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DNS and PSE study on the stabilization effect of hypersonic 
boundary layer waves using 2-D surface roughness 
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Recent studies have shown that roughness element can suppress mode S when it is placed 
at the right location. In particular, our previous DNS research has shown that when the 2-D 
roughness element is placed downstream of the synchronization location, mode S is 
suppressed. On the other hand, if the roughness element is located upstream of the 
synchronization point, mode S is amplified and destabilized. Recently, an experiment has 
confirmed the roughness stabilization effects on mode S by judiciously placing roughness 
elements downstream of the most dangerous frequency’s synchronization point on a flared 
cone [1]. In the present paper, we extend our study on the roughness effect by using DNS 
and a theoretical approach of PSE analysis. The goals here are to investigate the mechanism 
of roughness effects observed in DNS simulations, and to study the role of neutral stability 
point and synchronization point. Different roughness heights and widths are considered 
similar to our previous studies [2]. It is found that PSE can indeed predict the roughness 
effects observed in DNS, and the PSE results confirm the trends of roughness height and 
width effects as seen in simulations. Our PSE results also suggest that the effect of roughness 
on Mack mode is the result of alteration of meanflow, and no new instability mode is found. 
Lastly, our DNS results overwhelmingly show that the synchronization location is an 
important parameter in determining the roughness effect comparing with the location of the 
neutral stability point. 

I. Introduction 

The physical mechanisms of the roughness induced boundary-layer transition are critical to the development of 
hypersonic vehicles. Transition can have a first-order impact on the lift and drag, stability and control, and heat 
transfer properties of the vehicles [3]. For example, roughness induced transition is an important consideration in the 
design of thermal protection systems (TPS) of hypersonic vehicles [4, 5]. For a reentry vehicle entering earth’s 
atmosphere, it initially experiences a heating environment associated with a laminar boundary layer. As the vehicle 
altitude decreases, the vehicle surface becomes rougher and the boundary layer becomes turbulent. The transition 
from a laminar boundary layer to a turbulent one leads to the increase of surface heating rates by a factor of five or 
more. Thus the ability to understand and predict the physics of roughness induced transition plays an essential role 
in the design of TPS for reentry vehicles. Currently, roughness induced laminar-turbulent transition in hypersonic 
boundary layers, especially that induced by arbitrary surface roughness, is still poorly understood due to the 
limitation in experimental facilities and numerical methods [6].  
 

Ideally the laminar-turbulent transition process can be divided into four stages. The first involves small 
disturbance fields which are initialized via a process termed “receptivity” by the viscous flow. The initial 
disturbance fields can involve both freestream and vehicle self-induced fluctuations such as acoustics, dynamic 
vortices, entropy spottiness, etc. The next stage is the linear growth stage, where small disturbances are amplified 
until they reach certain amplitude where nonlinear effects become important. The amplification can be in the form 
of exponential growth of eigenmodes (Tollmien-Schlichting waves or Mack waves) and non-modal growth of 
optimal disturbances (Transient growth). Once a disturbance has reached a finite amplitude, it often saturates and 
transforms the flow into a new, possibly unsteady state, which is termed as the secondary instability stage. The last 
stage is the breakdown stage where nonlinearities and/or high-order instabilities excite an increasing number of 
scales and frequencies in the flow. 
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The receptivity study is mainly concerned with the excitation of instability waves, the characteristics of which 

can be analyzed by the linear stability theory (LST) [7]. The LST analyzes the propagation of individual sinusoidal 
waves in the streamwise direction inside the boundary layer. These waves are referred as Tollmien-Schlichting (T-S) 
waves for low speed flow, whose amplitudes vary though the boundary layer and die off exponentially outside the 
boundary layer. Extensive numerical and theoretical researches have been conducted to solve the linearized Navier-
Stokes equations and many characteristics regarding the instability waves in hypersonic boundary layers have been 
discovered [7-11]. Mack [7] identified the unstable modes by using the LST for compressible flow. He showed that 
inside a supersonic boundary layer, there are multiple higher instability modes in addition to the first mode, which is 
the compressible counterpart of T-S waves in the incompressible boundary layers. These instability modes in the 
supersonic boundary layer are termed as first mode, second mode, third mode, etc. For supersonic boundary layer 
with Mach number larger than four, Mack’s second mode is the most unstable mode, and it plays an important role 
in hypersonic boundary layer transition.  
 

Direct numerical simulation has become an effective research tool for studying hypersonic boundary layer 
receptivity, stability, and transition by numerically solving the time-dependent three-dimensional Navier–Stokes 
equations for the temporally or spatially evolving instability waves. Malik et al. [12] investigated the responses of a 
Mach 8 flow over a sharp wedge of a half-angle of 5.3o to three types of external forcing: a planar freestream 
acoustic wave, a narrow acoustic beam enforced on the bow shock near the leading edge, and a blowing-suction slot 
on the wedge surface. They concluded that these three types of forcing eventually resulted in the same type of 
instability waves in the boundary layer. Ma and Zhong [13] studied the receptivity mechanisms of the same 
hypersonic boundary layer to various freestream disturbances, i.e., fast and slow acoustic waves, vorticity waves, 
and entropy waves, by solving the two-dimensional compressible Navier-Stokes equations. They found that the 
stable modes in the boundary layer played a very important role in the receptivity process. Recently, Wang et al. 
[14] further studied the response of the Mach 8 flow over a 5.3o half-angle sharp wedge to wall blowing–suction. 
The results showed that mode S is strongly excited when the actuator is located upstream of the corresponding 
synchronization point. There is no significant amplification of pressure perturbation when the actuator is 
downstream of the synchronization point. Although the exact cause and mechanism of this result were not clear, 
such a result was obtained for wall blowing–suction at all frequencies considered in their study.  

Balakumar [15] numerically investigated the receptivity of a 2-D roughness to acoustic waves and found the 
isolated roughness does not contribute much in generating unstable disturbances. Marxen et al. [16] simulated the 
effects of a localized two-dimensional roughness element on the disturbance amplification in a hypersonic boundary 
layer. Their numerical experiments showed that in the vicinity of the separation regions, which are located in the 
upstream and downstream of the roughness, an increased amplification of a second-mode disturbance occurs for a 
certain frequency. Marxen et al. [17] studied the disturbance growth on a flat-plate boundary layer at Mach 4.8 with 
localized 2-D roughness element. They found the disturbance was strongly damped downstream of the roughness 
element around the separation region, which agrees with Holloway's hypothesis. However, the mechanisms were not 
investigated. At the same time, Duan et al. [18] from Zhong’s group at UCLA reported that a 2-D roughness element 
can damp disturbances if the element is placed downstream of the synchronization location. The details of the work 
by the UCLA group will be discussed in the next paragraph. Riley et al. [19, 20] also numerically studied the 
stability characteristics of a Mach 4 hypersonic boundary layer over a wedge. On the surface of the wedge, they 
imposed convex or concave panel buckling (compliant panel) at different locations. They found that when the panel 
is placed near the trailing edge of the wedge, the panel can move the boundary layer transition further downstream. 
On the other hand, Egorov, Novikov and Fedorov [21] performed numerical simulations of a Mach 6 supersonic 
boundary layer over a grooved wavy plate. Their study was motivated by the numerical studies of Balakumar [22] 
and Egorov et al. [23] which showed the second mode remains neutral in the separated region on a 5.5 deg 
compression corner. Based on the result on the separated region, the intention of the study by Egorov et al. was to 
generate short local boundary layer separations by the wavy wall to decrease disturbance growth. The wavy wall 
was in the form of 9 round arc cavities. It was found that the wavy wall design damps a range of high frequency 
unstable disturbances which are relevant to the second mode instability. Bountin et al. [24] later confirmed the 
results in Egorov et al. [21] that the wavy wall damps the unstable second mode in the high frequency band while it 
enhances them at lower frequencies. Their experimental data also showed that the wavy wall damps disturbances not 
only at the wavy wall wavelength, but also a wide range of disturbances in different frequencies with different 
wavelengths. Based on these results, they argued that the stabilization effect of second mode by the wavy wall is due 
to altering the mean flow instead of an interference process between the second mode and the wavy wall itself. 
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Since 2009, for the purpose of simulating hypersonic flow with finite height roughness element, Zhong's group at 
UCLA has developed a high-order cut-cell method [25]. The new method was then applied to simulating a finite 
roughness elements on a hypersonic boundary layer at Mach 5.92 [18, 25]. Different from the wavy wall idea as in 
[26] and [21], they found that the relative location of 2-D roughness element and synchronization location plays an 
important role. Duan et al.[18] and Fong et al. [27] argue that 2-D roughness elements can damp disturbances if the 
roughness element with a height less than the local boundary layer thickness are downstream of the synchronization 
point. A further parametric study was performed by Fong et al. [28], in which different roughness parameters 
including roughness height, width and spacing between roughness elements have been considered. All results are 
consistent with the initial finding about the important of the synchronization location and roughness element 
location. On the other hand, despite the parallel flow assumption taken by LST, it has been shown in [29] that LST 
is capable of predicting the roughness effect observed in simulations. To extend this study, in this paper, both DNS 
and theoretical analysis using parabolized stability equation (PSE) are utilized. The DNS code is a high order shock 
fitting method combined with the high order cut cell method as described in [25]. On the other hand, PSE code is 
developed following the work by Gao et al.[30], Chang et al. [31] and Park et al.[32]. The goals of the present study 
are to investigate the mechanism of roughness effect using both DNS and PSE, and to study the importance of 
neutral stability point and the synchronization point. It is found that PSE can indeed predict the roughness effects 
observed in DNS, and the PSE results confirm the trends of roughness height and width effects seen in our 
simulations [2]. Our PSE results also suggest that the effect of roughness on Mack mode is the result of alteration of 
meanflow, and no new instability mode is found in PSE. Lastly, our DNS results overwhelmingly show that the 
synchronization location has an important role in determining the roughness effect comparing with the location of 
the neutral stability point. 

II. DNS method 

A schematic of a computational domain and a cut-cell grid in roughness induced hypersonic boundary layer 
transition is shown in Figure 1. This figure shows a typical hypersonic flow over a blunt body, where a bow shock is 
created by the supersonic freestream. In this paper, a high-order shock-fitting method is used to track the movement 
of the bow shock which is treated as the upper boundary of the computational domain. The computational grid for a 
shock-fitting formulation is bounded between the bow shock above and the blunt body below. The cut-cell grid is a 
smooth curvilinear grid fitted to the baseline body shape without the roughness. As a result, the roughness surface 
cuts across the grid lines. The roughness surface,  , is represented by surface equation in the following form,  
 
 : ( , , ) 0f x y z   (1) 
For a problem concerning practical arbitrary roughness, it is likely that there is no analytical equation applicable to 
represent the shape of the roughness element. In this case, a set of n  discrete points 

 1 1 1 2 2 2, ) , ),..., , )( , ,( , ( ,n n nz z zx y x y x y  are used to represent the surface.  
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(a)                                                                               (b) 

Figure 1.Physical and computational domain and a cut-cell grid of hypersonic flow over a blunt body with 
surface roughness: a) physical grid, b) computational grid with a transformed roughness [19]. 
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 The roughness equation (1) in the physical domain is transformed into a Cartesian computational domain 
bounded by bow shock and flat plate. Under the computational coordinate system, the body fitted grids are 
represented by a curvilinear three-dimensional coordinates ( , , )    along the grid lines. The unsteady movement 

of the bow shock is treated as the computational upper boundary located at max  , which is time dependent. The 

other grid lines const  and const   remains stationary during computations. The coordinate transformation 

is defined by: 
 

 

( , , ) ( , , , )
( , , , ) ( , , , )
( , , ) ( , , , )

x y z x x
x y z t y y
x y z z z

t t

     
     
     
 

 
 
  
 
  

 
 
 
 

 (2) 

where ( , , , )x y z t  are the physical coordinates defined under Cartesian coordinate system. 

A third-order accurate Cut-Cell method is used in current numerical simulation [18]. A set of uniformly 
distributed Cartesian grids can be generated in the computational domain where the grid distribution in the physical 
domain is not uniformly distributed. Because smooth body-fitted grids are generated in the regular computational 
domain without the roughness, some of the Cartesian grid cells may be cut by the roughness boundary, which leads 
to irregular Cartesian grid cells. More details of the grid structure are discussed in a previous paper [18]. 

 

III. Parabolized Stability Equation 

Linear stability analysis (LST) has been widely used to study stability characteristics of hypersonic boundary 
layer flow. One major assumption of LST is the parallel flow assumption, which ignores boundary layer growth. 
Although LST is usually accurate for analysis on hypersonic boundary layer on a smooth surface, in the case of our 
study of roughness effects, parallel flow may not be adequate.. Thus, the method which allows slow boundary layer 
growth, the parabolized stability equation (PSE) analysis, is considered here. The derivation of PSE is derived in a 
similar manner as the LST. However, in PSE, the wall normal velocity component v  is kept in the governing 
equations. The three dimensional Navier-Stokes equations used in PSE for the perfect gas are,  

 

 

*
* * * * * * * * *tr

*
[ ] [ ( ) ( )]

u
u u p u I u u

t
  

          


 (3)              

 

*
* *

*
( ) 0u

t

 
  


 (4)                                

 

 

* *
* * * * * * * * *

* *
[ ] ( )p

T p
c u T k T u u

t t
  

         
 

 (5)                                

 

* * * *p R T  (6)       

 where *u is the velocity vector, * is the density, *p is the pressure, *T is the temperature, *R is the gas constant, 
*
pc is the specific heat at constant pressure, *k is the thermal conductivity, * is the first coefficient of viscosity, and 
* is the second coefficient of viscosity. The viscous dissipation function, * is given as  

 

 

*
* * * 2 * *tr( ) ( )

2
u

         (7)            

   
The superscript * represents dimensional quantities. In the PSE analysis, the quantities in the governing equations 
are non-dimensionalized by the freestream quantities similar to those in LST analysis. On the other hand, the 
instantaneous non-dimensional values of velocities, , ,u v w , pressure p , temperature T , density  may be 

represented as the sum of mean and fluctuation quantity, i.e. 
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,  v , w

,T ,

, ,

u U u V v W w

p P p T T

k k k

  

     

     

     

     

  
 


 (8)       

        
Substitute Eqn. (8) into the non-dimensional form of governing equations yields the linearized full perturbation 
equation, 

 
2 2 2 2 2 2

2 2 2xx yy zz yz xz xy

A B C D
t x y z

V V V V V V
y z x z x yx y z

    

     

   
     
   

     
    

       

 (9)             

  

where   contains the perturbation vector and is defined as [ , , , ,T]Tp u v w      , and the coefficient matrices are 

composed of the meanflow quantities. 

Different from the LST, in 2D PSE, the normal node of a perturbation is assumed to have the following form, 

 0

( , , , ) ( , ) exp(i )
x

x

x y z t x y dx z t        (10)                              

where ( , )x y is defined as the shape function as ˆˆ ˆ ˆ ˆ[ , , , , ]Tp u v w T  similar to ˆ( )nq y in the LST. In PSE, the 

streamwise wave number   is a function of x . On the other hand, the perturbation eigenfunction  is a function of 

both x  and y  instead of pure function of y  in the LST analysis. Substituting Eqn. (10) into Eqn. (9), neglecting all 

terms which are of order of 2
01/ R ,  we obtain,  

 

2

2yyA B D V
x y y

    
  

  
     (11)                              

 
 
where 

 
2 2

2 xx xz

xy yz

xx xz yy xx

yy yy

A A i V i V

B B i V i V

d
D i i A i C D V V V iV

dx

V V

 

 

     

  

  

         











 (12)                              

Eqn. (12) is solved using finite difference scheme. The determining factor in choosing the streamwise marching 
scheme is stability. Thus, a simple backward Euler method is used for marching in the x -direction. A three points 
finite difference scheme is used in the wall-normal direction y . On the wall, two points finite difference scheme is 

adopted. In solving the PSE, it is noted that PSE is nonlinear because the coefficients include the unknown 
quantity . Consequently, an iterative procedure for  is given as follows, 

 

 

21

0 0

ˆ
ˆ ˆ[ / ]n n n

n n

q
i q dy q dy

x
 

  
 

   (13)            

                                                 
where ˆ ˆ ˆ ˆ( , , )nq u v w  , the superscript n and n-1 indicate the new value and old value. Eqn. (13) is equivalent to 

saying that the perturbation kinetic energy remains constant along the streamwise direction. Malik [33] has shown 
that this iterative procedure is a satisfactory approach for computing . 
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IV. Results and Discussions 

A. Previous Results 

It has been shown in Fong et al. [29] that roughness element placed downstream of synchronization point can 
damp perturbations. Figure 2 shows the perturbation frequency spectrum obtained from DNS at locations 
downstream of roughness. For comparison, a case without roughness is included and shows on the right figure. The 
roughness location corresponds to the synchronization point for perturbation at frequency 133.26 kHz which is high-
lightened in the figure. It can be clearly seen that for perturbations at frequencies lower than 133.26 kHz, they are 
amplified by the roughness element. On the other hand, perturbations at frequencies higher than 133.26 kHz are 
damped by the roughness. Since it is known that the synchronization locations for high frequencies are more 
upstream, the roughness element therefore is located downstream of the synchronization locations for frequencies 
higher than 133.26 kHz. Vice versa, the synchronization locations for low frequencies are more downstream, the 
roughness element is therefore upstream of the synchronization locations for frequencies higher than 133.26 kHz. 
This relation between synchronization location and roughness element is the major finding in our previous DNS 
efforts [2, 27, 29, 34, 35].  

To see if this damping/amplification effect observed in DNS can be predicted using an theoretical approach, LST 
analysis has been performed in [29] at a location downstream of roughness element. Figure 3 shows the wave 
number and growth rate spectrum (dimensional growth rate where positive is unstable) for roughness case and no 
roughness case obtained from LST. It is seen that the roughness element does not have a significant impact on wave 
number. However, its effect on growth rate is significant. The lines of growth rate for roughness case and no 
roughness case intercept at almost exactly at the synchronization frequency 133.26 kHz, which shows the 
importance of the synchronization frequency. It can also be seen that for frequencies higher than 133.26 kHz, the 
growth rate is lower for roughness case while for frequencies lower than 133.26 kHz, the growth rate is higher. This 
result from LST analysis is consistent with what have been observed in DNS. 
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(b)  

Figure 2. Non-dimensional frequency spectra of wall pressure perturbation at different location. (a) 
Downstream of roughness (b) No roughness case 
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B. Validation of PSE Code 

In this present paper, PSE is used to fulfill the interest of seeing how non-parallel effects impact the results 
observed in DNS shown in [2, 27], and how important is non-parallel effect on the predication of roughness effects 
compared to LST. The PSE analysis enables the study of the evolution of discrete mode in a non-parallel flow 
condition with roughness elements. Since this method considers non-parallel effect, it allows one to study and 
compare numerical results with a better physical insight.  

The first step of the PSE study involves its validation by reducing the PSE code to LST analysis for the Mach 
5.92 flow without roughness element. The validation is done by assuming parallel flow (ex: taking any /d dx  and 
high order derivatives in streamwise direction as zeros, and setting wall normal velocity v as zero) in PSE, and 
check if the results match with those predicted by the original LST code. Figure 4 (a) shows the growth rate obtained 
from PSE with parallel flow assumption comparing with the LST results for 100 kHz  perturbation along the 
streamwise direction. Note that in the figure, the growth rate is the imaginary part of  in eqn.(10), which is non-
dimensional. In this definition, the mode is unstable if the non-dimensional growth rate is negative. It can been seen 
that the result of PSE agree with LST very well, and are almost on top of each other despite the two results are 
generated by two completely separated codes. Figure 4 (b) shows good agreement between PSE and LST in phase 
velocity for perturbation at 100 kHz. Both Figure 4 (a) and (b) suggest the PSE code can be reduced to LST 
correctly, thus our PSE code is validated. 

Next, the growth rate obtained from LST and PSE are compared with the actual DNS data as shown in Figure 5. 
In the figure, 150 kHz perturbation is chosen because this frequency is the most unstable in this location range in the 
DNS data. As it can be seen in the figure, both PSE and LST can resolve the unstable range reasonably well; 
however, comparing PSE with LST, PSE can capture the growth rate closer to the DNS data. For example, starting 
from the location at x=0.18 m,  the LST result is moving away from the DNS data, while on the other hand, the PSE 
result still follows the DNS data in this location range. Figure 6 shows the eigenvector or the mode shape of 
perturbation at 150 kHz taken at a location of x=0.192 m. It is seen that in the wall region (non-dimensional 
coordinate in wall normal direction of Y/L < 10), the result of DNS, PSE and LST almost overlap with each other. 
However, in the region of 10 < Y/L < 30, the high gradient part of the mode shape cannot be resolved nicely with 
LST, while PSE is still capable of matching the DNS data accurately this region. Away from the wall, the LST and 
PSE results collapse with the DNS data again. From Figure 4 and Figure 6, it can be seen that although LST is 
typically sufficient for stability analysis of boundary layer flow, but PSE gives an even more accurate predication 
than LST.   
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Figure 3. LST prediction of wave number and growth rate for meanflow with
roughness and without roughness at  0.17385x m .
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Figure 4. (a) Growth rate (b) Phase velocity obtained from LST and PSE for 100 kHz perturbation. 
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Figure 5. Comparison of growth rate obtained from DNS, PSE and LST at 150 kHz. 
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Figure 6. Comparison of mode shape obtained from DNS, PSE and LST at 150 kHz at x=0.192m. 

 
C. Roughness Effect by PSE 

After the validation, the PSE code is applied to the meanflow with roughness elements. The objective here is to 
use PSE to analyze the meanflow altered by roughness element and see if the damping effect observed in DNS can 
also be predicted by PSE. The case used here is the same meanflow as the one mentioned in [36]. For instance, the 
flow condition is, 
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The roughness is located at x 0.185 m.  This roughness location responds to the synchronization frequency of 
perturbation at 133.26 kHz. Based on previous DNS data, roughness can damp perturbations higher than the 
synchronization frequency while it amplifies the perturbations lower than the synchronization frequency. Figure 7 
and Figure 8 show the growth rate predicted by PSE for two different roughness heights (50% and 10% the local 
boundary layer thickness height) for frequencies 100 kHz  and 150 kHz  respectively. The case for no roughness is 
also shown for comparison purpose. Figure 7 shows that the roughness element amplifies the perturbation at 
100 kHz. Moreover, the taller the roughness element is, the stronger the amplification on the perturbation (more 
negative growth rate) becomes. These results are consistent with the finding in DNS that roughness amplifies 
perturbation lower than the synchronization frequency, and tall roughness results stronger amplification. On the 
other hand, for perturbation at 150 kHz shown in Figure 8, the roughness element damps the perturbation with 
strength depending on roughness height. It can be seen from the figure that 50% boundary layer thickness roughness 
element damps the perturbation significantly (growth rate is very positive). For 10% boundary layer thickness 
roughness element, the damping is not very significant. Again, these results are consistent with the previous DNS 
results as in [2, 27] which have shown roughness element can damp perturbation higher than the synchronization 
frequency, and the damping strength goes stronger with the roughness height goes up. Another thing that can be 
pointed out in Figure 7 and Figure 8 is that for the 50% local boundary layer thickness height roughness element, 
there is a region from x 0.2 m  to 0.22 m where PSE cannot generate any data or the PSE calculation simply 
blows up. The reason is because in PSE calculation, the solution in the upstream marches downstream to obtain new 
solutions, and around the tall roughness element, the strong flow separation region generated behind the roughness 
has affected the downstream region so much that it breaks down the PSE equation. The region is subsequently 

D
ow

nl
oa

de
d 

by
 U

C
L

A
 o

n 
O

ct
ob

er
 1

9,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
33

47
 



10 
 

recovered in the downstream region as shown in the figures, and PSE works again. For small roughness (10% local 
boundary layer thickness roughness), the separation is not a problem and PSE works for the whole range of interest. 

x (m)


i

0.16 0.18 0.2 0.22 0.24

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.10 h
No roughness
0.50 h

 
Figure 7. Growth rate obtained from PSE for 100 kHz with different roughness heights. 
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Figure 8. Growth rate obtained from PSE for 150 kHz with different roughness heights. 

 

Other than the roughness height effect, the effect of roughness width has also been considered in the present PSE 
study. Figure 11 shows the schematics of pressure contour for the thin roughness and the wide roughness used here. 
The thin roughness has a width of 12.5%  the local boundary layer thickness while the wide roughness has a width 
of 200% the local boundary layer thickness. Both roughness elements have a height of 50% the local boundary layer 
thickness. Figure 10 shows the growth rate of 100 kHz perturbation for two different roughness widths. As before, 
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the roughness location corresponds to the synchronization frequency of 133.26 kHz, so the roughness amplifies the 

perturbation of 100 kHz  as shown in the figure. Although the roughness width difference is 16 times, the growth 
rate difference between the two roughness elements is very small. Just in front of the roughness, the difference is 
only about 5%. In contract, as shown in Figure 7, the roughness height difference is only 5 times, but the difference 
in growth rate reaches 400% just in front of roughness. This suggests that PSE predicts the sensitivity of roughness 
height on roughness effects is way more significant than the roughness width. This is exactly what we have shown 
in our previous roughness width study in [2]. The predication of PSE on roughness effects matches our DNS data 
once again. 

In the last part of the present PSE study, it is desired to produce a contour plot of growth rate by PSE similar to 
the perturbation amplitude contour plot produced by DNS as shown in Figure 11, which is taken from our previous 
DNS study in [2]. An important feature of Figure 11 is that, on Figure 11(b) the vertical black line represents the 
roughness element. The horizontal line represents the synchronization location which corresponds to the roughness 
location. For frequencies higher than the horizontal line, their synchronization locations are upstream of the 
roughness, thus roughness damps those frequencies according to our DNS results. On the other hand, for frequencies 
lower than the horizontal line, their synchronization locations are downstream of the roughness, so roughness 
amplifies those perturbations at low frequencies region. The goal here is to reproduce this kind of plot using PSE 
analysis, but instead of pressure perturbation amplitude contour in DNS, the contour produced by PSE would be in 
term of growth rate. Since it has been aforementioned that a tall roughness element results discontinuity in the PSE 
calculation, a small roughness element of 10% the local boundary layer thickness height is used for the contour plot. 
Figure 12 shows the growth rate for the case without roughness element predicted by PSE. The unstable second 
mode waveband can be seen clearly in the figure. The case with roughness is shown in Figure 13. Same as Figure 
11(b), the roughness is represented by the vertical black line, and the synchronization frequency of 133.26 kHz  
which corresponds to the roughness location is shown by the horizontal dash line. By comparing Figure 12 with 
Figure 13, it is clear that the PSE can predict the damping and amplification effects by roughness element based on 
the synchronization frequency. Although the effect is not significant due to the small roughness element height of 
10% local boundary layer thickness used in PSE, the effect is distinguishable. Overall, PSE is shown to be capable 
of capturing the roughness effects observed in DNS data. Furthermore, since PSE only analyzes meanflow profiles, 
the fact that PSE predictions match DNS data suggests that the damping and amplification effects are the outcome of 
the alteration in the meanflow created by the roughness element, other than a new mode generated by the roughness 
element and interacts with the second mode instability waves.  
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Figure 9. Schematics of pressure contour for the thin roughness and wide roughness. 
(a) 0.125 BL wide roughness (b) 2 BL wide roughness 
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Figure 10. Growth rate obtained from PSE for 100 kHz with different roughness widths. 
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Figure 11. Perturbation amplitude contours obtained from DNS. 
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Figure 12. Growth rate contour for no roughness case by PSE. 
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Figure 13. Growth rate contour for 10% local boundary layer thickness roughness height by PSE. 
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D. The Role of Synchronization Point and Neutral Point 

D.1. Mach 5.92 flow with Relatively Hot Wall Condition 

In this section, we investigate the role of mode S synchronization point and neutral point on roughness effect 
using DNS. Since the location of the neutral point and the synchronization point are usually very close to each other, 
it is not obvious if it is the relative location between a roughness element and synchronization point that is 
important, or it is actually the relative location between a roughness element and neutral point that plays an 
important role. To address this question, we have looked at the location of the mode S neutral point and also the 
synchronization point in our most studied flow condition, which is as follow: 
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The detail of stability analysis on this flow condition has been done in [37]. It shows the location of neutral point 
and synchronization point for different frequencies. In particular, Figure 14 shows the phase velocity and growth 
rate are self-similar for two different locations on the flat plate. It is found from Figure 14 that the branch I neutral 
point locates at 0.00827I  and the synchronization point is at 0.11563.s  Using the definition of 

dimensionless frequency of Re ,F x  the physical locations of the neutral point 1x  and the synchronization 

point sx for frequencies of 100 kHz and 150 kHz  are found to be as follow: 
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Figure 14. Distributions of phase velocity and growth rates of modes F and S at two different locations. 

 
It can be seen that in this flow condition, mode S becomes unstable at the very early stage (the first mode stage), 

thus the neutral point is way upstream compared with the synchronization location. As a result, the roughness 
locations of the cases that we have tested are effectively way behind the neutral points. However, the role of 
synchronization point can be unmistakably seen for this flow condition from our DNS results. In the previous 
section, Figure 2 has shown the frequency spectrum for different locations downstream of the roughness, it can be 
clearly seen that the frequencies higher than the synchronization frequency of have been strongly damped by the 
roughness, and for frequencies lower than 133.26 kHz have been amplified. Since the location of synchronization 
point is frequency dependent, for frequencies higher than the synchronization frequency, their synchronization 
points are more upstream. It means that the roughness is downstream of their synchronization point. Vice versa, for 
frequencies lower than the synchronization frequency, their synchronization points are more downstream. As a 
result, the roughness element is upstream of their synchronization points. The role of synchronization point is 
obvious. The same conclusion can also be drawn from Figure 11 (b). The frequencies higher than the horizontal line, 
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which is higher than the frequency of 133.26 kHz  has been damped, while those lower than the horizontal line, 
which is lower than 133.26 kHz, have been amplified.  

The role of synchronization point also manifests itself once again in our previous parametric study of roughness 
effect [2]. Figure 15 shows the perturbation amplitude contours obtained from FFT, which is similar to Figure 11 
and Figure 13. But here, it is for a multiple roughness elements case. The two vertical black lines represent the 
locations of the two roughness elements. The horizontal red dash lines represent the synchronization frequencies at 
which the roughness elements are located. For example, in Figure 15 (a), the first roughness is at 0.185 m. This 
location is the synchronization point of 133.26 kHz perturbation, which is represented by the top red dash line. The 
second roughness location, 0.25 m, is the synchronization point of perturbation at frequency 115 kHz  which is 
represented by the lower red dash line. One important feature in Figure 15 which should be clarified is the 
following: for frequencies higher than the upper red dash line, both the first and the second roughness elements are 
downstream of their synchronization points. And as shown in the figure, those frequencies are damped by both 
roughness elements. On the other hand, for frequencies between the two dash lines, the first roughness is upstream 
of their synchronization points while the second roughness is downstream of their synchronization points. It is 
shown in the figure that the first roughness amplifies those frequencies while they are damped by the second 
roughness. Lastly, both roughness elements are upstream of the synchronization points for the frequencies below the 
lower red dash line, and it is shown that those frequencies are amplified by the two roughness elements. Figure 16 
shows a clearer picture by showing the spatial growth of two selected frequencies of 120 kHz and 140 kHz. The 
120 kHz perturbation is between the two horizontal lines in Figure 15. As a result, the perturbation is amplified by 
the first roughness while it is damped by the second roughness. On the other hand, 140 kHz perturbation is above 
top horizontal line. Therefore, it is strongly damped by both roughness elements. 

In conclusion, the role of the synchronization point in roughness effect is overwhelmingly obvious judging from 
our DNS simulation, even for a flow condition in which the neutral point is way upstream of the roughness 
elements. 
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Figure 15. Perturbation amplitude contours obtained from FFT for multiple roughness elements. 

 
 
 
 
 
 

(a) No roughness (b) With multiple roughness elements 
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Figure 16. Spatial growth of different selected frequencies for multiple roughness elements case. 

 

D.2. Mach 5.92 flow with relative cold wall condition 

Since the neutral point in the previous flow condition is far upstream, we have simulated another case where the 
neutral point and synchronization point are closer together. To achieve this, a meanflow of the same freestream 
conditions but with a colder wall temperature (from T 350Kw  to T 155.6Kw  ) is computed by DNS. It is well 

known that cold wall temperature stabilizes first mode, while it destabilizes the second mode. Lowering the wall 
temperature effectively moves the mode S neutral point downstream closer to the synchronization point as the first 
mode is stabilized. Figure 18 shows the phase velocity and growth rate for the cold wall case similar to Figure 14. 
As it can been seen from Figure 18 (a) and (b), the mode S neutral point is around 0.121,I  and the 

synchronization point is around 0.136.s  On the other hand, we have placed the roughness in this meanflow at the 

same location as previously at 0.185 mx  as shown in Figure 17, and the roughness height is fixed at 50% local 
boundary layer thickness. With these information, the roughness location are found to be corresponding to the 
neutral point for frequency of 139 kHz , and the synchronization point of frequency 152 kHz. Figure 19 shows the 
spatial growth of perturbation with and without roughness for different frequencies of 
130 kHz, 135 kHz, 140 kHz, 145 kHz, 150 kHz and 155 kHz obtained from DNS. In Figure 19 (a) and (b) for 

130 kHz and 135 kHz perturbations, the roughness is upstream of both the neutral point and the synchronization 
point. We can see that roughness amplifies these two frequencies of perturbations significantly. On the other hand, 
in Figure 19 (c), since the neutral point for 139 kHz is located at the roughness location of 0.185 m,x  we can 

clearly see that the perturbation of 140 kHz  (which is close to 139 kHz ) starts to grow exponentially around 
0.185 mx  without roughness. If a roughness element is placed at 0.185 m,x  it is seen that the roughness still 

amplify the perturbation even the roughness is located very close to its neutral point. On the other hand, the 
perturbation of 145 kHz  is also amplified by the roughness with it being downstream of its neutral point. However, 
the trend is reversed when roughness is close to the synchronization point. As shown in Figure 19 (e), the roughness 
element starts to damp the perturbation as the roughness element gets very close the synchronization of 
150 kHz perturbation. The damping effect becomes even stronger for perturbations at higher frequency as in Figure 
19 (f), where the roughness is way behind the synchronization location of 155 kHz.  

Figure 20 shows the pressure perturbation amplitude contour for the cold wall case similar to Figure 11. Figure 
20 (a) is the case without roughness while Figure 20 (b) shows the case with roughness. As before, the vertical black 
line in Figure 20 (b) presents the roughness element. But here, two horizontal black lines are shown: the lower 
horizontal black line presents the neutral frequency (139 kHz ) corresponding to the roughness location, while the 
upper horizontal black line presents the synchronization frequency (152 kHz ). From the figure, it is clear that the 
frequencies below the synchronization frequency are strongly amplified by the roughness. On the other hand, the 
frequencies higher than synchronization frequency are strongly damped by the roughness. Our DNS results have 

(a) 120 kHz (b) 140 kHz 
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shown that the location of neutral point has minimal effect on roughness effects of damping/amplification 
perturbations. It is the relative location of the synchronization location and the roughness location that plays the 
important role in the roughness effects. 
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Figure 17. Temperature contour with roughness element for the cold wall test case. 
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Figure 18. Distributions of phase velocity and growth rates of modes F and S at two different locations for the 
cold wall case. 
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Figure 19. Spatial growth of different frequencies with and without roughness element on the cold wall case. 
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Figure 20. Perturbation amplitude contours obtained from DNS for the cold wall case. 

V. Summary 

In this paper, DNS and PSE analysis have been performed on a hypersonic boundary layer flow with and without 
roughness elements with different heights and widths. The goal of this study is to investigate the mechanism of 
roughness effects using DNS and the theoretical approach of PSE. The results of PSE are then compared with the 
results in our previous DNS studies [1, 2, 27, 29, 35, 36], which show roughness elements damp mode S 
perturbation if the roughness are placed downstream of the synchronization point, and amplify the mode S 
perturbation if the roughness are placed upstream of the synchronization point. The PSE code is shown to be 
reduced to LST successfully by assuming parallel flow for validation purpose. Then, the PSE code is used for 
different mean flows with roughness element. Our results have shown that PSE is capable of accurately predicting 
the roughness effects observed in DNS data. For instance, our PSE has shown that the relative location of the 
roughness and the synchronization frequency is important, which confirms our observation from simulations. On the 
other hand, our PSE results show that a tall roughness gives a stronger amplification/damping effect on the mode S 
perturbation and the roughness width effect is insignificant compared with the roughness height. These two trends 
match our previous conclusion about roughness height and width from the DNS data as in [2]. Since PSE only 
analyzes the steady meanflow with roughness element, the accurate prediction from PSE means that the 
stabilization/amplification effects are not generated by a new mode. Rather, the roughness effects are created by the 
meanflow alterations by the roughness element.  

Finally, we have investigated the role of neutral point and the synchronization point by DNS. Our simulations 
show overwhelmingly the synchronization point is important on the roughness effect even for a meanflow where the 
neutral point is far upstream. On the other hand, by computing a new meanflow with lower wall temperature, we can 
distinguish the two points within a reasonable distance. Our results show the neutral point plays a minimal role in 
determining the roughness effects on the mode S perturbation. On the contrary, the relation of the location of 
synchronization point and roughness effect is obvious and important. 
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