 1 with shock waves of varying 
strengths. Results are presented here for interaction with a Mach 5 shock wave. Variance of 
streamwise vorticity fluctuations for these cases with incoming flow with mean Mach number of 
5 is presented in Fig. 29(a). As stated before, effect of changing Reynolds number while keeping 
the turbulent and mean Mach number at a constant value is to increase the streamwise vorticity 
fluctuations downstream of the shock. There is actually no amplification observed for very low 
Reynolds number flows. As turbulent Mach number is increased, peak value of variance of 
streamwise vorticity fluctuations increases. Moreover, evolution of vorticity fluctuations is much 
faster behind the shock for the higher values of turbulent Mach numbers. Effect of changing 
inflow turbulence on anisotropy in vorticity fluctuations is presented in Fig. 29(b). It is again 
confirmed that effect of increasing Re  values in the flow is to delay the return to isotropy. An 
increase in turbulent Mach number of the incoming flow seems to hasten the return to isotropy 
behind the shock wave. 

We have also implemented LIA of Mahesh et al.[20] to compute the vorticity fluctuations 
in the flow. We compare amplifications in transverse vorticity fluctuations from all of the 
computed cases to those from LIA study in Fig. 30. Results from Lee et al.[1] and Jamme et al.[4] 
are also plotted for comparisons. We observe that, similar to the previous studies, shock-fitting 
results are within 5% of the LIA results for weaker than Mach 8 shocks when turbulent Mach 
number is low. The cases with higher turbulent Mach number in inflow, diverge from the LIA 
results beyond Mach 5 shocks. It again seems that LIA is not sufficient for prediction of shock 
turbulence interactions for very strong shocks. 
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Fig. 29: Amplification of variances of (a) streamwise vorticity and (b) spanwise vorticity for seven 
different cases of inflow turbulence on interaction with a Mach 5 shock. 

 
To sum, observations in this section point to the fact that viscous dissipation of 

streamwise vorticity is the main cause of anisotropy of the vorticity fluctuations. When incoming 



fluctuations with high enough turbulent intensities, / ( 3 )tM M , can overcome the viscous 
dissipation we see an increase in streamwise vorticity values and return to isotropy. This result 
can be very important for turbulence modeling of such flows. In real life and lab experiments the 
Reynolds number observed are much higher than those considered in this study and for purpose 
of developing models one can assume the vorticity fluctuations to be isotropic downstream of the 
shock. 
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Fig. 30: Comparison of amplification in transverse vorticity fluctuations across the shocks of 

different strengths as obtained from present work, LIA and those available in literature. 
 

5.5 Taylor Microscales 

In almost all of experimental studies, turbulent microscales show an overall increase of the 
microscales during the interaction with normal shock [77]}. This is in contradiction with LIA 
and previous numerical studies [1, 4] which report decrease in Taylor microscales across the 
shock waves. In this study, we also found similar results. Typical profiles for evolution of Taylor 
microscales, 1 , 2 and 3 , across the shock wave is presented in Fig. 31 for inflow conditions: 

1 2.0M , Re 40.5  and 0.122tM . All the microscales are normalized by the value of 
Taylor microscale, 0,u , immediately upstream of the shock in the isotropic turbulent flow. It can 
be observed in Fig. 31 that all the microscales decrease significantly as the flow passes through 
the shock. The streamwise microscale, 1 , is much smaller than the transverse microscale, 2 , 
immediately downstream of the shock. However, 1  rapidly evolves further downstream while 
increase in 2  is not as pronounced. Transverse microscale, 2 , remains less than the upstream 
value, 0,u , in all the cases computed in this study. These results correspond well with the recent 
results of Larsson et al.[36].  
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Fig. 31: Taylor microscales for inflow of 1 2.0M , Re 40.5 and  0.122tM . 
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Fig. 32: Effect of increasing mean Mach number on streamwise Taylor microscale for inflow of Case III 

( Re 29.2  and 0.124tM ). 
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Fig. 33: Effect of increasing mean Mach number on transverseTaylor microscales for inflow of 

Case III ( Re 29.2  and 0.124tM ). 
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Fig. 34: Effects of increasing mean Mach number on transverse Taylor microscale for inflow of 

Case IV ( Re 40.5  and 0.122tM ). 
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Fig. 35: Effect of increasing mean Mach number on transverse Taylor microscale for inflow of Case 

I ( Re 6.2  and 0.121tM ). 
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Fig. 36: Amplification of transverse Taylor microscale for seven different cases of inflow turbulence 

on interaction with a Mach 5 shock. 
 



5.5.1 Effects of changing shock strength for fixed inflow turbulence. 

Evolution of streamwise Taylor microscale, 1 , from our shock fitting computation for 
varying shock strengths with inflow of Case III is presented in Fig. 32. Across the shock, the 
flow is compressed and streamwise Taylor microscale is reduced as predicted by LIA. Reduction 
in streamwise Taylor microscale across the shock remains between 80% to 85% for all the values 
of inflow mean Mach numbers considered. Downstream of the shock, 1  values increase rapidly. 
In the far-field, streamwise microscale is higher for stronger shocks. 

The evolution of transverse Taylor microscales for the cases of Fig. 32 is shown in Fig. 33. 
The reduction in transverse Taylor microscale is around 35% across the shock wave for all the 
cases. The transverse scale then increases slightly within a distance of 00.5 / k  behind the shock. 
Further downstream, for weaker than Mach 10 shocks, we observe a decay in transverse Taylor 
microscale followed by a continuous increase. Smallest 2 / 0,u  ratio is obtained for Mach 3 
flows. For stronger than Mach 10 shocks, there is a monotonic increase in the Taylor miscroscale 
downstream of the shock. 

The trends in the transverse microscales correspond very well to those noted for 
streamwise vorticity. Stretching and tilting of the fluid elements leads to increase in streamwise 
vorticity. The energy is transferred to small scales reducing the transverse Taylor microscale. 
These effects reverse for stronger than Mach 3 for the inflow of Case III. For a higher Reynolds 
number case, Case IV, the viscous effects are slightly weaker. As shown in Fig. 34, smallest 

2 / 0,u  ratio is now obtained for a Mach 4 shock. On the other hand, for the strongly viscous 
cases, Case I, this decay in Taylor microscale is not observed as shown in Fig. 35. 

5.5.2 Effects of changing inflow conditions at fixed shock strength. 
In this study, we compute seven different cases of inflow turbulence. Streamwise Taylor 

microscales (not shown here) has same value just behind the shock irrespective of inflow 
conditions and these values increase monotonically behind the shock for all cases. We present 
results for the transverse Taylor microscales after interaction of inflow with turbulence of these 
seven cases with a Mach 5 shock in Fig. 36. For these cases, we see a trend of decrease in 
transverse fluctuations as Reynolds number or turbulent Mach number is increased. Apart from 
cases with very viscous flows, transverse scale decrease and then increases behind the shock. 
Faster decay is observed for the flows of higher turbulent Mach number. These trends 
correspond very well to those observed for streamwise vorticity variations.  

In literature, the practice is to compare the results of LIA against the far-field values. 
Such comparisons for some mean Mach numbers with inflow of the Case I are presented in our 
earlier work [10]. It should be noted, however, that unlike linear analysis, the far-field values are 
not constant for computed solutions. Hence, there is no logical point of reference for such 
comparisions. Therefore, detailed comparisions with LIA for all the inflow cases are not 
considered here.   

6 SUMMARY AND CONCLUSIONS  

Shock-fitting methods provide a promising, though rarely used, alternative for the 
computation of shock and turbulence interaction problems. In our previous studies, we have 



shown these methods to be superior to the commonly used shock-capturing methods for the 
problems where well defined shock is present. Utilizing the unique capabilities of the shock-
fitting method, we carry out direct numerical simulation (DNS) of canonical shock-turbulence 
interaction while focusing on very strong shocks with mean Mach numbers of up to 20. Our 
results agree with those from linear theory and other numerical efforts for weaker than Mach 8 
shocks. However, as we increase the shock strengths to the values beyond those considered in 
the past, new trends are observed. It was found that mean values of density and pressure in 
turbulent postshock flow is smaller than corresponding laminar values. The difference between 
turbulent and laminar postshock values decreases as shock strength is increased. For weaker than 
Mach 8 shocks root mean square values in shock deflections were found to vary linearly with 
turbulence intensity values ahead of the shock as predicted by linear theory. However, for 
stronger shocks, shock deflections are much higher than those predicted by the linear theory. 
Amplification in streamwise velocity fluctuations was observed to decrease for weaker than 
Mach 8 shocks. This is in accordance with the linear theory results. This trend, however, reverses 
for stronger shocks. Same trends were observed for turbulent kinetic energy. Vorticity 
fluctuations return to isotropy behind the shock. Our calculations show that, contrary to the 
previous findings for weaker shocks, increasing shock strength does not simply increase the 
streamwise vorticity fluctuations. In fact, beyond a certain Mach number, amplification in 
streamwise vorticity fluctuations decrease and return to isotropy is delayed. We observe that the 
shock-fitting method provides new trends in the flow regimes that were not considered in the 
past. 
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