
 1

Thermochemical non-equilibrium effects on                     
passive control of hypersonic boundary-layer transition using 

regular porous coating 
 
 

Xiaowen Wang* and Xiaolin Zhong #1 
Mechanical and Aerospace Engineering Department 

University of California, Los Angeles, CA 90095 
 
 

Abstract 
 
In the past decade, passive control of hypersonic boundary-layer transition using porous coatings has 
been studied by theoretical analyses, experiments, and numerical simulations. It was found that 
porous coating significantly stabilizes Mack’s second mode and slightly destabilizes Mack’s first 
mode. However, there is only quite limited studies on the stabilization efficiency of porous coating. 
And no work has been reported about the thermochemical non-equilibrium effects of hypersonic 
flows on the stabilization efficiency. In this paper, we conduct numerical simulations on the passive 
control of hypersonic boundary-layer transition using regular porous coating. The stabilization of a 
Mach 5.92 flat-plate boundary layer is first studied for perfect gas flow. The results show that, at 
approximately the same porosity, regular coating is weaker in first-mode destabilization and second-
mode stabilization than felt-metal coating. The porosity decrease of regular coating leads to even 
weaker first-mode destabilization and second-mode stabilization. The results also show that the first-
mode destabilization decreases as the phase angle of admittance decreases and the thermochemical 
non-equilibrium of hypersonic flows may affect the stabilization efficiency of regular coating. 
Therefore, numerical simulations based on perfect gas flow may not be enough. The effects of 
thermochemical non-equilibrium flow including internal energy excitations, translation-vibration 
energy relaxation, and chemical reactions among different species need to be considered. We have 
developed a new high-order shock-fitting solver for non-equilibrium flow simulations based on the 5-
species air chemistry and recently thermal non-equilibrium models. The code package has been 
tested and is being applied to numerical simulation of a Mach 12.56 boundary layer over a blunted 
wedge of a half angle 20 degree. Thermochemical non-equilibrium effects of hypersonic flows on the 
steady base flow is investigated by comparing numerical results of perfect gas flows and 
thermochemical non-equilibrium flow. Unsteady simulations on the passive control of hypersonic 
non-equilibrium boundary-layer transition using regular porous coating are currently ongoing. 
 
 

1. Introduction 
 
The performance of hypersonic transportation vehicles and re-entry vehicles and the design of 
their thermal protection systems are significantly affected by the laminar-turbulent transition of 
boundary-layer flows over vehicle surfaces, because a turbulent boundary layer generates much 
higher drag and surface heating than a laminar one. Transition can have a first-order impact on 
the lift, drag, stability, control, and heat transfer properties of the vehicles [1]. Transition control 
to maintain laminar boundary-layer flows or delay transition can result in lower drag, lower 
surface heating, and higher fuel efficiency.  
 
In order to predict and control boundary-layer transition, extensive studies have been carried out 
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focusing on transition mechanisms [2]. It has been demonstrated that the transition of external 
shear flows, including boundary layers, strongly depends on the amplitude of environmental 
disturbance [3]. Figure 1 schematically shows paths of external shear flow transition. For small 
amplitude disturbance, the transition of a boundary layer over a smooth surface generally consists 
of the following three stages: 1. receptivity process during which environmental disturbances 
enter the boundary layer and excite boundary-layer waves. 2. Modal growth of unstable 
boundary-layer waves which can be obtained by solving the eigen-problem of the homogeneous 
linearized stability equations. 3. Breakdown to turbulence caused by non-linear secondary 
instabilities and three-dimensional effects when the unstable waves reach certain amplitude. This 
three-stage-transition mechanism is path 1 as shown in Fig. 1. With the disturbance amplitude 
increasing, transient growth, arising through the non-orthogonal nature of the Orr-Sommerfeld 
eigenfunctions and the Squire eigenfunctions, becomes important. Weak transient growth 
provides higher initial amplitude for modal growth (path 2) whereas strong transient growth can 
lead to secondary instabilities and breakdown to turbulence right after the receptivity process 
(path 3). In the current study, only small amplitude disturbances are considered. Regular porous 
coating is used to stabilize the boundary layer by attenuating modal growth. 

 
Fig. 1. Paths of external shear flow transition with respect to the amplitude of environmenta disturbance[3]. 
 
For the stability of hypersonic boundary layers, different terminologies on boundary-layer wave 
modes have been used in the literatures [4]. Mathematically, the terminologies of mode S and 
mode F are more clear and recommended for both mathematical analyses and the interpretation of 
numerical simulation results [4]. Mode S and mode F are given the names because they are tuned 
to slow and fast acoustic waves, respectively, in the limit of small Reynolds numbers. Mode F is 
generally stable whereas mode S is unstable in the region bounded by the neutral curve. Mode S 
constitutes Mack's first mode, second mode, etc. [5]. The first mode may be inviscidly unstable at 
sufficiently high Mach numbers because compressible boundary-layer profiles contain an 
inflection point, but its instability is most important at finite Reynolds number. For boundary 
layers over adiabatic wall, the second mode exists when flow Mach numbers are above 2.2 and 
becomes important when Mach numbers are larger than 4. Mack’s second mode is physically an 
acoustic wave. The mechanism of porous coating’s absorbing energy from Mack’s second mode 
is similar to that of car exhaust muffler’s reducing the amount of noise emitted by the exhaust of 
an internal combustion engine.    



 3

In the past decade, passive control of boundary-layer transition by using porous coating has been 
studied by theoretical analyses [6-8], experiments [9-14], and numerical simulations [15-19]. 
Fedorov et al. [6] theoretically analyzed the second-mode instability of a hypersonic boundary 
layer over a flat plate covered by an ultrasonically absorptive coating (UAC). They found that the 
second-mode growth was massively reduced, because the porous coating absorbed some energy 
from the disturbance. Chokani et al. [7] studied the nonlinear aspects of the second-mode 
stabilization of regular porous coating using bispectral analysis. The spectral measurements 
showed that the harmonic resonance of the second mode is completely absent on the porous 
surface, and the first mode is moderately destabilized. Fedorov and Malmuth [8] conducted 
parametric studies on the performance of regular porous coating for Mach 7 and 10 freestream 
conditions. They found that the performance strongly increases with porosity.  
 
Rasheed et al. [9] experimentally studied the stability of a Mach 5 boundary layer on a sharp 
5.06-degree half-angle cone at zero angle of attack. The cone had a smooth surface around half 
the cone circumference and an UAC surface on the other half. Their experiments indicated that, 
when the pore size was significantly smaller than the disturbance wavelength, the porous surface 
was highly effective in stabilizing the second mode and delaying transition. The experiments 
carried out by Fedorov and his colleagues [10-12] also showed that porous coating strongly 
stabilized the second mode and marginally destabilized the first mode. Maslov [13] 
experimentally studied the stabilization of a hypersonic boundary layer by porous coatings. In his 
experiments, both regular structure UAC and random felt-metal UAC are used. The results 
confirmed that porous coatings strongly stabilize the second mode and marginally destabilize the 
first mode. Compared with regular UAC, felt-metal UAC is much stronger in first-mode 
destabilization. Lukashevich et al. [14] studied the effect of porous coating thickness on the 
stabilization of a high-speed boundary layer. They demonstrated that the stabilization effect 
essentially depends on the UAC thickness and figured out the optimal thickness.  
 
Egorov et al. [16] studied the effect of porous coating on the stability and receptivity of a Mach 6 
flat-plate boundary layer by two-dimensional numerical simulation. They found that a regular 
porous coating effectively diminishes the second-mode growth rate, while weakly affecting 
acoustic waves. Sandham and Lüdeke [17] numerically studied Mack mode instability of a Mach 
6 boundary layer over a porous surface. It was showed that the detailed surface structure is not as 
important as the overall porosity. Wang and Zhong [18] studied the stabilization of a Mach 5.92 
flat-plate boundary layer by using local sections of felt-metal porous coating. Artificial 
disturbances corresponding to a single boundary-layer wave were introduced near the leading 
edge. It was found that disturbances are destabilized or stabilized when porous coating is located 
upstream or downstream of the synchronization point. For felt-metal porous coating, the 
destabilization of Mack’s first mode is significant.  
  
However, there is only quite limited studies on the stabilization efficiency of porous coating. And 
no work has been reported about the thermochemical non-equilibrium effects of hypersonic flows 
on the stabilization efficiency of porous coating. In this paper, the stabilization of a Mach 5.92 
flat-plate boundary layer by using regular coating is first studied for perfect gas flow. Since 
numerical simulations based on perfect gas flow may not be enough. The effects of 
thermochemical non-equilibrium flow including internal energy excitations, translation-vibration 
energy relaxation, and chemical reactions among different species need to be considered. We 
have developed a new high-order shock-fitting solver for non-equilibrium flow simulations based 
on the 5-species air chemistry and recently thermal non-equilibrium models. The code package 
has been tested and is being applied to numerical simulation of a Mach 12.56 boundary layer over 
a blunted wedge of a half angle 20 degree.  
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2. Governing equations and numerical methods 
 

2.1 Governing equations of perfect gas flow 
 
The governing equations of perfect gas flow are written in the following conservation-law form in 
the Cartesian coordinates, 
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j j
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t x x

∂ ∂∂
+ + =

∂ ∂ ∂
 (1) 

where U , jF  and vjF  are the vectors of conservative variables, convective and viscous flux in 

the direction of jth  coordinate, respectively, i.e., 
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For the simulation of perfect gas flow, the following equations are needed.  
 P RTρ=  (4) 
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where R  is the gas constant. The specific heat Cv  is a constant determined by a given ratio of 
specific heats γ . The viscosity coefficient µ  is calculated by Sutherland’s law, 
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For air, 51.7894 10rµ
−= ×  Ns/m2, 0 288.0T =  K, 110.33sT =  K, and 2 3λ µ= − . The heat 

conductivity coefficient k is computed by a given Prandtl number.  
 
2.2 Governing equations of thermochemical non-equilibrium flow 
 
The governing equations of thermochemical non-equilibrium flow based on 5-species air 
chemistry are Navier-Stokes equations with source terms (no radiation). Specifically, they consist 
of the flowing equations, 
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R  is the universal gas constant. The formulas of species diffusion coefficient sD , viscosity µ , 

heat conductivities K  and VK , species internal energy se  and ,V se , specific vibration energy 

VE , and source terms depends on the models of thermochemical non-equilibrium flow.  
 
The corresponding matrix form of governing equations is as follows,  
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In above equations, sj sj jv u u= −  is diffusion velocity of species s.  
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∂
 (16) 

The model of vibration and electron energy used in Hash et al.’s paper [20] are implemented in 
the code. Specific total enthalpy of species and specific heat in constant pressure of species are 
defined as,  
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For the 5-species air, the related parameters used in the models of vibration and electron energy 
are listed in Table 1 and Table 2.  Compared to other models [21, 22], the current models have the 
advantage of directly applicable to unlimited high temperatures. 
 

Table 1. Parameters used vibration energy model 
Species  0

sh (J/kg) sM (g) vsθ (K) 
N2 0 28 3395 
O2 0 32 2239 
NO 2.996123e6 30 2817 
N 3.362161e7 14 - 
O 1.543119e7 16 - 
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Table 2. Electronic energy states for 5-species air 
Species Θ (K) g Species Θ (K) g Species ΘO (K) g 

N2 0 1 O2 1.13916e4 2 NO 8.88608e4 4 

N2 7.22316e4 3 O2 1.89847e4 1 NO 8.98176e4 4 

N2 8.57786e4 6 O2 4.75597e4 1 NO 8.98845e4 2 

N2 8.60503e4 6 O2 4.99124e4 6 NO 9.04270e4 2 

N2 9.53512e4 3 O2 5.09227e4 3 NO 9.06428e4 2 

N2 9.80564e4 1 O2 7.18986e4 3 NO 9.11176e4 4 

N2 9.96827e4 2 NO 0 4 N 0 4 

N2 1.04898e5 2 NO 5.46735e4 8 N 2.76647e4 10

N2 1.11649e5 5 NO 6.31714e4 2 N 4.14931e4 6 

N2 1.22584e5 1 NO 6.59945e4 4 O 0 5 

N2 1.24886e5 6 NO 6.90612e4 4 O 2.27708e2 3 

N2 1.28248e5 6 NO 7.0500e4 4 O 3.26569e2 1 

N2 1.33806e5 10 NO 7.49106e4 4 O 2.28303e4 5 

N2 1.40430e5 6 NO 7.62888e4 2 O 4.86199e4 1 

N2 1.50496e5 6 NO 8.67619e4 4    

O2 0 3 NO 8.71443e4 2    
 
For the 5-species air, a more complex model of thermal properties is applied [23]. Thermal 
properties are calculated as follows, 
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To calculate viscosity and heat conductivity, the collision terms are as follows, 
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Collision integrals involving neutrals (Non-Coulombic collision integrals) are 
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For binary diffusion between heavy particles, (1) ( )sr
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. The heat conductivities K  and 

VK  in governing equations are calculated as, 
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For chemical non-equilibrium, five reactions are considered for the five species air, i.e., 
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Correspondingly, the reaction rates are calculated as follows,  
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Finally, the source terms are as follows,  
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The forward and backward reaction rate coefficients have the form of  
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For dissociation reactions, VT TT= . For the other reactions, the control temperature is T T= . 
The equilibrium constant is obtained using the curve fits of Park [24], i.e., 
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In two temperature model, energy relaxation only happens between translation energy and 
vibration & electron energy, which can be expressed as 
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⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (p in atm) 

413 321.16 10 ( )
s r

r sr vs sr
s r

M MA M Mµ θ µ−= × = +  

( )2
21 50,0003.5exp 10s

s v
shk

S T T
θ σ −⎛ ⎞= − =⎜ ⎟

⎝ ⎠
 

Here, sθ  is a defined characteristic temperature listed in Table 1.  
 
2.3 Coordinate transform 
 
The flow solver uses structured grids. The following grid transform is applied in the 
computational domain, 

 

( , , , ) ( , , , )
( , , , ) ( , , , )
( , , , ) ( , , , )

x x x y z t
y y x y z t
z z x y z t
t t

ξ η ζ τ ξ ξ
ξ η ζ τ η η
ξ η ζ τ ζ ζ

τ τ

= =⎧ ⎧
⎪ ⎪= =⎪ ⎪⇔⎨ ⎨= =⎪ ⎪
⎪ ⎪= =⎩ ⎩

 (39) 

The Jacobian of the above coordinate transform is,  
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0
0
0
1

x y z
x y z

J
x y z
x y z

ξ ξ ξ

η η η

ζ ζ ζ

τ τ τ

=  (40) 

With the transform, the governing equations in ( , , ,ξ η ζ τ ) coordinate system are written as 

 3 31 2 1 2( ) F GF F G GJU JS
τ ξ η ζ ξ η ζ

∂ ∂∂ ∂ ∂ ∂∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂

�� ��� �
 (41) 

where 

1 1 2 3x y z tF J F J F J F JUξ ξ ξ ξ= + + +�  

2 1 2 3x y z tF J F J F J F JUη η η η= + + +�  

3 1 2 3x y z tF J F J F J F JUζ ζ ζ ζ= + + +�  

1 1 2 3x y zG J G J G J Gξ ξ ξ= + +�  

2 1 2 3x y zG J G J G J Gη η η= + +�  

3 1 2 3x y zG J G J G J Gζ ζ ζ= + +�  
 
2.4 Numerical method 
 
The governing equations are solved by the fifth-order shock-fitting method of Zhong [25]. For the 
thermochemical non-equilibrium system (13) in the direction, ( )1 2 3k , ,k k k= , the corresponding 
inviscid flux term is 

 

1

2

3

4

5

1

2

3

k u
k u
k u
k u
k u

F
k u
k u
k u

k u
k uV

u pk
v pk
w pk

H
E

ρ
ρ
ρ
ρ
ρ

ρ
ρ
ρ
ρ
ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=

+⎜ ⎟
⎜ ⎟+⎜ ⎟

+⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (42) 

Hence the Jacobian of flux is defined as,  

 
FA
U

L R∂
= = Λ
∂

 (43) 
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� �
� �
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⎢ ⎥
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�
�
�
��
��
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e a e a a

δ

β γ β φ β

⎡
⎢ + −⎢
⎢ + −
⎢= + −⎢
⎢⎡ ⎤+ + − + − −⎣ ⎦⎢
⎢⎣

� � � ��

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

 

 
The eigenvalues of Jacobian matrix (43) are  
 1,2,5 k Uλ = �  (44) 
 
 3 k ( )U aλ = +�  (45) 
 
 4 k ( )U aλ = −�  (46) 
where subscript “s” refers to row s and species s, whereas subscript “r” refers to column r and 
species r. Both s and r vary from 1 to 5 in the present model. The unit vector n  is defined from 
vector k as  

 1 2 3( , , )n ( , , )
kx y z

k k kn n n= =  (47) 

( )l , ,x y zl l l=  and ( )m , ,x y zm m m=  are two unit vectors such that n , l , and  m  are mutually 

orthogonal. Furthermore, we have,  
 x y zU un vn wn= + +�  (48) 

 x y zV ul vl wl= + +�  (49) 

 x y zW um vm wm= + +�  (50) 
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The derivative of pressure respecting to conservative variables comes from  
 ( ) V s sdp d E ud u vd v wd w d e dβ ρ ρ ρ ρ φ ρ γ ρ= − − − + + �  (51) 
where  

 
5

1,

r
s

rs v tr r
s

R
c c M

ρβ
ρ =

= ∑∑
 (52) 

 
,

e

v V e

R
C M

ρφ β
ρ

= −  (53) 

 
2 2 2

,2
q

s s V s
s

RT u v w e e
M

γ β β φ+ +
= + − −�  (54) 

 ( )
5

2 2 2 2

1
( ) 1s s V

s

pa c H u v w eγ β φ β
ρ=

⎡ ⎤= + − + + + = +⎣ ⎦∑ �  (55) 

In equation (54), q VT T=  when s is an electron, otherwise, qT T= . 
 
In shock-fitting method, the velocity and location of the shock are solved as part of the solutions. 
The flow variables behind the shock are determined by Rankine-Hugoniot relations across the 
main shock and a characteristic compatibility relation from behind the shock. With the 
assumptions of “frozen” flow (no chemical reactions and energy relaxations when flow passes 
through the shock), the species mass fractions and vibration temperature keep constant on the two 
sides of the shock where translation temperature jumps across the shock. In this way, shock 
jumps conditions for total density, momentum and total energy are the same as those for perfect 
gas. In addition, the compatibility relation relating to the maximum eigenvalue in wall normal 
direction is used.  
 
In the interior, compressible Navier-Stokes equations are solved in fully conservative form. An 
explicit finite difference scheme is used for spatial discretization of the governing equation, the 
inviscid flux terms are discretized by a fifth-order upwind scheme, and the viscous flux terms are 
discretized by a sixth-order central scheme. For the inviscid flux vectors, the flux Jacobians 
contain both positive and negative eigenvalues. A simple local Lax-Friedrichs scheme is used to 
split vectors into negative and positive wave fields. For example, the flux term F in Eq. (42) can 
be split into two terms of pure positive and negative eigenvalues as follows 
 F F F+ −= +  (56) 

where ( )1
2

F F Uλ+ = + and ( )1
2

F F Uλ− = −  and λ is chosen to be larger than the local 

maximum eigenvalue of F′.  

 ( )2 2| | c u c
J
ηλ ε∇ ⎛ ⎞′= + +⎜ ⎟

⎝ ⎠
 (57) 

where  

 
| |

x y z tu v w
u

η η η η
η

+ + +
′ =

∇
 (58) 

The parameter ε is a small positive constant added to adjust the smoothness of the splitting. The 
fluxes F+ and F- contain only positive and negative eigenvalues respectively.  Therefore, in the 
spatial discretization, the derivative of the flux F is split into two terms 
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F FF

η η η
+ −∂ ∂∂

= +
∂ ∂ ∂

 (59) 

where the first term on the right hand side is discretized by the upwind scheme and the second 
term by the downwind scheme. 
 
The fifth-order explicit scheme utilizes a 7-point stencil and has an adjustable parameter α as 
follows 

 
63

5
6

3

1 ...
6!i i k i k

ki i i

uu a u h
hb b x

α
+ +

=−

⎛ ⎞∂′ = − +⎜ ⎟∂⎝ ⎠
∑  (60) 

where 3 2 1
1 1 5 51 ,  9 ,  45 ,  

12 2 4 3i i i iα α α α α α α α± ± ±= ± + = − = ± + = −∓ and 60=ib . The 

scheme is upwind when α <  0 and downwind when α > 0. It becomes a 6-order central scheme 
when α = 0 which is used for discretizing viscous terms. However, for shock and turbulence 
interaction problems, sufficiently high turbulence intensities might produce secondary shocks 
behind the main shock. To handle such cases, a shock-capturing scheme based on WENO is used. 
All our methods are coded using FORTRAN77 & 90 while Message Passing Interface (MPI) is 
used for communication in the parallel computations.  
 
 

3. Model of regular porous coating 
 
In the passive control of hypersonic boundary-layer transition by using porous coating, feltmetal 
coating is initially used [6, 10], because its structure is quite similar to that of the material 
currently used in thermal protection system. Later, regular coating has been used in most of the 
researches in this area due to its convenience for parametric studies and new coating design [16, 
17]. In the current simulation, regular coatings are modeled by pressure perturbation related wall 
blowing-suction. The wall blowing-suction induced by porous coating is as follows, 
 ' 'yv A p=  (61) 
The porous coating admittance, yA , is defined as, 

 ( )
0

tanhyA h
Z
φ

= − Λ  (62) 

In above equation, φ  is porosity, h  is the porous-layer thickness non-dimensionalized by 
the local length scale of boundary-layer thickness, 

 
* **

*
* * *

uhh h
L x

ρ
µ
∞ ∞

∞

= =  (63) 

According to Allard and Champoux’s theoretical analyses [26], the empirical equations 
for porous coating characteristic impedance ( 0Z ) and propagation constant (Λ ) depend 
on wall temperature, wall density, and edge Mach number of the boundary layer, 

 0
w

w
e

Z T C
M
ρ ρ= ��  (64) 

 e

w

i M C
T

ω ρΛ = ��  (65) 
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where wρ  and wT  are the local dimensionless density and temperature on porous surface. 
The edge Mach number ( eM ) is defined right after the shock. 
 
For regular porous coating considered in the current paper, the dynamic density ( ρ� ) and 
the bulk module (C� ) are calculated from the following equations, 

 0

2

( )
( )

v

v

J k
J k

ρ = −�  (66) 

 2

0

( )( 1)
( )

t

t

J kC
J k

γ γ= + −�  (67) 

In above two equations, vk  and tk  are defined as 

 
* * *2

*
w

v
w

i rk ω ρ
µ

= −  (68) 

 Prt vk k=  (69) 
With the definitions of characteristic impedance and propagation constant, regular 
coating admittance is generally a complex number. Velocity perturbation calculated by 
Eq. (61) is also a complex number. However, only the real part of velocity perturbation 
can be imposed in numerical simulations. The unsteady velocity perturbation in 
numerical simulation is written relating to the instantaneous pressure perturbation ( *( )p t ). 

 ( )( ) cos( ) ( ) sin( )y y
dp tv t A p t A

dt
ϕ ϕ

ω
= +  (70) 

 
 

4. Stabilization of a Mach 5.92 flat-plate boundary layer 
 
In this paper, the stabilization of a Mach 5.92 flat-plate boundary layer is first studied for perfect 
gas flow. The flow conditions are listed below. 

5.92M∞ =     48.69KT∞ =  

742.76 Pap∞ =    Pr 0.72=  
6Re 14.12 10 m∞ = ×  

In a previous paper, we have studied the stabilization of the same boundary-layer flow by using 
local sections of felt-metal porous coating [18]. Since the results of the steady base flow and the 
stability characteristics have been reported in that paper, they are neglected here. 
 
At first, the spatial development mode S over regular coating is studied by numerical simulations. 
The stability simulations consist of two steps: 1) periodic disturbances corresponding to mode S 
at the frequency of 100 kHz are superimposed on steady base flow at a cross-section of the 
boundary layer to show spatial development of the wave, 2) regular porous coating is used 
downstream of the superimposed wave to investigate its effect on mode S growth. For the 
boundary layer waves considered in the current paper, the synchronization point and the two 
neutral points in x coordinate are respectively located at 0.33184 m, 31.69744 10−× 1.69744 m, 
and 0.84622 m. In order to study the effect of different porous coatings, one case of numerical 
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simulation is carried out for feltmetal coating. Figure 2 shows a schematic of the Mach 5.92 flat-
plate boundary layer over porous coatings. 

 
Fig. 2. A schematic of the stabilization of a Mach 5.92 flat-plate boundary layer using porous coating. 

 
Periodic disturbances corresponding to mode S is superimposed on steady base flow at a 
cross-section of the boundary layer at x = 69.00 mm. The computational domain for 
stability simulation starts at x = 69.00 mm and ends at x = 0.8590 m. The formula of the 
disturbances is given below, 

 

ˆ( )
ˆ( )
ˆ ( ) sin( )
ˆ ( )
ˆ( )

u yu
v yv
w y tw
p yp

T T y

ε ω

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

�
�
�
�
�

 (71) 

where the parameters of cα  and cβ  are wave number components in streamwise and 
spanwise directions, and cω  is the circular frequency. Disturbance vector on the right 
hand side of Eq. (71) represents the eigenfunction of mode S normalized by the pressure 
perturbation on the wall. The parameter of disturbance amplitude is assigned to mode S 
as 810ε −= , which is small enough to preserve the linear properties of the disturbances. 
 
Figure 3 compares superimposed disturbances of mode S with the eigenfunctions of 
mode S obtained from LST. In these figures, both superimposed disturbances and the 
eigenfunctions are normalized by corresponding pressure disturbance on the wall. The 
good agreements of velocity and pressure profiles indicate that the disturbances 
superimposed across the boundary layer are exactly mode S. The discrepancy between 
temperature profiles near the wall (y/L < 10) as shown in Fig. 3(d) is caused by 
nonparallel flow effect. Temperature profile of superimposed disturbance is calculated 
using pressure and density eigenfunctions of corresponding wave, and mean flow 
temperature, pressure, and density. In our simulation, nonparallel flow effect is included 
in mean flow variables. 
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Fig. 3. Comparisons of superimposed disturbance profiles for mode S with the eigenfunction of mode S 

obtained from LST: (a) streamwise velocity, (b) wall-normal velocity, (c) pressure, (d) temperature. 
 
For regular porous coating, five different porosities are considered. Specifically, the 
structure parameters are as follows, 

* 0.45mmh =      * 25 mr µ=  
  1 4φ π=   2 6φ π=   3 9φ π=  
  4 12φ π=      5 16φ π=  
Parameters of feltmetal coating are the same as those used by Fedorov et al. [10], i.e., 
  0.75φ =   * 0.75mmh =   * 5 2 -11.66 10 kg(m s )σ = ×  
  1a∞ =    * 30 md µ=   1.4γ =  
where the fiber diameter ( *d ) is related to the characteristic pore size as follows, 

 
*

*
22 3p

dr π
φ φ

=
− +

 (72) 

Figures 4 to 5 compare pressure perturbation amplitude along the flat plate for the six 
cases of stability simulation. These three figures clearly show show that the two types of 
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porous coatings both destabilize mode S in Mack's first mode region and stabilize it in 
Mack's second mode region. For pure mode S propagating downstream, the overall effect 
of porous coating is destabilizing. At approximately the same porosity, regular porous 
coating is weaker in first-mode destabilization and second-mode stabilization than felt-
metal porous coating. For regular porous coating, the results also show that porosity 
decreasing leads to even weaker first-mode destabilization and second-mode stabilization. 

 
Fig. 4. Pressure perturbation amplitude along the flat plate for the six cases of stability simulations in 

Mack’s first mode region. 

 
Fig. 5. Pressure perturbation amplitude along the flat plate for the six cases of stability simulations in 

Mack’s second mode region. 
 
We have also studied the effect of the phase angle of regular coating admittance for the coating 
with 1 4φ π= . Figure 6(a) shows the instantaneous pressure and velocity perturbations along the 
flat plate with regular porous coating at the given parameters. The amplitude of wall-normal 
velocity perturbation is proportional to that of pressure perturbation. It is also noticed that there is 
a phase discrepancy between the pressure and velocity perturbations, which is determined by the 
phase angle of porous coating admittance. Therefore, the effects of regular porous coating on 
mode S instability depend on the magnitude and phase angle of admittance simultaneously. 
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According to the model of porous coating, admittance magnitude only affects the amplitude of 
velocity oscillation. As a result, it will only affect the magnitudes of Mack’s first mode 
destabilization and Mack’s second mode stabilization. However, it will not affect the 
destabilization/stabilization behavior. 

 
(a) at the given parameters                                  (b) zero imaginary part of admittance 

Fig. 6. Instantaneous pressure and velocity perturbations along the flat plate with regular porous coating. 
 
To verify that the destabilization/stabilization behavior of porous coating is affected by the phase 
angle of admittance, we carried out numerical simulation on one ”artificial” porous coatings with 
zero imaginary part of admittance (phase angle = π). The corresponding results are plotted as Fig. 
6(b). The two plots in Fig. 6 clearly show the change of phase angle with the peak of velocity 
perturbation moving upstream. Figure 7 compares the pressure perturbation amplitudes for the 
two regular porous coatings, together with the spatial development of mode S along solid wall. 
The figure shows that pressure perturbation amplitude decreases with the phase angle of 
admittance decreasing. Since the synchronization point is located around x = 0.33 m, the results 
indicate that Mack’s first mode destabilization is weakened by the decrease of admittance phase 
angle. However, the second mode stabilization is approximately unchanged because the pressure 
perturbations of two porous coatings increase proportionally after the synchronization point.  

 
Fig. 7. Comparison of pressure perturbations for the two cases of regular porous coatings. 
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For real regular porous coating, we further analyze the admittance of porous coating. According 
to the model of regular coating, the admittance phase angle depends on three parameters: 
thickness, pore size, and ratio of specific heat. Figure 8 shows phase angle of admittance versus 
the three parameters, respectively, with the other parameters of porous coating unchanging. 
Figure 8(c) shows that phase angle decreases with the ratio of specific heat increasing, which 
again indicates that the effects of thermochemical non-equilibrium flow will lead to weaker 
destabilization of Mack’s first mode. 

 

 
Fig. 8. Phase angle of regular porous coating admittance versus: thickness, pore size, and the  ratio of 

specific heat. 
 
In Figs. 8 for pore size and specific heat ratio, there is a minimum phase angle, which indicates 
there is optimal thickness and pore size. This minimum is helpful for the design of new porous 
coating. Since the decrease of phase angle is more significant for pore size, we try to design new 
porous coating based on pore size. Figure 8 for pore size shows that the minimum phase angle is 
achieved with the pore size being 77e− 6 m. Since a smaller phase angle leads to weaker first 
mode destabilization, we carried out numerical simulation on the new pore size, with other 
parameters of the porous coating keeping the same. Figure 9 shows the numerical results for the 
new porous coatings. The phase angle of admittance does decrease with the peak of velocity 
perturbation moving upstream.  
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Fig. 9. Pressure perturbation amplitudes of the new designed porous coating and the origin one. 

 
Based on the results for perfect gas flow, it is realized that numerical simulations based on perfect 
gas flow may not be enough. The effects of thermochemical non-equilibrium flow including 
internal energy excitations, translation-vibration energy relaxation, and chemical reactions among 
different species need to be considered. It is due to not only the effect of specific heat ratio on 
first-mode destabilization but the change of boundary-layer stability characteristics. 
 
 

5. Test of shock-fitting method and non-equilibrium models 
 
To consider the thermochemical non-equilibrium effects on the passive control of hypersonic 
boundary-layer transition using regular porous coating, a new high-order shock-fitting solver for 
non-equilibrium flow simulations has been developed based on 5-species air chemistry and 
recently non-equilibrium models. The code is based on a two-temperature model: translational 
and rotational energy modes are in equilibrium at the translational temperature whereas vibration 
energy, electronic energy, and free electron energy are in equilibrium at the vibration temperature.  
Here we focus our tests on shock-fitting method and thermochemical models. 
 
5.1 Gnoffo’s air dissociation over 1 meter radius cylinder 
 
Figure 10 shows the mesh and flow conditions of the test case: 5-species air over a 1-meter radius 
cylinder. The temperatures on the cylinder are equal to Tw (= 500 K). Catalytic boundary 
conditions are applied on the wall for species mass fraction. Total density is computed from 
pressure and translational temperature. Then species densities are calculated with total density 
and mass fraction. Total energy and vibration energy are calculated using species densities and 
two temperatures. The mass fractions of initial gas are as follows,  
  CN2 = 0.76  CO2 = 0.24 CNO = CN = CO = 0 

X

p

0.1 0.2 0.3 0.4

10-6
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φ = 0.227799939, r = 77 µm
(new design)

φ = π/4, r = 25 µm
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Fig. 10. Mesh sturcture and flow conditions of the test case. 
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                               (a) Pressure                                    (b) Translation temperature 
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                    (c) Vibration temperature                    (d) Species density of NO 

Fig. 11. Comparisons of flow field contours obtained from shock-fitting code with those obtained from 
Laura simulation. 
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To make the results comparable, flow conditions are exactly the same as what Gnoffo used in his 
simulation. The simulation results are compared with Gnoffo’s results obtained from Laura. 
Figure 11 compares flow field contours obtained from current shock-fitting code with those 
obtained from Laura code. From the contours of pressure, temperatures, and NO density, it is 
found that shock standoff distances of the two sets of simulations have a good agreement. In 
addition, the flow fields near the wall have a good agreement. Near the shock, there is small 
discrepancy between the two sets of solution, mainly due to the different treatment of shock wave. 
Unlike the shock-fitting code, shock-capturing TVD scheme is applied in Laura code. Figure 11(c) 
shows that the vibration temperature of shock-fitting solution is significant different from that of 
Laura in the shock layer, which is mainly caused by the different models of vibration and 
electronic energy. Laura code used curved fitted vibration and electronic energy [21], whereas we 
used separate models for vibration energy and electronic energy.  
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Fig. 12. Comparisons of flow variables along the stagnation line obtained from shock-fitting code with 
those obtained from Laura simulation. 

 
Since we have detailed flow field information obtained from the Laura code, we can also compare 
the distributions of flow variables along the stagnation line or along the cylinder surface. For 
example, figure 12 compares flow variables along the stagnation line obtained from current 
shock-fitting code with those obtained from Laura code. These two figures also show that shock 
standoff distances of the two sets of simulations have a good agreement considering the different 
treatment of the bow shock. The distributions of temperatures and species densities along the 
stagnation line have a good agreement near the wall and have small discrepancy near the shock. 
Again, the discrepancy near the shock is due to the different treatment of shock wave. Overall, 
Figures 11 and 12 indicate that our shock-fitting non-equilibrium flow solver is reliable for the 
simulation of strong shock and turbulence interaction. 
 
5.2 A Mach 10 flat-plate boundary layer with thermal equilibrium 
 
The test case is got from Hudson’s thesis [27]. The flow conditions of the flat-plate boundary 
layer are as follows, 
 10M =  T∞ =278K 0.045p∞ = atm 3351u∞ = m/s 

 30.0568kg mρ∞ =   6Re 9.8425 10 m∞ = ×  
 CN2 = 0.78  CO2 = 0.22 CNO = CN = CO = 0 
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Our numerical results are compared with Hudson’s theoretical solution and a recent boundary-
layer solution from Prof. Tumin in Unversity of Arizona. Specifically, the temperature and 
velocity profiles across the boundary layer at x = 0.4 m are compared. 
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Fig. 13. Comparisons of temperature profiles across the boundary layer. 
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Fig. 14. Comparisons of streamwise velocity profiles across the boundary layer. 

 
Figures 13 and 14 shows that the boundary-layer profiles obtained from our simulation have 
agreement with the theoretical solutions of Hudson and Tumin. The results indicate that our 
shock-fitting non-equilibrium flow solver is reliable. 
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6. Stabilization of a Mach 12.56 boundary layer over a blunted wedge 
 
For practical thermal protection systems of hypersonic vehicles and re-entry vehicles, the ambient 
flows generally have a high Mach number and a pretty high enthalpy. Since thermochemical non-
equilibrium effects are not significant in the Mach 5.92 flat-plate boundary layer due to low 
temperature, we have applied the high-order shock-fitting non-equilibrium solver to a Mach 12.56 
flow over a blunted wedge of a half angle of 20 degree.  

 
Fig. 15. A schematic of a Mach 12.56 flow over a blunted wedge. 

 
Figure 15 shows a schematic of the Mach 12.56 non-equilibrium flow over a blunted wedge. The 
radius of the blunted leading edge is 2 cm. In Fig. 15, the lower boundary stands for the wedge 
surface whereas the upper boundary stands of the bow shock. The simulations of the Mach 12.56 
flow are carried out with the isothermal condition. The specific flow conditions are as follows, 
 
 12.56M∞ =   119.49 Pap∞ =   3 31.45 10 kg mρ −

∞ = ×  
 500KwT =   4267.20m/ sU∞ =   9.4 MJ/kgH∞ ≈  

 
2

0.767Nc =   
2

0.233Oc =    0NO N Oc c c= = =  
 
It is noticed from the governing equations for perfect gas flow and non-equilibrium flow that 
transport properties are calculated based on different models. For example, the viscosity is 
computed by using Sutherland’s law for perfect gas flow. But it is computed through evaluations 
of collision cross-section area. The difference of viscosity may significantly change in Reynolds 
number and the stability characteristics of the boundary layer. In the current problem, united 
Reynolds number is 347707.28 m  for perfect gas flow and 328673.67 m for non-equilibrium 
flow. The effects of different viscosity are taken into account in the current paper by conducting 
three cases of numerical simulation: 1) perfect gas flow, 2) perfect gas flow with the transport 
properties being calculated from collision cross-section area, and 3) non-equilibrium flow. 
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Case 1 

 
Case 2 

 
Case 3 

Fig. 16. Pressure contours near the leading edge obtained from three cases of simulations. 
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Figure 16 compares the pressure contours near the leading edge obtained from three cases of 
numerical simulations. Here the geometry and levels of pressure are the same. The figures show 
that pressure contours of case 1 and case 2 are quite similar, and they are different from those of 
case 3. In addition, the shock standoff distance of non-equilibrium flow is much smaller than that 
of perfect gas flows due to chemical reactions and energy relaxation (more clear in Fig. 17). 

X

Y

-0.02 -0.01 0 0.01
0

0.01

0.02

0.03

non-equilibrium flow

perfect gas flow

 
Fig. 17. Comparison of shock standoff distance. 
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Fig. 18. Comparison of streamwise velocity profile across the boundary laye. 
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Figure 18 shows the streamwise velocity profile across the boundary layer at the intersection of 
the blunted leading edge and the wedge. The boundary layer of case 2 is a little bit thicker than 
that of case 1, because unit Reynolds number of perfect gas flow calculated from collision cross-
section area is lower than that calculated from Sutherland’s law. In addition, the boundary layer 
of case 3 is thinner than that of case 2. The results show that the effects of non-equilibrium flow 
and viscosity can be successfully separated by conducting the three cases of numerical 
simulations. 
 
 

5. Summary 
 
In current paper, we carried out numerical simulations on the passive control of hypersonic 
boundary-layer transition using regular porous coating. The stabilization of a Mach 5.92 flat-plate 
boundary layer by using regular coating is first studied for perfect gas flow. The results show that, 
at approximately the same porosity, regular coating is weaker in first-mode destabilization and 
second-mode stabilization than felt-metal coating. The porosity decrease of regular coating leads 
to even weaker first-mode destabilization and second-mode stabilization. The results also show 
that the first-mode destabilization decreases as the phase angle of admittance decreases and the 
thermochemical non-equilibrium of hypersonic flows may affect the stabilization efficiency of 
regular coating. Therefore, numerical simulations based on perfect gas flow may not be enough. 
The effects of thermochemical non-equilibrium flow including internal energy excitations, 
translation-vibration energy relaxation, and chemical reactions among different species need to be 
considered.  
 
A high-order shock-fitting non-equilibrium flow solver based on 5-species air chemistry and 
recent thermal property models is applied to DNS of strong shock and turbulence interactions. 
The code is implemented based on a two-temperature model. It is assumed that translational and 
rotational energy modes are in equilibrium at the translational temperature whereas vibration 
energy, electronic energy, and free electron energy are in equilibrium at the vibration temperature. 
The code package has been validated. 
 
The high-order non-equilibrium solver is being applied to numerical simulation of a Mach 12.56 
boundary layer over a blunted wedge of 20 degree. Thermochemical non-equilibrium effects of 
hypersonic flows on the steady base flow are investigated by comparing numerical results of 
perfect gas flows and thermochemical non-equilibrium flow. Unsteady simulations on the passive 
control of hypersonic non-equilibrium boundary-layer transition using regular porous coating are 
currently ongoing. 
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