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Abstract: Passive control of hypersonic boundary-layer transition using porous 
coatings has been studied by theoretical analyses, experiments, and numerical 
simulations. It was found that porous coating stabilizes Mack’s second mode and 
destabilizes Mack’s first mode. However, there are only few studies on the 
stabilization efficiency of porous coating. And no work has been reported about the 
thermochemical non-equilibrium effects of hypersonic flows on the stabilization 
efficiency. In this paper, we conduct numerical simulations on the passive control 
of hypersonic boundary-layer transition using regular porous coating. The 
stabilization of a Mach 5.92 flat-plate boundary layer is first studied for perfect gas 
flow. The results show that, at approximately the same porosity, regular coating is 
weaker in first-mode destabilization and second-mode stabilization than felt-metal 
coating. The porosity decrease of regular coating leads to even weaker first-mode 
destabilization and second-mode stabilization. The results also show that the first-
mode destabilization weakens as the phase angle of admittance decreases and the 
thermochemical non-equilibrium of hypersonic flows may affect the stabilization 
efficiency of regular coating. Therefore, the effects of thermochemical non-
equilibrium flow need to be considered. We have developed a new high-order 
shock-fitting solver for non-equilibrium flow simulations based on the 5-species air 
chemistry and recently thermal non-equilibrium models. The code package has 
been tested and is being applied to numerical simulation of a Mach 12.56 boundary 
layer over a blunted wedge of a half angle 20 degree.  
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1     Introduction 
 
The performance of hypersonic transportation vehicles and re-entry vehicles and the design of their 
thermal protection systems are significantly affected by the laminar-turbulent transition of boundary-
layer flows over vehicle surfaces, because a turbulent boundary layer generates much higher drag and 
surface heating than a laminar one. Transition can have a first-order impact on the lift, drag, stability, 
control, and heat transfer properties of the vehicles [1]. Transition control to maintain laminar 
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boundary-layer flows or delay transition can result in lower drag, lower surface heating, and higher 
fuel efficiency.  

In order to predict and control boundary-layer transition, extensive studies have been carried out 
focusing on transition mechanisms [2]. It has been demonstrated that the transition of external shear 
flows, including boundary layers, strongly depends on the amplitude of environmental disturbance 
[3]. Figure 1 schematically shows paths of external shear flow transition. For small amplitude 
disturbance, the transition of a boundary layer over a smooth surface generally consists of the 
following three stages: 1. receptivity process during which environmental disturbances enter the 
boundary layer and excite boundary-layer waves. 2. Modal growth of unstable boundary-layer waves 
which can be obtained by solving the eigenvalue problem of the homogeneous linearized stability 
equations. 3. Breakdown to turbulence caused by non-linear secondary instabilities and three-
dimensional effects when the unstable waves reach certain amplitude. This three-stage-transition 
mechanism is path 1 as shown in Fig. 1. With the disturbance amplitude increasing, transient growth, 
arising through the non-orthogonal nature of the Orr-Sommerfeld eigenfunctions and the Squire 
eigenfunctions, becomes important. Weak transient growth provides higher initial amplitude for 
modal growth (path 2) whereas strong transient growth can lead to secondary instabilities and 
breakdown to turbulence right after the receptivity process (path 3). In the current study, only small 
amplitude disturbances are considered. Regular porous coating is used to stabilize the boundary layer 
by attenuating modal growth. 

 
Figure 1: Paths of boundary-layer transition with respect to the amplitude of environmenta 

disturbance[3]. 
 
For the stability of hypersonic boundary layers, different terminologies on boundary-layer wave 
modes have been used in the literatures [4]. Mathematically, the terminologies of mode S and mode F 
are more clear and recommended for both mathematical analyses and the interpretation of numerical 
simulation results [4]. Mode S and mode F are given the names because they are tuned to slow and 
fast acoustic waves, respectively, in the limit of small Reynolds numbers. Mode F is generally stable 
whereas mode S is unstable in the region bounded by the neutral curve. Mode S constitutes Mack's 
first mode, second mode, etc. [5]. The first mode may be inviscidly unstable at sufficiently high Mach 
numbers because compressible boundary-layer profiles contain an inflection point, but its instability is 
most important at finite Reynolds number. For boundary layers over adiabatic wall, the second mode 
exists when flow Mach numbers are above 2.2 and becomes important when Mach numbers are larger 
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than 4. Mack’s second mode is physically an acoustic wave. The mechanism of porous coating’s 
absorbing energy from Mack’s second mode is similar to that of car exhaust muffler’s reducing the 
amount of noise emitted by the exhaust of an internal combustion engine.    

In the past decade, passive control of hypersonic boundary-layer transition by using porous 
coating has been studied by theoretical analyses [6-8], experiments [9-14], and numerical simulations 
[15-19]. Fedorov et al. [6] theoretically analyzed the second-mode instability of a hypersonic 
boundary layer over a flat plate covered by an ultrasonically absorptive coating (UAC). They found 
that the second-mode growth was massively reduced, because the porous coating absorbed some 
energy from the disturbance. Chokani et al. [7] studied the nonlinear aspects of the second-mode 
stabilization of regular porous coating using bispectral analysis. The spectral measurements showed 
that the harmonic resonance of the second mode is completely absent on the porous surface, and the 
first mode is moderately destabilized. Fedorov and Malmuth [8] conducted parametric studies on the 
performance of regular porous coating for Mach 7 and 10 freestream conditions. They found that the 
performance strongly increases with porosity.  

Rasheed et al. [9] experimentally studied the stability of a Mach 5 boundary layer on a sharp 5.06-
degree half-angle cone at zero angle of attack. The cone had a smooth surface around half the cone 
circumference and an UAC surface on the other half. Their experiments indicated that, when the pore 
size was significantly smaller than the disturbance wavelength, the porous surface was highly 
effective in stabilizing the second mode and delaying transition. The experiments carried out by 
Fedorov and his colleagues [10-12] also showed that porous coating strongly stabilized the second 
mode and marginally destabilized the first mode. Maslov [13] experimentally studied the stabilization 
of a hypersonic boundary layer by porous coatings. In his experiments, both regular structure UAC 
and random felt-metal UAC are used. The results confirmed that porous coatings strongly stabilize the 
second mode and marginally destabilize the first mode. Compared with regular UAC, felt-metal UAC 
is much stronger in first-mode destabilization. Lukashevich et al. [14] studied the effect of porous 
coating thickness on the stabilization of a high-speed boundary layer. They demonstrated that the 
stabilization effect essentially depends on the UAC thickness and figured out the optimal thickness.  

Egorov et al. [16] studied the effect of porous coating on the stability and receptivity of a Mach 6 
flat-plate boundary layer by two-dimensional numerical simulation. They found that a regular porous 
coating effectively diminishes the second-mode growth rate, while weakly affecting acoustic waves. 
Sandham and Lüdeke [17] numerically studied Mack mode instability of a Mach 6 boundary layer 
over a porous surface. It was showed that the detailed surface structure is not as important as the 
overall porosity. Wang and Zhong [18] studied the stabilization of a Mach 5.92 flat-plate boundary 
layer by using local sections of felt-metal porous coating. Artificial disturbances corresponding to a 
single boundary-layer wave were introduced near the leading edge. It was found that disturbances are 
destabilized or stabilized when porous coating is located upstream or downstream of the 
synchronization point. For felt-metal porous coating, the destabilization of Mack’s first mode is 
significant.  

However, there are only few studies on the stabilization efficiency of porous coating. And no 
work has been reported about the thermochemical non-equilibrium effects of hypersonic flows on the 
stabilization efficiency of porous coating. In this paper, the stabilization of a Mach 5.92 flat-plate 
boundary layer by using regular coating is first studied for perfect gas flow. Since numerical 
simulations based on perfect gas flow may not be enough for hypersonic flow, the effects of 
thermochemical non-equilibrium flow including internal energy excitations, translation-vibration 
energy relaxation, and chemical reactions among different species need to be considered. We have 
developed a new high-order shock-fitting solver for non-equilibrium flow simulations based on the 5-
species air chemistry and recently thermal non-equilibrium models. The code package has been tested 
and is being applied to numerical simulation of a Mach 12.56 boundary layer over a blunted wedge of 
a half angle 20 degree. 
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2     Governing Equations and Numerical Methods 

2.1     Governing Equations of Perfect Gas Flow 
 
The governing equations of perfect gas flow are written in the following conservation-law form in the 
Cartesian coordinates, 
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where U , jF  and vjF  are the vectors of conservative variables, convective and viscous flux in the 

direction of jth  coordinate, respectively, i.e., 

  1 2 3, , , ,U u u u e     (2)  

 

1 1

2 1

3 1

( )

j

j j

j j j

j j

j

u

u u P

F u u P

u u P

e p u



 

 

 

 
 

 
   
  
  

, 

1

2

3

0

j

vj j

j

jk k j

F

u q









 
 
 
   
  
   

 (3) 

For the simulation of perfect gas flow, the following equations are needed.  
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where R  is the gas constant. The specific heat Cv  is a constant determined by a given ratio of specific 

heats  . The viscosity coefficient   is calculated by Sutherland’s law, 
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For air, 51.7894 10r
   Ns/m2, 0 288.0T   K, 110.33sT   K, and 2 3   . The heat 

conductivity coefficient k is computed by a given Prandtl number. 
 

2.2     Governing Equations of Thermochemical Non-Equilibrium Flow 
 
The governing equations of thermochemical non-equilibrium flow based on 5-species air chemistry 
are Navier-Stokes equations with source terms (no radiation). Specifically, they consist of the flowing 
equations, 
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where,  
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R  is the universal gas constant. The formulas of species diffusion coefficient sD , viscosity  , heat 

conductivities K  and VK , species internal energy se  and ,V se , specific vibration energy VE , and 

source terms depends on the models of thermochemical non-equilibrium flow.  
 
The corresponding matrix form of governing equations is as follows,  
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where the vector of conservative variables has ten components, 
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In above equations, sj sj jv u u   is diffusion velocity of species s.  
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The model of vibration and electron energy used in Hash et al.’s paper [20] are implemented in the 
code. Specific total enthalpy of species and specific heat in constant pressure of species are defined 
as,  
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where 0
sh is the generation enthalpy of species. The variables on the right hand side of equations (17) 

and (18) are calculated from the following formula, 
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For the 5-species air, the related parameters used in the models of vibration and electron energy are 
listed in Table 1 and Table 2.  Compared to other models [21, 22], the current models have the 
advantage of directly applicable to unlimited high temperatures. 
 

Table 1: Parameters used vibration energy model. 
Species  0

sh (J/kg) sM (g) vs (K) 

N2 0 28 3395 
O2 0 32 2239 
NO 2.996123e6 30 2817 
N 3.362161e7 14 - 
O 1.543119e7 16 - 
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Table 2: Electronic energy states for 5-species air. 

Species Θ (K) g Species Θ (K) g Species ΘO (K) g 

N2 0 1 O2 1.13916e4 2 NO 8.88608e4 4 

N2 7.22316e4 3 O2 1.89847e4 1 NO 8.98176e4 4 

N2 8.57786e4 6 O2 4.75597e4 1 NO 8.98845e4 2 

N2 8.60503e4 6 O2 4.99124e4 6 NO 9.04270e4 2 

N2 9.53512e4 3 O2 5.09227e4 3 NO 9.06428e4 2 

N2 9.80564e4 1 O2 7.18986e4 3 NO 9.11176e4 4 

N2 9.96827e4 2 NO 0 4 N 0 4 

N2 1.04898e5 2 NO 5.46735e4 8 N 2.76647e4 10 

N2 1.11649e5 5 NO 6.31714e4 2 N 4.14931e4 6 

N2 1.22584e5 1 NO 6.59945e4 4 O 0 5 

N2 1.24886e5 6 NO 6.90612e4 4 O 2.27708e2 3 

N2 1.28248e5 6 NO 7.0500e4 4 O 3.26569e2 1 

N2 1.33806e5 10 NO 7.49106e4 4 O 2.28303e4 5 

N2 1.40430e5 6 NO 7.62888e4 2 O 4.86199e4 1 

N2 1.50496e5 6 NO 8.67619e4 4    

O2 0 3 NO 8.71443e4 2    

 
For the 5-species air, a more complex model of thermal properties is applied [23], i.e., 
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To calculate viscosity and heat conductivity, the collision terms are as follows, 
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Collision integrals involving neutrals (Non-Coulombic collision integrals) are 
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For binary diffusion between heavy particles, 
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in governing equations are calculated as, 
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For chemical non-equilibrium, five reactions are considered for the five species air, i.e., 
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Correspondingly, the reaction rates are calculated as follows,  
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Finally, the source terms are as follows,  
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The forward and backward reaction rate coefficients have the form of  
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For dissociation reactions, VT TT . For the other reactions, the control temperature is T T . The 

equilibrium constant is obtained using the curve fits of Park [24], i.e., 
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Here, s  is a defined characteristic temperature listed in Table 1. 

 
2.3     Coordinate Transform 
 
The flow solver uses structured grids. The following grid transform is applied in the computational 
domain, 
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The Jacobian of the above coordinate transform is,  
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With the transform, the governing equations in ( , , ,    ) coordinate system are written as 
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2.4     Numerical Method 
 
The governing equations are solved by the fifth-order shock-fitting method of Zhong [25]. For the 

thermochemical non-equilibrium system (13) in the direction,  1 2 3k , ,k k k , the corresponding 

inviscid flux term is 
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Hence the Jacobian of flux is defined as,  
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The eigenvalues of Jacobian matrix (43) are  
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In equation (54), q VT T  when s is an electron, otherwise, qT T . 

In shock-fitting method, the velocity and location of the shock are solved as part of the solutions. 
The flow variables behind the shock are determined by Rankine-Hugoniot relations across the main 
shock and a characteristic compatibility relation from behind the shock. With the assumptions of 
“frozen” flow (no chemical reactions and energy relaxations when flow passes through the shock), the 
species mass fractions and vibration temperature keep constant on the two sides of the shock where 
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translation temperature jumps across the shock. In this way, shock jumps conditions for total density, 
momentum and total energy are the same as those for perfect gas. In addition, the compatibility 
relation relating to the maximum eigenvalue in wall-normal direction is used.  

In the interior, compressible Navier-Stokes equations are solved in fully conservative form. An 
explicit finite difference scheme is used for spatial discretization of the governing equation, the 
inviscid flux terms are discretized by a fifth-order upwind scheme, and the viscous flux terms are 
discretized by a sixth-order central scheme. For the inviscid flux vectors, the flux Jacobians contain 
both positive and negative eigenvalues. A simple local Lax-Friedrichs scheme is used to split vectors 
into negative and positive wave fields. For example, the flux term F in Eq. (42) can be split into two 
terms of pure positive and negative eigenvalues as follows 

 F F F    (56) 

where  1

2
F F U   and  1

2
F F U    and λ is chosen to be larger than the local maximum 

eigenvalue of F′.  

  (57) 

where  

  (58) 

The parameter ε is a small positive constant added to adjust the smoothness of the splitting. The 
fluxes F+ and F- contain only positive and negative eigenvalues respectively.  Therefore, in the spatial 
discretization, the derivative of the flux F is split into two terms 

 
F FF

  
  

 
  

 (59) 

where the first term on the right hand side is discretized by the upwind scheme and the second term 
by the downwind scheme. 

The fifth-order explicit scheme utilizes a 7-point stencil and has an adjustable parameter α as 
follows 

  (60) 

where and . The scheme 

is upwind when α <  0 and downwind when α > 0. It becomes a 6-order central scheme when α = 0 
which is used for discretizing viscous terms.  

 
3     Model of Regular Porous Coating 
 
In the passive control of hypersonic boundary-layer transition by using porous coating, feltmetal 
coating is initially used [6, 10], because its structure is quite similar to that of the material currently 
used in thermal protection system. Later, regular coating has been used in most of the researches in 
this area due to its convenience for parametric studies and new coating design [16, 17]. In the current 
simulation, regular coatings are modeled by pressure perturbation related wall blowing-suction. The 
wall blowing-suction induced by porous coating is as follows, 

 ' 'yv A p  (61) 
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The porous coating admittance, yA , is defined as, 

  
0

tanhyA h
Z


    (62) 

In above equation,   is porosity, h  is the porous-layer thickness non-dimensionalized by the local 

length scale of boundary-layer thickness, 

 
* **

*
* * *

uh
h h

L x



 



   (63) 

According to Allard and Champoux’s theoretical analyses [26], the empirical equations for porous 

coating characteristic impedance ( 0Z ) and propagation constant ( ) depend on wall temperature, 

wall density, and edge Mach number of the boundary layer, 

 0
w

w
e

Z T C
M

    (64) 

 e

w

i M
C

T

     (65) 

where w  and wT  are the local dimensionless density and temperature on porous surface. The edge 

Mach number ( eM ) is defined right after the shock. 

For regular porous coating considered in the current paper, the dynamic density (  ) and the bulk 

module ( C ) are calculated from the following equations, 

 0

2

( )

( )
v

v

J k

J k
    (66) 

 2

0

( )
( 1)

( )
t

t

J k
C

J k
     (67) 

In above two equations, vk  and tk  are defined as 

 
* * *2

*
w

v
w

i r
k

 


   (68) 

 Prt vk k  (69) 

With the definitions of characteristic impedance and propagation constant, regular coating 
admittance is generally a complex number. Velocity perturbation calculated by Eq. (61) is also a 
complex number. However, only the real part of velocity perturbation can be imposed in numerical 
simulations. The unsteady velocity perturbation in numerical simulation is written relating to the 

instantaneous pressure perturbation ( *( )p t ). 

 
( )

( ) cos( ) ( ) sin( )y y

dp t
v t A p t A

dt
 


   (70) 

 
4     Stabilization of a Mach 5.92 Flat-Plate Boundary Layer 

 
In this paper, the stabilization of a Mach 5.92 flat-plate boundary layer is first studied for perfect gas 
flow. The flow conditions are listed below. 

5.92M      48.69KT   
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742.76Pap     Pr 0.72  
6Re 14.12 10 m    

In a previous paper, we have studied the stabilization of the same boundary-layer flow by using local 
sections of felt-metal porous coating [18]. Since the results of the steady base flow and the stability 
characteristics have been reported in that paper, they are neglected here. 

At first, the spatial development mode S over regular coating is studied by numerical simulations. 
The stability simulations consist of two steps: 1) periodic disturbances corresponding to mode S at the 
frequency of 100 kHz are superimposed on steady base flow at a cross-section of the boundary layer 
to show spatial development of the wave, 2) regular porous coating is used downstream of the 
superimposed wave to investigate its effect on mode S growth. For the boundary layer waves 
considered in the current paper, the synchronization point and the two neutral points in x coordinate 

are respectively located at 0.33184 m, 31.69744 10  m, and 0.84622 m. In order to study the effect 
of different porous coatings, one case of numerical simulation is carried out for feltmetal coating. 
Figure 2 shows a schematic of the Mach 5.92 flat-plate boundary layer over porous coatings. 

 
Figure 2: A schematic of the stabilization of a Mach 5.92 boundary layer using porous coating. 
 
Periodic disturbances corresponding to mode S is superimposed on steady base flow at a cross-

section of the boundary layer at x = 69.00 mm. The computational domain for stability simulation 
starts at x = 69.00 mm and ends at x = 0.8590 m. The formula of the disturbances is given below, 

 

ˆ( )

ˆ( )

ˆ ( ) sin( )
ˆ ( )

ˆ( )

u yu

v yv
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 (71) 

where the parameters of c  and c  are wave number components in streamwise and spanwise 

directions, and c  is the circular frequency. Disturbance vector on the right hand side of Eq. (71) 

represents the eigenfunction of mode S normalized by the pressure perturbation on the wall. The 

parameter of disturbance amplitude is assigned to mode S as 810  , which is small enough to 
preserve the linear properties of the disturbances. 

Figure 3 compares superimposed disturbances of mode S with the eigenfunctions of mode S 
obtained from LST. In these figures, both superimposed disturbances and the eigenfunctions are 
normalized by corresponding pressure disturbance on the wall. The good agreements of velocity and 
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pressure profiles indicate that the disturbances superimposed across the boundary layer are exactly 
mode S. The discrepancy between temperature profiles near the wall (y/L < 10) as shown in Fig. 3(d) 
is caused by nonparallel flow effect. Temperature profile of superimposed disturbance is calculated 
using pressure and density eigenfunctions of corresponding wave, and mean flow temperature, 
pressure, and density. In our simulation, nonparallel flow effect is included in mean flow variables. 

 
Figure 3: Comparisons of superimposed disturbance for mode S with the eigenfunction of mode S 

obtained from LST: (a) streamwise velocity, (b) wall-normal velocity, (c) pressure, (d) temperature. 
 

For regular porous coating, five different porosities are considered. Specifically, the structure 
parameters are as follows, 

* 0.45mmh       * 25 mr   

  1 4    2 6    3 9   

  4 12       5 16   

The numerical result for a feltmetal coating in a previous paper [18] is also used for comparison. 
Parameters of feltmetal coating are the same as those used by Fedorov et al. [10], i.e., 

  0.75    * 0.75mmh    * 5 2 -11.66 10 kg(m s )    

  1a     * 30 md    1.4   

where the fiber diameter ( *d ) is related to the characteristic pore size as follows, 

 
*

*
22 3p

d
r


 


 

 (72) 

Figures 4 to 5 compare pressure perturbation amplitude along the flat plate for the six cases of 
stability simulation. These three figures clearly show that the two types of porous coatings both 
destabilize mode S in Mack's first mode region and stabilize it in Mack's second mode region. For 
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pure mode S propagating downstream, the overall effect of porous coating is destabilizing. At 
approximately the same porosity, regular porous coating is weaker in first-mode destabilization and 
second-mode stabilization than felt-metal porous coating. For regular porous coating, the results also 
show that porosity decreasing leads to even weaker first-mode destabilization and second-mode 
stabilization. 

 
Figure 4: Pressure perturbation amplitude along the flat plate for the six cases of stability simulations 

in Mack’s first mode region. 

 
Figure 5: Pressure perturbation amplitude along the flat plate for the six cases of stability simulations 

in Mack’s second mode region. 
 

We have also studied the effect of the phase angle of regular coating admittance for the coating 

with 1 4  . Figure 6(a) shows the instantaneous pressure and velocity perturbations along the flat 

plate with regular porous coating at the given parameters. The amplitude of wall-normal velocity 
perturbation is proportional to that of pressure perturbation. It is also noticed that there is a phase 
discrepancy between the pressure and velocity perturbations, which is determined by the phase angle 
of porous coating admittance. Therefore, the effects of regular porous coating on mode S instability 
depend on the magnitude and phase angle of admittance simultaneously. According to the model of 
porous coating, admittance magnitude only affects the amplitude of velocity oscillation. As a result, it 
will only affect the magnitudes of Mack’s first-mode destabilization and Mack’s second-mode 
stabilization. However, it will not affect the destabilization/stabilization behavior. 
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(a) at the given parameters                         (b) zero imaginary part of admittance 

 
Figure 6: Instantaneous pressure and velocity perturbations along the flat plate with regular porous 

coating. 
 

To verify that the destabilization/stabilization behavior of porous coating is affected by the phase 
angle of admittance, we carried out numerical simulation on one ”artificial” porous coatings with zero 
imaginary part of admittance (phase angle = π). The corresponding results are plotted as Fig. 6(b). 
The two plots in Fig. 6 clearly show the change of phase angle with the peak of velocity perturbation 
moving upstream. Figure 7 compares the pressure perturbation amplitudes for the two regular porous 
coatings, together with the spatial development of mode S along solid wall. The figure shows that 
pressure perturbation amplitude decreases with the phase angle of admittance decreasing. Since the 
synchronization point is located around x = 0.33 m, the results indicate that Mack’s first-mode 
destabilization is weakened by the decrease of admittance phase angle. However, the second mode 
stabilization is approximately unchanged because the pressure perturbations of two porous coatings 
increase proportionally after the synchronization point.  

 
Figure 7: Comparison of pressure perturbations for the two cases of regular porous coatings. 

 
For real regular porous coating, we further analyze the admittance of porous coating. According to 

the model of regular coating, the admittance phase angle depends on three parameters: thickness, pore 
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size, and ratio of specific heat. Figure 8 shows phase angle of admittance versus the three parameters, 
respectively, with the other parameters of porous coating unchanging. Figure 8(c) shows that phase 
angle decreases with the ratio of specific heat increasing, which indicates that the effects of 
thermochemical non-equilibrium flow will lead to weaker destabilization of Mack’s first mode. 

 

 
Figure 8: Phase angle of regular porous coating admittance versus: thickness, pore size, and the ratio 

of specific heat. 
 
In Figs. 8 for pore size and specific heat ratio, there is a minimum phase angle, which indicates 

there is optimal thickness and pore size. This minimum is helpful for the design of new porous 
coating. Since the decrease of phase angle is more significant for pore size, we try to design new 
porous coating based on pore size. Figure 8 for pore size shows that the minimum phase angle is 
achieved with the pore size being 77e− 6 m. Since a smaller phase angle leads to weaker first mode 
destabilization, we carried out numerical simulation on the new pore size, with other parameters of 
the porous coating keeping the same. Figure 9 shows the numerical results for the new porous 
coatings. The phase angle of admittance does decrease with the peak of velocity perturbation moving 
upstream. Mode S is stabilized stronger by the new design of regular coating. 

Based on the results for perfect gas flow, it is realized that numerical simulations based on perfect 
gas flow may not be enough. The effects of thermochemical non-equilibrium flow including internal 
energy excitations, translation-vibration energy relaxation, and chemical reactions among different 
species need to be considered. It is due to not only the effect of specific heat ratio on first-mode 
destabilization but the change of boundary-layer stability characteristics.  
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Figure 9: Pressure perturbation amplitudes of the new designed porous coating and the origin one. 

 
5     Simulation of a Mach 12.56 Boundary Layer 
 
For practical thermal protection systems of hypersonic vehicles and re-entry vehicles, the ambient 
flows generally have a high Mach number and a pretty high enthalpy. Since thermochemical non-
equilibrium effects are not significant in the Mach 5.92 flat-plate boundary layer due to low 
temperature, we have applied the high-order shock-fitting non-equilibrium solver to a Mach 12.56 
flow over a blunted wedge of a half angle of 20 degree.  

 
Figure 10: A schematic of a Mach 12.56 flow over a blunted wedge. 
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Figure 10 shows a schematic of the Mach 12.56 non-equilibrium flow over a blunted wedge. The 
radius of the blunted leading edge is 2 cm. In Fig. 10, the lower boundary stands for the wedge 
surface whereas the upper boundary stands of the bow shock. The simulations of the Mach 12.56 flow 
are carried out with the isothermal condition. The specific flow conditions are as follows, 

 12.56M    119.49Pap    3 31.45 10 kg m 
    

 500KwT    4267.20m/ sU    9.4MJ/kgH   

 
2

0.767Nc    
2

0.233Oc     0NO N Oc c c    

It is noticed from the governing equations for perfect gas flow and non-equilibrium flow that 
transport properties are calculated based on different models. For example, the viscosity is computed 
by using Sutherland’s law for perfect gas flow. But it is computed through evaluations of collision 
cross-section area. The difference of viscosity may change Reynolds number and the stability 
characteristics of the boundary layer. In the current problem, united Reynolds number is 

347707.28 m  for perfect gas flow and 328673.67 m for non-equilibrium flow. The effects of 

different viscosity are taken into account in the current paper by conducting three cases of numerical 
simulation: 1) perfect gas flow, 2) perfect gas flow with the transport properties being calculated from 
collision cross-section area, and 3) non-equilibrium flow. 

  
Case 1            Case 2 

 
Case 3 

 
Figure 11: Pressure contours near the leading edge obtained from three cases of simulations. 
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Figure 11 compares the pressure contours near the leading edge obtained from three cases of 
numerical simulations. Here the geometry and levels of pressure are the same. The figures show that 
pressure contours of case 1 and case 2 are quite similar, and they are different from those of case 3. In 
addition, the shock standoff distance of non-equilibrium flow is much smaller than that of perfect gas 
flows due to chemical reactions and energy relaxation (more clear in Fig. 12). 

 
Figure 12: Comparison of shock standoff distance. 

 
Figure 13: Comparison of streamwise velocity profile across the boundary layer. 
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Figure 13 shows the streamwise velocity profile across the boundary layer at the intersection of the 
blunted leading edge and the wedge. The boundary layer of case 2 is a little bit thicker than that of 
case 1, because unit Reynolds number of perfect gas flow calculated from collision cross-section area 
is lower than that calculated from Sutherland’s law. In addition, the boundary layer of case 3 is 
thinner than that of case 2. The results show that the effects of non-equilibrium flow and viscosity can 
be successfully separated by conducting the three cases of numerical simulations. 

 
6     Conclusion and Future Work 
 
In the current paper, we carried out numerical simulations on the passive control of hypersonic 
boundary-layer transition using regular porous coating. The stabilization of a Mach 5.92 flat-plate 
boundary layer by using regular coating is first studied for perfect gas flow. The results show that, at 
approximately the same porosity, regular coating is weaker in first-mode destabilization and second-
mode stabilization than felt-metal coating. The porosity decrease of regular coating leads to even 
weaker first-mode destabilization and second-mode stabilization. The results also show that the first-
mode destabilization weakens as the phase angle of admittance decreases and the thermochemical 
non-equilibrium of hypersonic flows may affect the stabilization efficiency of regular coating. 
Therefore, numerical simulations based on perfect gas flow may not be enough. The effects of 
thermochemical non-equilibrium flow including internal energy excitations, translation-vibration 
energy relaxation, and chemical reactions among different species need to be considered.  

A high-order shock-fitting non-equilibrium flow solver based on 5-species air chemistry and 
recent thermal property models has been developed. The code is implemented based on a two-
temperature model. It is assumed that translational and rotational energy modes are in equilibrium at 
the translational temperature whereas vibration energy, electronic energy, and free electron energy are 
in equilibrium at the vibration temperature. The high-order non-equilibrium solver is being applied to 
numerical simulation of a Mach 12.56 boundary layer over a blunted wedge of 20 degree. 
Thermochemical non-equilibrium effects of hypersonic flows on the steady base flow are investigated 
by comparing numerical results of perfect gas flows and thermochemical non-equilibrium flow. The 
results show that thermochemical non-equilibrium may affect the stabilization of hypersonic 
boundary-layer transition by changing Reynolds number and stability characteristics. 
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