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Results are presented for a new code designed to perform high-order direct numerical

simulations of high-speed flows over arbitrary geometries. The simulations were performed

on a Cartesian grid with the geometries imposed by a third-order cut-cell method. A multi-

zone refinement method is also implemented to provide extra resolution at locations with

expected complex physics. The simulations also utilize a fifth-order hybrid WENO scheme

to capture any steep gradients in the flow created by the geometries. The combination

results in a globally fourth-order scheme. Two-dimensional and three-dimensional test cases

show good agreement with previous results and will be presented. Results confirming the

high order of convergence will also be shown. The code was designed for studying the effects

of isolated roughness elements on the stability of hypersonic boundary layers. Preliminary

results for Mach 6 flow over a three-dimensional cylindrical roughness element will also be

presented.

I. Introduction

The ability to accurately predict the location of laminar to turbulent transition in boundary layers is of
great importance to the design of hypersonic vehicles. At high Mach numbers, the viscous effects in the

boundary layer can cause extreme surface temperatures as kinetic energy is converted to thermal energy.
When the flow transitions from laminar to turbulent, this heating is further increased by turbulent mixing
near the wall. In addition to the thermal effects, turbulent flow also generates larger shear stresses which
increase the friction drag on the surface. Without the knowledge of the transition location, designers of
hypersonic vehicles must be overly cautious with their designs. Thermal protection and propulsion systems
must assume turbulent flow over the entire body.1 In spite of its importance, the mechanisms leading to the
transition of hypersonic boundary layers are still poorly understood.2 Predicting the location of transition
is further complicated by the presence of surface roughness.

The effects of roughness elements have been documented for sometime experimentally. Schneider2 has
recently written a review of experiments studying the effect of roughness on hypersonic boundary-layer
transition. Roughness elements generally cause the location of transition to move upstream compared to
flow without a roughness element. It is possible to have a small enough roughness element such that there is
no effect on the transition location. Such a roughness is said to be below its critical height. Only a roughness
element above this critical height will cause a change in the transition location. As the roughness height is
increased past this critical height, the location of transition will continue to move closer to the roughness
element. Eventually transition will occur at its closest location downstream of the roughness. This location
may still be a finite distance downstream of the roughness. Further increases of the roughness height will no
longer cause the transition location to move forward. The height at which this occurs is called the effective
height. Although a great deal of research has been done to study the effects of roughness on hypersonic
transition, most of the data was for correlations to be used in the design of hypersonic vehicles. Very
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little is actually known about the exact physics behind hypersonic boundary-layer transition with roughness
elements.

In the recent past, a great deal of work went into exploring transient growth as an important role in
roughness-induced transition. Tumin and Reshotko3 presented a spatial theory for transient growth in
boundary-layer flow. They showed that the most significant transient growth is associated with steady
streamwise vortices. Roughness elements generate a horse-shoe vortex and a pair of vortices in their wake.
This is exactly the kind of disturbance that Tumin and Reshotko showed would lead to optimal transient
growth. White et al.4,5, 6 have performed a series of experiments involving subsonic flow over an array of
cylindrical roughness elements and have identified transient growth in the wake of the array. Fischer and
Choudhari7 and Choudhari and Fischer8 performed numerical simulations of White’s experiments. They
also confirmed the presence of transient growth. Reshotko and Tumin9 used their spatial transient growth
theory to produce a model for roughness-induced transition. Their model reproduced the trends of Reda
and the passive nosetip technology (PANT) data.10,11

Recent work has shifted to the possible existence of an absolute instability being generated by the
roughness. For taller roughness elements in subsonic flow, the wake region is dominated by unsteady hairpin
vortices.12 Ergin and White13 conducted experiments of unsteady low-speed flow over isolated roughness
elements. They found the locations of maximum fluctuation intensity to correspond to locations of inflection
points in the streamwise velocity. This suggests that the unsteadiness seen in subsonic flow may have been
caused by a Kelvin-Helmholtz type instability. The unsteady vortex shedding seen in subsonic flow is not
present is supersonic flow.14 This difference may be due to the stabilizing effect of high Mach numbers on
shear layers.15 Although the unsteadiness is no longer present, a similar instability may still remain.

Danehy et al.16 visualized Mach 4.2 flow over an isolated 2 mm radius hemispherical roughness element
using Nitric oxide planar laser-induced fluorescence (PLIF). They showed that breakdown to turbulence
begins in the downstream legs of the horse-shoe vortex that forms upstream of the roughness. Chang et
al.17 have recently performed numerical simulations that support these results. They found strong unsteadi-
ness in Mach 4.16 flow over isolated cylindrical roughness elements with heights of 1.3 and 2.5 times the
boundary-layer thickness with the unsteadiness first visible in the legs of the horse-shoe vortices. Spectral
analysis and the computed evolution of disturbance root mean square amplitude suggest that the source for
the unsteadiness is a possible absolute instability located in the separation region formed upstream of the
roughness element. Bartkowicz et al.18 have simulated flow inside the Boeing/AFOSR Mach 6 quiet wind
tunnel at Purdue University with a cylindrical roughness element and reproduced an instability which was
measured experimentally.19,20 They suggest that the instability is created by an unsteady high-momentum
jet created near the top of the roughness, which flows down into the vortex system located near the wall.
Duan et al.21 have also simulated flow under the conditions from the Purdue wind tunnel. They measured
a different instability frequency than the experiments but this may have been due to discrepancies between
the simulated geometry and the actual wind tunnel.

The objective of our work is to study the physical mechanisms behind transition in hypersonic boundary
layers due to isolated surface roughness. This will be accomplished by numerically simulating flow with
conditions similar to those of recent roughness experiments done in the Boeing/AFOSR Mach 6 quiet wind
tunnel at Purdue University.19,20 The compressible Navier-Stokes equations are solved on a Cartesian grid
using a fifth-order hybrid WENO scheme combined with a third-order cut-cell22,23 method to model the
roughness. In our previous attempt at this simulation,23 the runtime was too great to allow completion
of the simulation. To alleviate this problem, a multi-zone refinement method was added to the code. The
multi-zone refinement method provides more control over the grid point placement. This will reduce the
required number of grid points and thus the simulation runtime. Two-dimensional and three-dimensional
test cases for the combined cut-cell and multi-zone refinement method will be presented. Results will also
be shown which confirm that the desired high-order of convergence is obtained. Preliminary results for the
simulation of Mach 6 flow over the roughness element used at Purdue University will also be presented.

II. Methodology

The governing equations in Cartesian coordinates, (x1, x2, x3) = (x, y, z), are the three-dimensional
unsteady compressible Navier-Stokes equations for a calorically perfect gas with density ρ, pressure p, tem-
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perature T , and velocity (u1, u2, u3) = (u, v, w):

∂Û

∂t
+

∂F̂j

∂xj
=

∂F̂v,j

∂xj
, j = 1, 2, 3 (1)

where Û is the vector of conservative variables, [ρ, ρu, ρv, ρw,E]T . F̂j and F̂v,j are the vectors of the inviscid
and viscous fluxes, respectively, in the j th direction and are given as

F̂j =















ρuj

ρu1uj + δ1jp

ρu2uj + δ2jp

ρu3uj + δ3jp

uj(E + p)















, and F̂v,j =















0

τ1j

τ2j
τ3j

ukτkj − qj















. (2)

The total energy per unit mass E, the viscous stress tensor τij , and the heat flux vector qj are defined as

E =
p

γ − 1
+

1

2
ρuiui, (3)

τij = µ

(

∂ui

∂xj
+

∂uj

∂xi
−

2

3
δij

∂uk

∂xk

)

, (4)

qj = −k
∂T

∂xj
, (5)

where µ is the fluid viscosity and k is the thermal conductivity. The system of equations is closed by the
equation of state. Since the gas is calorically perfect, the equation of state is

p = ρRT. (6)

The gas is assumed to be air so the gas constant, R, has a value of 287.04 m2/s2 K, the ratio of the
specific heats, γ, is 1.4 and the Prandtl number, Pr, is 0.72. The viscosity is computed using Sutherland’s
law in the form

µ = µr

(

T

Tr

)1.5
Tr + Ts

T + Ts
(7)

where µr = 1.7894 × 10−5 (N s)/m2, Ts = 110.33 K, and Tr = 288 K. All variables are left in dimensional
form.

The flow fields are obtained through direct numerical simulation of the governing equations. Before
solving, the governing equations are transformed from the physical (x, y, z) space to a (ξ, η, ζ) = (ξ1, ξ2, ξ3)
computational space. The grid in the computational space is uniformly spaced in ξ, η, and ζ with each
varying from 0 to 1. After the transformation, the governing equations become

∂U

∂t
+

∂Fj

∂ξj
=

∂Fv,j

∂ξj
, j = 1, 2, 3 (8)

where U is a vector of the conservative variables, [ρ, ρu, ρv, ρw,E]T /J . J is the determinant of the Jacobian
matrix:

J =

∣

∣

∣

∣

∂ (ξ, η, ζ)

∂ (x, y, z)

∣

∣

∣

∣

(9)

Fj and Fv,j are the vectors of the inviscid and viscous fluxes, respectively, in the j th direction of the
computational space and are given as

Fj =
1

J















ρUj

ρu1Uj + δ1j ξ
j
1p

ρu2Uj + δ2j ξ
j
2p

ρu3Uj + δ3j ξ
j
3p

Uj(E + p)















, and Fv,j =
1

J















0

ξjk τ1k
ξjk τ2k

ξjk τ3k

ξjkunτnk − ξjk qk















(10)
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where ξjk ≡
∂ξj

∂xk
are the metrics and Uj is given by

Uj = uk ξ
j
k. (11)

The shear stresses and heat fluxes in curvilinear coordinates are

τij = µ

(

ξkj
∂ui

∂ξk
+ ξki

∂uj

∂ξk
−

2

3
δij ξ

n
k

∂uk

∂ξn

)

, (12)

qj = −k ξkj
∂T

∂ξk
. (13)

The inviscid terms in the governing equation are split using local Lax-Friedrichs flux splitting for up-
winding.

Fj = F+
j + F−

j (14)

where F±

j is

F±

j = 1
2
(Fj ± λjU) (15)

and λj is

λj =

√

(uk ξ
j
k)

2 + ǫ2c2
(

(ξj1)
2 + (ξj2)

2 + (ξj3)
2

)

+ c

√

(ξj1)
2 + (ξj2)

2 + (ξj3)
2 (16)

where c is the speed of sound and ǫ is 0.1.
The inviscid terms are computed using a fifth-order finite-difference hybrid WENO scheme. The scheme

begins by writing the derivatives in conservative form. As an example, the derivative of the inviscid flux in
the ξ direction with respect to ξ at point i is computed as

∂Fξ

∂ξ
(ξi) =

F+
ξ (ξi+1/2)− F+

ξ (ξi−1/2)

∆ξ
+

F−

ξ (ξi+1/2)− F−

ξ (ξi−1/2)

∆ξ
. (17)

The interface flux is a linear combination of a fifth-order WENO scheme and a fifth-order low-dissipation
scheme. For the positive eigenvalue fluxes, the interface flux would be

F+
ξ (ξi+1/2) = (1− σ)F+WENO

ξ (ξi+1/2) + σF+LD
ξ (ξi+1/2) (18)

where σ is the hybrid switch and comes from Ren et al.24 The WENO flux is computed using the mapped
WENO scheme of Hendrick et al.25 However, instead of computing the WENO weights for each of the
individual fluxes, the weights are just computed from the fluid density. The low-dissipation flux is computed
using a conservative version of the fifth-order scheme of Zhong.26 The low-dissipation flux is computed as

F+LD
ξ (ξi+1/2) =

3
∑

j=−2

ajF
+
ξ (ξi+j) (19)

where the constants aj are

a−2 = 1−
1

12
α (20)

a−1 = −8 +
5

12
α (21)

a0 = 37−
5

6
α (22)

a1 = 37 +
5

6
α (23)

a2 = −8−
5

12
α (24)

a3 = 1 +
1

12
α (25)

(26)
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σ∆ξ ∆ξ

Solid Fluid

Figure 1. Cut-cell point classification for sample ξ grid line. Immersed boundary ; boundary point ; points using

interior scheme ; points using a non-uniform one-sided stencil ; points not used in simulation .

The constants for the negative eigenvalue fluxes can be found from symmetry. The α in the constants controls
the scheme’s dissipation and stability and is equivalent to the α from Zhong.26 In this work, α was set to -6.
A third-order TVD27 scheme was used for time advancement and the viscous terms were computed using
sixth-order central finite difference scheme.

II.A. Cut-Cell Method

The cut-cell method used in this work was originally developed by Duan et al.22 The current work used
a modified version, which was presented in Greene et al.23 The cut-cell method is a third-order method
for simulating flows on grids with non-body-conforming geometries. When the cut-cell method is combined
with our interior scheme, the global order of convergence will be fourth order. The method allows numerical
simulations of flow over an arbitrary geometry to be performed on simple Cartesian grids.

The main idea behind the cut-cell method is to switch to a non-uniform one-sided finite-difference stencil
whenever the normally used stencil would cross the immersed boundary. Figure 1 shows a sample ξ direction
grid line for the cut-cell method. The boundary of an immersed object cuts across the grid line with the
solid on the left and the fluid on the right. None of the points within an immersed boundary are used in
the simulation. In addition, any points deemed too close to the boundary are not included either. The first
fluid point to the right of the immersed boundary is such a point. If the interior scheme was used at the
next three points away from the boundary, their stencils would include points within the solid. Instead of
using the interior scheme, those points utilize a non-uniform one-sided stencil. The stencils are non-uniform
because they can include the boundary point values. The remaining fluid points use the uniform stencil of
the interior scheme.

II.B. Multi-Zone Refinement Method

The multi-zone refinement method utilizes overlapping grids to precisely control grid resolution. The
method used in this work comes from Shen et al.28 Shen et al. developed a high-order finite-difference
WENO version of the adaptive mesh refinement method. Since their method was adaptive, the refinement
zones would move with the flow physics. In our work, the locations needing increased resolution are fixed in
time. Therefore, a stationary refinement grid version was used in this work.

Figure 2 depicts the process for adding a one-dimensional refinement grid. The method begins by placing
a single coarse grid over the entire flow field. Figure 2(a) shows the coarse grid at the tn and tn+1 time steps.
Next smaller grids with increased resolution are placed on top of the coarse grid in locations where complex
physics are expected. Figure 2(b) shows a refinement grid with a factor of three increase in resolution placed
over the coarse grid. Six ghost points are attached to the edge of the refinement grid. The flow variables at
the ghost points are computed from the coarse grid using fifth-order interpolation. Most of the coarse grid
points which are overlapped by refinement grid points become coarse grid ghost points. The flow variables at
these points are simply set equal to the corresponding refinement grid point values. In addition to the spatial
refinement, the temporal resolution of the refinement grid is also increased by the same factor. Figure 2(c)
shows the additional time steps taken by the refinement grid. The flow variables at the refinement grid
ghost points for the additional time steps are computed from the ghost points at steps tn and tn+1 using
fourth-order Hermite interpolation. This requires that the coarse grid be advanced in time before advancing
the refinement grid since coarse grid values at tn and tn+1 are required to compute the refinement grid ghost
points.
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t
n

t
n+1

∆t

(a) Step 1: Place a single coarse grid over entire domain.

t
n

t
n+1

∆t

(b) Step 2: Add refinement grid where extra resolution is required.

t
n

t
n+1

∆t

∆t

3

∆t

3

∆t

3

(c) Step 3: Add refinement in time.

Figure 2. Multi-zone refinement grid generation and point classification. Coarse grid point ; coarse grid ghost point ;

refinement grid point ; refinement grid ghost point .
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-3

-2

-1

0

1

2

3
y
/
R

x/R

(a) Sample grid with 50× 50 points. Points inside the cylin-
ders are not shown.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

y
/
R

x/R

(b) Mach number contour from 200 × 200 grid. 21 evenly
spaced levels from 0.0 to 1.0.

Figure 3. Sample grid and Mach number contour for circular Couette flow test case.

III. Order of Convergence

The order of convergence was computed to ensure that the target high-order of convergence was
achieved. Two test cases were used to find the order of convergence. The simulations tested the cut-cell and
mesh refinement methods individually.

III.A. Cut-cell Method Order of Convergence

The order of convergence for the cut-cell cell portion of the code was tested using circular Couette flow.
The problem consists of two concentric cylinders with a viscous fluid between them. For our test case, the
gap between the cylinders is twice the inner cylinder radius (R). The inner cylinder rotated with a Mach
number of one while the outer cylinder was stationary. Both walls were isothermal. The inner cylinder was
set to a temperature of 300 K and the outer cylinder was set to 400 K. The Reynolds number based on the
inner cylinder radius is 500. The simulation was performed assuming a constant viscosity. This permitted
the comparison to an analytical exact solution.

The simulation was performed on a uniform Cartesian grid measuring 6.5R× 6.5R. Both cylinders were
imposed by the cut-cell method. Figure 3(a) shows a sample of the grid using 50 × 50 grid points. The
simulation was carried out on four grids: 100× 100, 200× 200, 400× 400, and 800× 800. Figure 3(b) shows
the Mach contours for the solution computed on the 200× 200 grid. Despite being simulated on a Cartesian
grid, the contours are circular as the exact solution predicts.

Figure 4 shows the L2, L1, and L∞ errors for the conservative variables from each of the grid resolutions.
The number next to each line segment is the slope of that segment which is equal to the order of convergence.
The cut-cell method uses third-order differencing near the immersed surface. When combined with the fifth-
order interior scheme, the expected global order of convergence is four. The L1 error shows that the order
of convergence is near the desired value of four.

III.B. Multi-Zone Refinement Method Order of Convergence

The order of convergence for the multi-zone refinement portion of the code was tested by simulating the
propagation of a low-amplitude density wave. The wave was sinusoidal in shape with an amplitude of 10%
of the mean density. The wave propagates at an angle of approximately 26◦ with the x axis. The viscous
terms were turned off for this simulation.
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(a) Error in density.
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(b) Error in x-direction momentum.
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(c) Error in y-direction momentum.

0.02 0.04 0.06

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
E
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o
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Grid Spacing
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4.07

3.26

2.77
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(d) Error in energy.

Figure 4. Error in the conservative variables versus grid spacing for the circular Couette flow test case. The number

next to each line segment is the order of convergence computed using the line segment end points. L∞ error ;

L1 error ; L2 error .
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0 0.5 1 1.5 2 2.5 3 3.5 4
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1
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x

Figure 5. Density contour for propagating density wave problem at a final time of 2.0. The dashed green box represents

the first refinement zone which increases the resolution by a factor of three compared to the coarse grid. The dashed

blue box represents the second refinement zone which increases the resolution by a factor of three compared to the

first refinement grid.
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(a) Error in density with varying grid spacing.
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(b) Error in density with varying time step.

Figure 6. Error in density for density wave test case. The number next to each line segment is the order of convergence

computed using the line segment end points. L∞ error ; L1 error ; L2 error .

Figure 5 shows the density contour for the simulation at a final time of 2.0. The figure also shows the
locations of the first and second refinement zones. The first zone increases the resolution by a factor of three
compared to the coarse grid and the second increases the resolution by another factor of three. Periodic
boundary conditions are used along the coarse grid edges.

The simulation was performed on a uniform Cartesian grid. In order to compute the spatial and temporal
order of convergence, two sets of simulations were performed. In the first, the CFL number was fixed at 0.1
while the number of grid points was changed. Four simulations were carried out with the coarse grid having
100 × 50, 200 × 100, 400 × 200, and 800 × 400 points. The results from this set of simulations were used
to compute the spatial order of convergence. Figure 6(a) shows the L2, L1, and L∞ errors for density from
each of the grid resolutions. Since the cut-cell method is not used in this case and the domain is periodic,
the optimal order of the interior scheme should be obtained. Since a fifth-order hybrid scheme is being used,
the expected order of convergence is five. As the L1 error shows, the desired value of five is obtained.

In the second set of simulations, the grid was kept constant while the CFL number was changed. Four
simulations were performed with a CFL number of 0.8, 0.72, 0.648, 0.5832, and 0.52488. The results from
this set of simulations was used to compute the temporal order of convergence. Figure 6(b) shows the L2,
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Figure 7. Grid in vicinity of cylinder. Points inside the cylinder are not shown. Coarse grid shown in red. First

refinement grid with three times the resolution shown in green. Second refinement grid with an additional three times

increase in resolution shown in blue. Only every second point shown in both directions.

L1, and L∞ errors for density from each of the CFL values. Since a third-order Runge-Kutta scheme is used
to advance the simulation in time and the multi-zone refinement uses a fourth-order Hermite interpolation
in time, the expected temporal order of convergence is three. All three errors show the expected order of
convergence.

IV. Results

IV.A. Subsonic Flow Over Cylinder

The first set of results being presented is for Mach 0.2 flow over a cylinder. The purpose of this simulation
was to test the combination of the cut-cell and multi-zone methods on an unsteady problem. Although the
code solves the compressible Navier-Stokes equations, this incompressible problem was selected due to its
widely known solution. The Reynolds number for the flow based on the cylinder diameter (D) is 150. This
places the solution in the periodic vortex shedding regime.

Figure 7 shows the grids used in the simulation. The red grid is the coarse grid, which covers the entire
domain. The coarse grid has 300 grid points in the x direction and 150 grid points in the y direction. The
first refinement grid is shown in green and second in blue. Each refinement grid increases the resolution by
a factor of three. The figure only shows a portion of the domain. In the x direction, the domain starts at
x/D = −5 and ends at x/D = 15. The domain has a length of 10D in the y direction and is centered at
y/D = 0. Non-reflective boundary conditions29 are used along all edges of the domain.

Figure 8(a) shows contours of vorticity for the flow after reaching a periodic state. The green and blue
boxes show the location of the first and second refinement grid, respectively. The results show that the
vortices are able to pass across the refinement zone boundaries unimpeded. Figure 8(a) also shows the
location of four probes placed in the flow. Once the solution reached a periodic state, the pressure at
each probe location was recorded as a function of time. The dominant frequency of the pressure history
was computed using an FFT. The results of the FFT are shown in Figure 8(b). The different line colors
correspond to the same colored probe in Figure 8(a). Figure 8(b) shows that all the probes measured the
same dominant frequency. This suggests that the multi-zone refinement did not have a noticeable negative
effect on the solution. The first peak measured by all the probes is at a Strouhal number of 0.185. The
remaining peaks are harmonics of the first.

Figure 9 is a plot taken from the cylinder wake review paper by Williamson.30 The plot shows the
Strouhal number versus Reynolds number for the current problem. The data comes from a number of
different experiments. The Strouhal number from the current simulation was added to the plot. The results
agree very well with the experimental data. These results suggest that the cut-cell method and the multi-zone
refinement are working correctly.
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(a) Vorticity contour. Colored dots denote the location of pressure probes. First refinement zone edge . Second
refinement zone edge .
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(b) FFT of the pressure history record at each probe. The line color corresponds to the probe color in Figure (a).

Figure 8. Results from subsonic flow over a cylinder.
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Figure 9. Strouhal number versus Reynolds number for incompressible flow over a cylinder. Taken from Williamson.30

Results from current simulation shown as .

Freestream Mach number M∞ 4.8

Freestream velocity u∞ 720 m/s

Freestream pressure p∞ 239.426 Pa

Freestream temperature T∞ 55.4 K

Freestream density ρ∞ 1.51×10−2 kg/m3

Freestream Reynolds number Re∞ 105

Reference length Lref 3.365×10−2 m

Roughness height k 0.1Lref

Ratio of roughness height to boundary-layer thickness k/δ 0.547

Table 1. Flow conditions for the hyperbolic tangent roughness simulation.

IV.B. Hyperbolic Tangent Roughness

This simulation comes fromMarxen and Iaccarino.31 Marxen and Iaccarino simulated Mach 4.8 boundary-
layer flow over a three-dimensional isolated roughness constructed from hyperbolic tangent curves located
on a flat plate. The roughness height to undisturbed boundary-layer thickness ratio (k/δ) is 0.547. The
freestream conditions for the flow are summarized in Table 1, where Re∞ = ρ∞u∞Lref/µ∞ and δ is the
boundary-layer thickness of the flow without the roughness element. The equation for the roughness ge-
ometry can be found in Marxen and Iaccarino. This roughness was previously simulated using a single
body-fitted grid and a single cut-cell grid in Greene et al.23 The simulation was recomputed using the multi-
zone refinement method. The new simulation used a coarse grid and one refinement grid. The purpose of
the simulation was to test the multi-zone method on a compressible problem and find the runtime reduction
the method provides.

The grids in the vicinity of the roughness are shown in Figure 10. The coarse grid has 120 points in the
x direction, 80 points in the y direction, and 80 points in the z direction. The refinement grid increases
the resolution by a factor of three. The grids are clustered near the roughness element in the x direction
and near the wall in the y direction. The gird is uniform in the z direction. Only the domain around the
roughness element is shown in the figure. The full numerical domain starts at x/δ = −24.0 and ends at
x/δ = 72.0. The top of the domain is located at y/δ = 8.6 and the domain half width is W/δ = 3.8.
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(a) x− y plane at z/δ = 0
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(b) y − z plane at x/δ = 0

Figure 10. Grid in the vicinity of the three-dimensional hyperbolic tangent roughness element. Grid points inside the

roughness were removed. Coarse grid shown in red. Refinement grid with three times the resolution shown in blue.
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(a) Pressure contour. Non-dimensionalized as p/p∞. 32 levels from 0.05 to 1.6.
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(b) v velocity contour. Non-dimensionalized as v/u∞. 24 levels from -0.1 to 0.1.

Figure 11. Contours in vicinity of three-dimensional hyperbolic tangent roughness element at z/δ = 0 plane. Multi-zone

cut-cell simulation ; Body-fitted simulation ; Refinement zone edge .
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(a) Pressure contour. Non-dimensionalized as p/p∞. 32 levels from 0.1 to 1.6.
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(b) w velocity contour. Non-dimensionalized as w/u∞. 24 levels from -0.1 to 0.1.

Figure 12. Contours in vicinity of three-dimensional hyperbolic tangent roughness element at x/δ = 0 plane. Multi-zone

cut-cell simulation ; Body-fitted simulation ; Refinement zone edge .

The leading edge of the flat plate is not included in the simulation. Instead, a compressible similarity
solution is imposed at the inlet of the numerical domain and held fixed with time. The outlet of the domain
is a supersonic outlet so the conservative variables are extrapolated from the interior of the domain. At the
top of the domain, a sponge layer32 is used to prevent the shock and expansion fan created by the roughness
from reflecting back into the domain. The bottom edge of the domain is a no-slip adiabatic wall with the
pressure being extrapolated from the domain interior. Symmetry boundary conditions are used at both
edges on the domain in the z direction.

To evaluate the performance of the multi-zone refinement method, the results of the simulation were
compared to the body-fitted results from Greene et al.23 Contours of the pressure and the v velocity
component near the roughness at the z/δ = 0 plane are shown in Figure 11. Contours of the pressure and
the w velocity component near the roughness at the x/δ = 0 plane are shown in Figure 12. The results
from the two methods agree very well. Only small differences between the body-fitted and current results
are visible. Neither set of results were confirmed to be grid converged. Increasing the grid resolution may
remove the differences. The multi-zone method provided a 75% reduction in runtime compare to the single
grid methods used previously.

IV.C. Supersonic Flow Over The Ubuntu Logo

The test cases presented so far contained rather simple geometries. To test the code on a more complex
geometry, supersonic flow over the logo of the Ubuntu33 Linux distribution was simulated. The Ubuntu logo
is shown in Figure 13. The freestream flow was set to Mach 3 with a Reynolds number based on the outer
diameter of the logo’s ring (D) of 2,500 and a temperature of 100 K.

Figure 14 shows the grid used in the simulation. Only the grid near the logo is shown. The full domain
goes from x/D = −5 to x/D = 20 in the x direction and y/D = −7.5 to y/D = 7.5 in the y direction.
The coarse grid has 150 points in the x direction and 100 points in the y direction. Two refinement grids
were used in the simulation. Each refinement grid increases the resolution by a factor of three. The grid is
clustered near the center of the logo in both the x and y directions.
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Figure 13. Logo for the Ubuntu33 Linux distribution.

-4 -2 0 2 4 6 8
-4

-2

0

2

4

x/D

y
/
D

Figure 14. Grid near the Ubuntu logo. Points inside the logo are not shown. Coarse grid shown in red. First refinement

grid with three times the resolution shown in green. Second refinement grid with an additional three times increase in

resolution shown in blue. Only every second point shown in both directions.

Since the flow is supersonic, the freestream conditions are imposed at the inlet of the domain and help
constant with time. The outlet is supersonic so the conservative variables are extrapolated from the interior
of the domain. Sponge layers are placed at the top and bottom of the domain to prevent any shocks from
reflecting back into the domain. The logo has no-slip adiabatic walls.

Contours of temperature and Mach number are shown in Figure 15. The dominant features of the flow
are the bow shock created upstream of the logo and the unsteady wake. The results shown in the figure
have reached a periodic state. The figure also demonstrates one of the weaknesses of the current multi-zone
method. As the shock passes across a refinement grid boundary, the thickness of the shock increases abruptly.
A weak reflected shock can sometimes also be propagated back into the refinement grid. The difference in
the shock width and the strength of the reflected shock appears to be proportional to the strength of the
shock. In the other simulations presented here, any shocks crossing a refinement boundary are significantly
weaker and therefore do not create any issues.

Figure 16 shows contours of temperature and Mach number in the vicinity of the logo. The figure also
includes a plot of the streamlines. Although there are no results to compare with for this flow, nothing
stands out as incorrect in the flow field. This suggests the code is capable of handing complex geometries.

Once the solution reached a periodic state, the pressure was recorded at five locations in the flow.
Figure 17(a) shows contours of vorticity and the location of the five pressure probes as colored dots. An
FFT was used to compute the dominant frequency in the flow. Figure 17(b) shows the results of the FFT.
The different line colors correspond to the same colored probe in the Figure 17(a). The same dominant
frequency is measured by all the probes. The first peak is at a Strouhal number of 0.119. The remaining
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(a) Temperature contour. Non-dimensionalized as T/T∞. 25 levels from 0.9 to 2.8.

-4 -2 0 2 4 6 8 10 12 14

-4

-2

0

2

4

x/D

y
/
D

(b) Mach number contour. 30 levels from 0.1 to 3.3. Sonic contour shown as .

Figure 15. Temperature and Mach number contours for flow over the Ubuntu logo. First refinement zone edge .

Second refinement zone edge .
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(a) Temperature contour. Non-dimensionalized as T/T∞. 25 levels from 0.9 to 2.8.
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(b) Mach number contour. 30 levels from 0.1 to 3.3. Sonic contour shown as .
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(c) Streamlines.

Figure 16. Flow variable contours and streamlines near the Ubuntu logo. Second refinement zone edge .
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(a) Vorticity contour. Colored dots denote the location of pressure probes. First refinement zone edge . Second
refinement zone edge .
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(b) FFT of the pressure history record at each probe. The line color corresponds to the probe color in Figure (a).

Figure 17. Frequency analysis results for flow over the Ubuntu logo.
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Freestream Mach number M∞ 5.93

Freestream velocity u∞ 873 m/s

Freestream pressure p∞ 0.37 kPa

Freestream temperature T∞ 53.9 K

Stagnation pressure p0 551.58 kPa

Stagnation temperature T0 433 K

Wall temperature Twall 298.2 K

Freestream unit Reynolds number Re∞ 5.94×106 m−1

Undisturbed boundary-layer thickness δ 9.23 mm

Ratio of roughness height to boundary-layer thickness k/δ 1.10

Ratio of roughness diameter to boundary-layer thickness D/δ 0.647

Table 2. Flow conditions for cylindrical roughness simulation.

peaks are harmonics of the first.

IV.D. Cylindrical Roughness

With the combined multi-zone and cut-cell code tested, work has begun on reproducing the results from
the Boeing/AFOSR Mach 6 quiet wind tunnel at Purdue University. The wind tunnel is a Ludwieg tube
capable of generating quiet Mach 6 flow and is maintained by Professor Steven Schneider.34 Wheaton and
Schneider19 have recently measured a 21 kHz instability in Pitot probe and hot-wire measurements for Mach
6 flow over a cylindrical roughness element with a height of 10.2 mm and a diameter of 5.97 mm. The
undisturbed boundary layer had a thickness of approximately 9.23 mm. Ward et al.35 measured the same
instability with flush-mounted pressure transducers on the nozzle wall. The goal of the current simulation is
to reproduce these results and to investigate the source of the instability. Due to difficulties in simulating the
entire wind tunnel, the tunnel geometry was modeled as a flat plate. Although the geometry has changed, the
same flow conditions as the Purdue wind tunnel have been used. The flow conditions used in the simulation
come from Wheaton and Schneider and are given in Table 2.

A coarse grid and two refinement grids were used for this simulation. The grids in the vicinity of the
roughness are shown in Figure 18. Only a portion of the grid is shown in the figure. The full domain starts
at x/δ = −20 and ends at x/δ = 25. The top of the domain is located at y/δ = 5 and the domain half
width is W/δ = 7.5. The coarse grid has 200 points in the x direction, 140 points in the y direction, and 121
points in the z direction. The grids are clustered near the front of the roughness in the x direction, near the
top of the roughness in the y direction, and near the center of the roughness in the z direction. The same
boundary conditions as the hyperbolic roughness are used here except the wall is now isothermal instead of
adiabatic.

Figure 19 shows the temperature contours at the z/δ = 0 plane. The flow has become unsteady but the
flow field has not reached a statistically stationary state. The flow downstream of the roughness element is
still changing significantly with time. Since the entire flow field has not reached a statistically stationary
state, a frequency analysis of the instability has not been performed yet. However, the flow near the roughness
element is no longer undergoing large scale changes. This allows preliminary results to be compared with
previously published work from other researchers.

Figure 20 shows a comparison of the streamlines in front of the roughness element for the current simula-
tion and a simulation performed at similar condition from Wheaton et al.36 The vortical structures from the
two simulations seem to match very well. Figure 21 shows the surface streamlines and wall pressure for the
current simulation and a simulation performed by Bartkowicz et al.18 The streamlines show the separation
and re-attachment lines created by the vortices shown in Figure 20. Upstream of the roughness, the results
in Figure 21 appear very similar. To the sides and downstream of the roughness, the streamlines begin to
show differences. This may be due to transient effects from the initial condition for the current simulation.
Since the simulation has not reached a statistically stationary state, the initial transients are still present.
The simulation is still underway and more results will be presented at a future time.
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(a) x− y plane at z/δ = 0
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(b) x− z plane at y/δ = 0

Figure 18. Grid in the vicinity of the three-dimensional cylindrical roughness element. Points inside the roughness

element are not shown. Coarse grid shown in red. First refinement grid with three times the resolution shown in green.

Second refinement grid with an additional three times increase in resolution shown in blue. Only every second point

shown in all directions.
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Figure 19. Temperature contours near cylindrical roughness at z/δ = 0 plane. Non-dimensionalized as T/T∞ with 30

levels from 1.1 to 8.8. First refinement zone edge ; Second refinement zone edge .
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(a) Current simulation. First refinement zone edge ; Sec-
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(b) Results from Wheaton et al.36

Figure 20. Comparison of streamlines in z/δ = 0 plane for flow over cylindrical roughness.

(a) Current simulation. Pressure plotted as p/p∞ with con-
tour levels varying from 0.4 to 5.0. Refinement grid edges
shown as yellow rectangles.

(b) Results from Bartkowicz et al.18

Figure 21. Comparison of surface streamlines and pressure contours for flow over cylindrical roughness.
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V. Conclusion

Results were presented for a new code designed to perform high-order simulations of high-speed flows over
arbitrary geometries. The code utilizes a cut-cell method to model complex geometries on a simple Cartesian
grid. The code also uses a multi-zone refinement method to provide extra control over the placement of grid
points. The cut-cell method was confirmed to provide globally fourth-order convergence when combined
with the codes fifth-order interior scheme. It was also shown that the multi-zone method does not reduce
the order of the interior scheme. The combination of the cut-cell and multi-zone refinement methods should
result in a globally fourth-order scheme.

The code was validated by simulating subsonic flow over a cylinder and supersonic flow over an isolated
roughness element constructed from hyperbolic tangents. Results from both simulations compare well with
previously published results. To further test the capabilities of the code for flows involving complex geome-
tries, supersonic flow over the Ubuntu logo was simulated. There are no results to compare with, but the
results do not appear to have any obvious errors.

Based on these results, simulations for the problem of interest have begun. Mach 6 flow over an isolated
cylindrical roughness element located on a flat plate are currently underway. Preliminary results were
presented and found to match well with results from other researchers. Once the simulation reaches a
statistically stationary state, further analysis of the flow will be performed and presented at a future date.
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