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This work considers a theoretical approach to analyzing receptivity of a realistic geom-
etry in hypersonic flow to a freestream entropy disturbance. Receptivity coefficients and
phase angles are determined at a variety of locations by applying multimode decomposi-
tion to direct numerical simulation (DNS) data. The multimode decomposition scheme is
implemented and rigorous verification performed against results from previous works. The
method is then applied to the DNS results characterized by a freestream hotspot pertur-
bation interacting with the bow-shock of Purdue’s blunt compression cone in a Mach-6
freestream. The DNS data is decomposed into elements of the discrete and continuous
spectra at various locations and frequencies, and the results compared to a prior, qual-
itative LST analysis. The previous analysis’ conclusions are confirmed, showing that in
the region downstream of the mode F / S synchronization location for the most unstable
frequency, mode S is amplified and becomes the dominant mechanism of transition. The
results upstream of this location are shown to be dominated by low frequency mode F
perturbations. Receptivity coefficients are computed and examined for the branch I/II
neutral frequencies at several locations. Brief continuous spectrum analysis is performed,
showing agreement with previous work in the limited contribution from the entropy and
vorticity spectra.

Nomenclature

d() Perturbation of specified variable
e Total energy per unit volume
f Dimensional frequency, kHz
M∞ Freestream Mach number
P Pressure
Pr Prandtl number
qj Heat flux due to thermal conduction
R∗ Gas constant
Re∞/L Freestream Reynolds number per unit length, 1/m
T Temperature
Tr Reference temperature
Ts Sutherland’s temperature
Twall Wall temperature
T0 Total temperature
T∞ Freestream temperature
u1, u2, u3 Velocity components in the 〈x1, x2, x3〉 directions
U∞ Freestream velocity
x∗ Position in streamwise direction, m
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α Wavenumber in streamwise direction
β Wavenumber in spanwise direction
γ Specific heat ratio
µ Viscosity
µr Reference viscosity coefficient
ρ Density
ρ∞ Freestream density
τij Shear stress tensor
ξ Natural coordinate along cone surface
η Natural coordinate normal to the wall
ζ Natural coordinate in azimuthal direction
ω Circular frequency

I. Introduction

In designing hypersonic aerospace vehicles, the ability to predict the laminar-turbulent transition location
on a body plays an extremely important role in aerodynamic heating analysis. Furthermore, when the vehicle
is travelling in atmosphere at hypersonic speeds there exist weak disturbances in the freestream that can affect
this transition location. The process whereby freestream disturbances induce laminar-turbulent transition
can be divided into three stages: (i) boundary layer receptivity, (ii) linear eigenmode growth or transient
growth, and (iii) nonlinear breakdown to turbulence.1 Boundary layer receptivity is the process by which
the freestream disturbances enter the boundary layer and generate instability waves - a preliminary stage by
which laminar-turbulent transition occurs.2,3

Linear disturbance waves in a hypersonic boundary layer contain normal modes. The unstable modes
were found by Mack, who indicated that the second mode is the dominant instability which leads to transi-
tion for flows with a Mach number higher than approximately four.4,5 During hypersonic flight, the weak
disturbances in the freestream are analogous to the linear disturbance waves; thus the second mode instabil-
ity is particularly important to study. In addition, for a hypersonic flow, the bow-shock in front of a blunt
nose creates entropy and vorticity layers, which are then swallowed by the boundary layer downstream.3

The swallowing process of the entropy layer has a strong effect on boundary layer stability,4 and the second
mode instability can be affected by the entropy layer swallowing process.4

Kovasznay6 stated that weak disturbances in compressible flow can be decomposed into acoustic, entropy
and vorticity disturbances. McKenzie et al.7 found that, regardless of the initial disturbance, acoustic,
entropy and vorticity disturbances would always be generated behind the shock by the original disturbance’s
interaction with the shock. However, the mechanisms of the interaction of the various types of disturbances
with the shock are individually different, leading to differences in the travelling angle and amplitude of
the generated disturbances. In nature, the disturbances that exist in the freestream during atmospheric
flight can consist of any of these three kinds. Consequently, detailed boundary layer receptivity studies for
all three types of freestream disturbances and their interactions with a shock are necessary for complete
understanding of the mechanism of hypersonic boundary layer receptivity over a blunt body. Freestream
acoustic disturbance receptivity has been studied extensively,8,9 and the use of laser equipment to generate
a hotspot has been found to be a feasible way to impose non-acoustic freestream disturbances in a wind
tunnel.8,9 This provides sufficient justification for the use of a hotspot as the freestream disturbance in this
paper.

The simulations in this paper have been coordinated with the experiments at Purdue University, and
the schematic explanation of the laser-spot (hotspot) and cone scenario is demonstrated in Figure 1. The
hotspot is generated at a location upstream of the cone on the centerline and convects with the hypersonic
freestream toward the cone’s nose. Eventually the spot interacts with and passes through the bow shock,
traveling further downstream in the shock layer. The goal of this paper is to provide further analysis of the
effects of a freestream hotspot perturbation on the growth of instability waves in the boundary layer behind
the shock.

The compression cone, shown in Figure 2, is a cone with a circular base and circular-flared geometry along
its body in the downstream direction. This geometry was expected to cause laminar-turbulent transition
under quiet flow conditions due to the adverse pressure gradient that occurs along the flared portion of the
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Figure 1: Schematic explanation of the laser-spot and cone scenario.12

Figure 2: Schematic diagram of Purdue’s Compression Cone.10

cone.4,10 This adverse pressure gradient was verified in Huang & Zhong’s mean flow DNS,11 as shown in
Figure 3. The aim of such geometry is to keep the boundary layer thickness constant in the downstream
direction, such that a narrow range of unstable frequencies can be continuously amplified.10

The results of Huang & Zhong’s 2010 hotspot DNS study11 indicated that the freestream entropy pertur-
bation would generate entropy and acoustic disturbances after passing through the bow shock. Furthermore,
the acoustic disturbance behind the shock was seen to bounce back from the wall and interact with the
bow shock again, generating further acoustic and entropy disturbances. Ma & Zhong1 stated that when the
acoustic waves generated from a freestream entropy perturbation and shock interaction reach the boundary
layer, the perturbed boundary layer will reflect acoustic waves that then proceed to interact with the shock
again, generating additional acoustic, entropy and vorticity disturbances. These additional disturbances,
combined with the initial disturbances, propagate downstream and produce strong effects on receptivity. Ma
& Zhong also performed a DNS study on a flat plate with freestream sinusoidal entropy waves at Mach 4.5.
They found that the receptivity of the supersonic boundary layer to freestream entropy waves is essentially
similar to the receptivity to freestream fast acoustic waves, wherein the fast acoustic waves generated behind
the shock propagate downstream into the boundary layer to excite its instability modes. Ma & Zhong com-
pared their simulation results with McKenzie et al.’s theoretical results, showing good agreement between
the two.

In 2010, Huang & Zhong11 completed the mean flow DNS using the shock-fitting method for a very
blunt compression cone with a nose radius of 0.0127m, as well as a sharper cone with nose radius of 0.001m.
In order to validate the resulting mean flow, a LST analysis was performed for the sharper cone mean
flow, which showed an N-factor of 12.5, with the most amplified frequency f = 278996 Hz. Both the LST
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Figure 3: Pressure along the wall in case two.11

and shock-front position results agreed well with Purdue’s shock-capturing DNS results. Huang & Zhong
also developed a computer program for simulating the three dimensional hotspot perturbed flow behind a
bow-shock. The program was further validated by computing the case for a freestream sinusoidal entropy
wave, which obtained a qualitatively correct stagnation line perturbation distribution. Huang & Zhong also
investigated the influence of the hotspot’s size, computing two cases for freestream hotspots of very small
radii.

In Huang & Zhong’s 2011 analysis13 of their hotspot DNS results, it was concluded that there was first
mode growth at lower frequencies and second mode growth at higher frequencies, similar to the determination
of their 2010 LST study.11 This conclusion was reinforced by Huang & Zhong’s 2014 analysis,14 which
determined that the second mode instability’s growth was dominant in the region downstream of the most
amplified frequency’s mode F and mode S synchronization point. The second mode’s amplification was
identified to arise from the method of inter-modal exchange in the vicinity of this synchronization point.
These analyses were facilitated by the comparison of LST and DNS results in regions dominated by the
second mode instability.

In this paper, we intend to further investigate the receptivity of a boundary layer over a cone of realistic
geometry to a realistic-sized freestream hotspot, corresponding to case A of Huang & Zhong’s 2010 study.11

Our goal is to apply an analysis to the data that is more rooted in the theoretical considerations of the
problem, and to obtain the exact receptivity coefficients at any point of interest within the data set. This
analysis is not possible through the application of LST alone to the DNS data, and we look to the method
of multimode decomposition to enable this study.

Multimode decomposition for a compressible boundary layer was suggested through the 1983 work of
Fedorov & Tumin15 and further developed in rigor by Tumin in 200616 and 2007.17 This method permits the
filtering of individual modes from both the discrete (boundary layer) and continuous (freestream) spectra
from a perturbation signal that comprises a sum of several such modes. This technique therefore enables the
analysis of perturbation data even in regions where several modes of comparable amplitude coexist. This
can be contrased with a pure LST analysis as was previously performed,14 which relies largely on working
backwards from LST mode shapes and parameters in order to compare these to DNS data. This LST analysis
is therefore only feasible for regions where one mode is clearly asserted. In prior work, such as Tumin, Wang,
& Zhong’s 2007 analysis18 and Denissen & White’s 2009 study,19 multimode decomposition was applied to
similar DNS studies, with extensive verification performed to justify its utility.

In this work, we intend to implement the multimode decomposition scheme for a three-dimensional
perturbation in a compressible, two-dimensional boundary layer as specified in Tumin’s 2007 work.17 To
verify the implementation, extensive verification is to be performed against published results, previously
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implemented methods, and the LST analysis specific to the DNS data to be analyzed.14 With the method
implemented and verified, we will then proceed to apply the technique to the DNS data for case A of
Huang & Zhong’s 2010 study. We intend to analyze the spatial evolution of the two boundary layer modes
- mode F and mode S - and compare the results to the previous works’ conclusions. Our final goal is the
determination of the receptivity coefficients for the system at various locations, so that we may investigate
their characterization of the system’s receptivity to the freestream hotspot disturbance.

Although the method of multimode decomposition has seen limited application to DNS results, in many
prior DNS analyses the determination of receptivity coefficients was not rigorous. This is especially true in
cases where realistic geometries are examined, such as the blunt cone considered herein. With the ultimate
goal being the characterization of flows for application in the development of hypersonic vehicles, it is thus
an important step forward to apply the tools that have been developed to analysis of realistic cases. By
implementing this tool in tandem with the DNS of receptivity for such systems, it is our hope that we may
apply this to many such cases - and ultimately renew interest in a transition prediction tool that includes
the effects of freestream amplitudes.

II. Direct Numerical Simulation

A. Governing Equations and Numerical Methods

The governing equations for DNS of hypersonic perfect-gas flow around a compression cone are given by the
three-dimensional Navier-Stokes equations in conservative-law form and Cartesian coordinates:

∂U

∂t
+
∂Fj
∂xj

+
∂Fvj
∂xj

, j = 1, 2, 3 (1)

The tensor notation, (x1, x2, x3) represents the Cartesian coordinates, (x, y, z). The x axis points along
the centerline of the cone from nose to rear, while the y axis points vertically upwards from the centerline
of the cone, perpendicular to the x axis. The z axis is perpendicular to both x and y axes, pointing away
from the centerline of the cone. Finally, the origin of the axes is at the center of the sphere that forms the
cone’s blunted nose. The vector U contains five conservative-law form dimensional flow variables:

U =
[
ρ ρu1 ρu2 ρu3 e

]
Fj and Fvj are the vectors of convective (inviscid) flux and viscous flux in jth spatial direction respectively:

Fj =


ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(e+ p)uj



Fvj =


0

−τ1j
−τ2j
−τ3j

−τjkuk − qj

 , k = 1, 2, 3

(2)

The equation of the state and the transport equations are:

p = ρR∗T

e = ρ

(
cvT +

1

2
ukuk

)
τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− λ∂uk

∂xk
δij , λ =

2

3

qj = −κ ∂T
∂xj

(3)
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Figure 4: Partial view of grid configuration in zone 1, 2, and 3.

where R∗ is the gas constant, and cv is the specific heat, which is assumed to be constant with a given
specific heat ratio γ. κ is the heat conductivity coefficient, which can be determined for a constant Prandtl
number. The viscosity coefficient, µ, is approximated with Sutherland’s law:

µ = µr

(
T

T0

) 3
2
(
Tr + Ts
T + Ts

)
(4)

With this numerical implementation, the Cartesian Navier-Stokes equations are then transformed into
body-fitted curvilinear computational domain coordinates (ξ, η, ζ) via a Jacobian matrix. The computational
domain is bounded by the bow-shock and the wall of the cone - termed the ‘shock-fitting’ domain. The
shock-fitting method can accurately resolve the position of the bow-shock, which is necessary for the high
accuracy results required of receptivity and stability analyses. The shock-fitting grids move with time,
and the motion is dependent on the shock position and shock velocity, with a partial view of the grid
configuration shown in Figure 4. In each time-step, the shock’s position and velocity are unknowns, and are
determined by both freestream conditions and the solutions behind the shock. The spatial discretization
of inviscid flux derivatives in the stream-wise (ξ) and wall-normal (η) directions are performed using a
fifth-order finite-difference upwind scheme with local Lax-Friedrichs flux-splitting. A sixth-order central
finite-difference scheme is used for viscous flux spatial derivatives. For spatial derivatives in the periodic
azimuthal direction (ζ), Fourier collocation has been used, while Runge-Kutta is used for time-marching.
The details of shock-fitting method, finite difference schemes and other numerical method implementations
of the DNS are explained in Zhong’s 1998 paper.20

B. Modeling Equations of Freestream Hotspot Perturbation

Physically, a hotspot is an entropy perturbation sphere surrounded by an acoustic perturbation (weak shock).
The entropy core has Gaussian temperature and density distributions.8,9 As in Huang & Zhong’s 2010
paper,11 the acoustic weak shock of a hotspot that is large compared to the cone’s nose has very little
influence. As such, the hotspot used in this consideration is modeled without the surrounding weak shock.
As the initial position of the hotspot is 2cm upstream from the shock along the centerline in Dunn’s paper,21

the time scale required for the hotspot to diffuse and propagate in the freestream is very small relative to

6 of 45

American Institute of Aeronautics and Astronautics



the length scale of the initial distance between the center of hotspot and shock-front. Hence, it is reasonable
to assume the hotspot profile remains unchanged when convecting with the freestream.

For the 3D hotspot model, the Gaussian perturbed freestream temperature is:

T = ∆Tmaxexp

(
− R2

c

2σ2

)
+ T∞ (5)

Thus, by the ideal gas law, the perturbed freestream density is:

ρ =
p∞

R
(

∆Tmaxexp
(
− R2

c

2σ2

)
+ T∞

) (6)

and the time derivative of the perturbed freestream density at the shock location is:

∂ρ

∂τ
=
( p∞
σ2R

) (T − T∞)

T 2

[
(Xc − U∞t)

(
∂Xc

∂τ
− U∞

)
+ yshk

∂yshk
∂τ

+ zshk
∂zshk
∂τ

]
(7)

where σ is the Gaussian shaping factor and τ is time in the computational domain. The initial difference
in x-coordinate between the shock location and the center of the spot is:

Xc = |Xspot − xshk| (8)

where Xspot is the initial x-coordinate of the spot center, and xshk,yshk, and zshk are shock-front coor-
dinates. Using the transport equation, the distance between the hotspot center and any point on the shock
front at any time can be represented:

Rc =

√
(Xc − U∞t)2 + y2shk + z2shk (9)

Where we note that the time in the computational domain is the same as time in physical domain.20

C. Boundary Layer Instability Spectral Analysis

The hotspot simulation is performed using the converged mean flow over the cone as a basis. The temporally
varying boundary layer flow as the hotspot is passing through is recorded at a sufficiently well-resolved
rate. The recorded boundary layer flow perturbations, however, are a combination of infinite frequency
components. In this study, our main interest is in analyzing which frequencies excite instabilities in the
boundary layer and how fast these instabilities grow spatially. Therefore, it is necessary to maintain a
time-history of the boundary layer perturbations, which are then transformed to the frequency domain in
order to study the behavior of the individual frequency components. This switch to the frequency domain
is facilitated by Fourier transformation, which, for a flow variable h(t) is defined as:22

H(f) =

∫ ∞
−∞

h(t)e2πiftdt (10)

where h(t) is the variable’s time function and H(f) is its spectral value in frequency domain. Numerically,
the continuous Fourier transform’s spectral value can be approximated by:

H(fn) ≈ ∆t

N−1∑
k=0

hke
2πikn/N (11)

where H(fn) is the spectral value at the nth discretized frequency, N is the total number of Fourier
collocation points used to discretize the time function h(t), and hk is the discretized time function. The
spectral value, H(f), has real and imaginary components in the frequency domain, while the magnitude of
both is given by |H(f)|. In this paper, h(t) is the time-history of the boundary layer perturbation, while
H(f) is the spectral value of the boundary layer perturbation in the frequency domain.

The transition to the frequency domain provides the discretized frequencies fn and their associated
values, H(fn), that determines the breadth our analysis. We define our remaining parameters relative to
the frequency values determined above, with the discretized dimensionless frequency specified as:
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F =
2πµ∞f
ρ∞U2∞

(12)

The circular frequency is then defined based on this value:

ω = Re · F (13)

where we specify the local Reynold’s number, Re as:

Re =
ρ∞U∞L∗

µ∞
(14)

with reference length, L∗:

L∗ =

√
µ∞ξ∗

ρ∞U∞
(15)

D. Freestream Conditions and Compression Cone Geometries

The freestream conditions used in the numerical simulations in this paper are based on Purdue’s Mach-6
Quiet Tunnel (BAM6QT):10

Table 1: Specified parameters for DNS and analysis

Parameter Value

M∞ 6.0

T0 433.0 K

Tr 288 K (sea level)

Ts 110.3 K (sea level)

Twall 300.0 K

T∞ 52.8 K

Pr 0.72

R 287.04 N ·m/kg ·K (air)

Re∞/L 1.026× 107m−1

γ 1.4

ρ∞ 0.0403 kg/m3

µr 1.7894×10−5 kg/m·s (sea level)

ε 0

β 0

The compression cone geometry is based on Schneider’s design:10

body − arc radius = 3.0m

cone half − angle = 2.0◦

cone length ≈ 0.45m

nose radius = 0.001m (Purdue′s)

The flow conditions and cone geometry are based on Purdue’s experiment such that our simulation results
can be compared with their experimental results. The nose radius is the same nose radius used in case 2 in
Huang & Zhong’s 2010 paper.11
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Figure 5: Gaussian distribution of perturbed temperature in the radial-direction.

E. Freestream Hotspot Parameters

The peak radius is controlled by the Gaussian factor, σ. In previous analysis,11 three cases with different
hotspot peak-region radii were analyzed. In this paper, the hotspot size is chosen to match the actual hotspot
size in Purdue’s experiments,8,9 corresponding to case A from Huang & Zhong’s 2010 study.11

σ = 0.001 (largest radius : r = 0.003m)

Xspot = −0.02m
(16)

The hotspot perturbed flow simulated in this paper is based on the mean flow solution of case 2 in Huang
& Zhong’s 2010 work.11 In order to keep the disturbance linear in the flow, the maximum temperature
perturbation amplitude is chosen to be:

dTmax = T∞ × 10−4 = 0.00528 K (17)

The profile of the hotspot’s temperature distribution in the radial distribution is shown in Figure 5.

III. Theoretical Analysis

A. Problem Formulation

The theoretical analysis of the DNS results determined with the methods and conditions above is accom-
plished using the multimode decomposition technique for a three dimensional perturbation in a two dimen-
sional boundary layer, as outlined by Tumin in 2007.17

The linearized Navier-Stokes equations for a two-dimensional, compressible boundary layer are rewritten
in the non-conservative form:

∂

∂y

(
L0 +

∂AT

∂y

)
+ L1

∂AT

∂y
= H1A

T + H2
∂AT

∂x
+ H3

∂AT

∂z
(18)

where A is specified as a row vector for consistency with the inner product definition below and has
terms:

A (x, y, z) = d [u, ∂u/∂y, v, p, T, ∂T/∂y, w, ∂w/∂y, ∂u/∂x, ∂v/∂x, ∂T/∂x, ∂w/∂x, ∂u/∂z, ∂v/∂z, ∂T/∂z, ∂w/∂z]
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Figure 6: Meanflow pressure profile from DNS results (a) and with appended constant flow region outside
of shock (b) at ξ∗ = 0.172m.

where the d before the brackets indicates that the vector consists of perturbation values. L0, L1, H1, H2,
and H3, are 16x16 matrices similar to those given in the reference work.17 For the analysis of the DNS data
over a compression cone, however, the typical assumption of constant meanflow pressure across the boundary
layer was no longer applicable, with the discrepancy demonstrated by the meanflow pressure profile in Figure
6a. As such, the pressure terms and the relevant derivatives are reintroduced into the governing equations
to account for the difference, and the appropriate adjustments made to the matrices L0, L1, H1, H2, and
H3.

To the system of equations above, we apply a Fourier transform in z, and a Laplace transform in x, given
by:

Aαβ =

∫ ∞
0

e−px
∫ ∞
−∞

e−iβzA(x, y, z) dz dx (19)

where p = iα. The homogeneous component of the resulting system of equations takes the form:

∂

∂y

(
L0

∂AT
αβ

∂y

)
+ L1

∂AT
αβ

∂y
= H1A

T
αβ + iαH2A

T
αβ + iβH3A

T
αβ

y = 0 : Aαβj = 0, j = 1, 3, 5, 7

y →∞ :
∣∣Aαβj

∣∣ <∞, j = 1, . . . 16

(20)

For the system of equations above, the functional operator can be expressly defined:

L =
∂

∂y

(
L0

∂

∂y

)
+ L1

∂

∂y
−H1 − iαH2 − iβH3 (21)

In general, an adjoint operator, L∗, is found from the definition:

〈LA,B〉 = 〈A,L∗B〉 (22)

The bracket notation above represents the Hermitian inner product on the range [a, b],given as:

〈A,B〉 =

∫ b

a

A(y)B(y) dy (23)
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where the overbar represents the complex conjugate of the term. The term A(y) is specified as a row
vector, while the term B(y) is specified as a column vector. Thus, the term within the integral above is
given as a dot product of two complex valued vectors. For convenience, we define our computational adjoint
as the complex conjugate of the conventional adjoint:

Aαβ = A(y)

Bαβ = B(y)
(24)

Limiting our computational range to the region [a, b] = [0,∞), we substitute the above into the general
definition of the adjoint and solve for L∗:

L∗ =
∂

∂y

(
LT0

∂

∂y

)
− LT1

∂

∂y
−HT

1 − iαHT
2 − iβHT

3 (25)

Thus, corresponding to the direct system of equations, there is an adjoint solution whose complex con-
jugate is determined by the set of equations:

∂

∂y

(
LT0

∂Bαβ

∂y

)
− LT1

∂Bαβ

∂y
= HT

1 Bαβ + iαHT
2 Bαβ + iβHT

3 Bαβ

y = 0 : Bαβj
= 0, j = 2, 4, 6, 8

y →∞ :
∣∣Bαβj

∣∣ <∞, j = 1, . . . 16

(26)

The two systems of equations determined above can be rewritten as systems involving only the first eight
elements of the vectors Aαβ and Bαβ respectively:

dzTαβ
dy

= H0z
T
αβ

−dYαβ

dy
= HT

0 Yαβ

(27)

where H0 is an 8x8 matrix, and z is the vector comprising the first 8 components of Aαβ . As with the
previously discussed matrices - L0, L1, H1, H2, and H3 - the terms in H0 are adjusted from the exact
reference expressions by the inclusion of the pressure term and its derivatives. As H0 is the only matrix
needed for the computational implementation carried out in this paper, the elements of H0 with meanflow
pressure terms included are given in Appendix A.

The system of equations for zαβ and Yαβ above each have eight fundamental solutions, and the elements
of the matrix H0 are constants in the freestream region where d/dy → 0. Assuming fundamental solutions

of the form z
(j)
αβ = z0jexp (λjy) permits the solution of the resulting eigenvalue problem for this region:

det (H0 − λI) = 0 (28)

The eigenvalues and vectors in the freestream were re-derived for each j, and generally implemented as
specified in the reference source.17 The only exception was the self-referential element z06j = λjz

0
6j which was

determined as z06j = λjz
0
5j instead. The fundamental solutions were also verified numerically, and, with the

terms specified as such, the percent error for the systems of equations above was never observed in excess of
approximately 10−6%.

It is important to note that the DNS results determined using the methods prescribed in previous sections
utilize a computational domain bounded by the bow-shock and the wall of the cone. As such, the results
determined through DNS contain no true “freestream” region of constant meanflow. Consequently, in order
to perform the integration, which must begin in a region of constant meanflow, an extra region with data
equal to the far-field conditions of the problem is appended outside the bow shock that terminates the
computational domain used in DNS. The shock is treated as infinitely thin, and the discontinuous transition
from the DNS results to the far-field conditions is taken as consistent with the nature of the shock’s effect on
the flow field. The added region can be observed in Figure 6b, with the discontinuity present at η/L∗ ∼ 180.

Furthermore, in computing these freestream fundamental solutions for numerical integration, the expo-
nential component of the solution is disregarded and only the vectors z0j considered. This is analogous to
normalizing each fundamental solutions by the constant exp(λjyfs), where yfs is the point in the freestream
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from which fundamental solution integration begins. Since the DNS freestream region is located outside of
the shock, this ensures that the freestream values for the decaying fundamental solutions are computationally
distinct from the null vector for the large values of yfs required by the size of the DNS domain.

Continuing, the freestream fundamental solution vectors for the adjoint problem can be found using
cofactors of the matrix of freestream fundamental solution vectors from the direct problem.17,23 The typical
formulae are given by:

Cj,k = (−1)
j+k

det





m1,1 . . . m1,k−1 m1,k+1 . . . m1,8

...
. . .

...
...

. . .
...

mj−1,1 . . . mj−1,k−1 mj−1,k+1 . . . mj−1,8
mj+1,1 . . . mj+1,k−1 mj+1,k+1 . . . mj+1,8

...
. . .

...
...

. . .
...

m8,1 . . . m8,k−1 m8,k+1 . . . m8,8





adj (m) = CT

(29)

where C is the cofactor matrix with elements Cj,k, and m is the matrix of freestream fundamental
solution vectors for the direct problem. As described previously, each column of m is normalized by its
respective exponential component:

m =
[(
z01
)T
,
(
z02
)T
, . . . ,

(
z08
)T ]

(30)

With the freestream fundamental solution values known for both the direct and adjoint systems, it is
then possible to begin numerical integration. To this effect, a classical Runge-Kutta (RK4) procedure was
implemented according to the well-known method:22

k1 = hf (yn, zn)

k2 = hf

(
yn +

h

2
, zn +

k1
2

)
k3 = hf

(
yn +

h

2
, zn +

k2
2

)
k4 = hf (yn + h, zn + k3)

zn+1 = zn +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O
(
h5
)

(31)

where, for the direct and adjoint cases respectively:

f (yn, zn) = f (yn, zαβn
) = H0 (yn) zTαβ (yn)

f (yn, zn) = f (yn,Yαβn
) = −HT

0 (yn)Yαβ (yn)
(32)

The integration is performed with a constant number of points in the wall-normal direction, with the
step-size, h, dependent on the type of mode considered. For discrete modes, grid stretching was implemented
to more accurately resolve the boundary layer region, while for continuous modes the step-size was constant
to account for the oscillatory nature of solution in the freestream. The number of points used was ny = 3000,
determined by empirical observation of integration resolution. Accuracy is demonstrated by comparison of
the solutions obtained to those from a doubled grid, as shown in Figures 7a and 7b.

The grid stretching used for the discrete modes is specified by mapping an evenly spaced computational
domain, 0 ≤ η ≤ 1, to the stretched domain 0 ≤ y ≤ ymax:24

y =
aη

b− η
b = 1 +

a

ymax

a =
ymaxyi

ymax − 2yi

(33)
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Figure 7: Discrete mode F and mode S (a) and continuous fast acoustic and slow acoustic (b) results for
ny = 2000 vs. ny = 4000. Flared cone conditions with ξ∗ = 0.398m, f = 139 kHz, and k = 1.

Where, for the grid stretching detailed above, half the grid points are placed between the wall and yi,
and yi is specified as yi = 50. Prior to integration of the freestream values, as well as after each integration
step, the set of solution vectors for each problem was re-normalized to ensure orthogonality was maintained.
For each location, the inverse of the transformations are then saved so that the results can be transformed
back once integration is complete. The process is accomplished using QR factorization with a modified
Gram-Schmidt orthonormalization technique.25 The method can be described in brief as:

m = QR (34)

where m is the matrix of fundamental solutions to be orthonormalized - either zTαβ(yn) or Yαβ(yn), Q is
the orthonormal system, and R is the transformation matrix, which records the transformations performed
to orthonormalize the system. In detail, the matrices are computed as:

m = [a1, . . . , an, . . . , ak]

Q = [q1, . . . , qn, . . . , qk]
(35)

n=1 n=2 n=3 n=k

u
(0)
1 = a1 u

(0)
2 = a2 u

(0)
3 = a3 u

(0)
k = ak

q1 =
u
(0)
1√

u
(0)
1

T

u
(0)
1

u
(1)
2 = u

(0)
2 −

[
q1
Tu

(0)
2

]
q1 u

(1)
3 = u

(0)
3 −

[
q1
Tu

(0)
3

]
q1 u

(1)
k = u

(0)
k −

[
q1
Tu

(0)
k

]
q1

q2 =
u
(1)
2√

u
(1)
2

T

u
(1)
2

u
(2)
3 = u

(1)
3 −

[
q2
Tu

(1)
3

]
q2 u

(2)
k = u

(1)
k −

[
q2
Tu

(1)
k

]
q2
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q3 =
u
(2)
3√

u
(2)
3

T

u
(2)
3

...

u
(k−1)
k = u

(k−2)
k −

[
qk−1Tu

(k−2)
k

]
qk−1

qk =
u
(k−1)
k√

u
(k−1)
k

T

u
(k−1)
k

The method of orthonormalization described above is distinct from the classical Gram-Schmidt orthonor-
malization, with the difference engendered in the intermediate calculations for u

(k−1)
k . In the classical method,

each vector is orthonormalized in one step as:

uk = ak −
[
q1
Tak

]
q1 −

[
q2
Tak

]
q2 − · · · − −

[
qk−1

Tak
]
qk−1

qk =
uk√
uk

Tuk

(36)

While this method is much more condensed, the act of orthonormalizing the vector against k − 1 di-
mensions at once can introduce rounding errors, with the result that the output vectors are not completely
orthogonal. The modified method as described previously, however, orthogonalizes the vector against each di-

mension individually, with the result that each intermediate vector calculation u
(n)
k is orthogonalized against

the errors introduced during the calculations of
[
u
(1)
k , . . . , u

(n−1)
k

]
.

As mentioned previously, the matrix R is also computed for each location, and is used to transform
the solutions back to their previous state once numerical integration is complete. The matrix can be either
determined numerically or specified analytically:

R =



√
u
(0)
1

T

u
(0)
1 q1

Tu
(0)
2 q1

Tu
(0)
3 . . . q1

Tu
(0)
k

0

√
u
(1)
2

T

u
(1)
2 q2

Tu
(1)
3 . . . q2

Tu
(1)
k

0 0

√
u
(2)
3

T

u
(2)
3 . . . q3

Tu
(2)
k

...
...

...
. . .

...

0 0 0 . . .

√
u
(k−1)
k

T

u
(k−1)
k


(37)

Proceeding according to the method described above, the fundamental solutions can be computed nu-
merically across the entirety of the boundary layer. The nature of these solutions, and how they are used,
differs based on whether the mode being considered is an element of the discrete or continuous spectrum,
with the case for each described in the following sections.

B. Discrete Modes

For discrete mode calculations, in keeping with the second boundary condition requirement for each system
of equations above, the four fundamental solutions with exponentially growing values are not considered,
and only those with decaying values are computed. By the principle of superposition, the solution to the
system of equations for zαβ and Yαβ can be written as the sum of the decaying fundamental solutions for
each system. We then have, according to the same fundamental solution indexing used in the reference:17

zαβ = C1z
(1)
αβ + C3z

(3)
αβ + C5z

(5)
αβ + C7z

(7)
αβ

Yαβ = C2Y
(2)
αβ + C4z

(4)
αβ + C6z

(6)
αβ + C8z

(8)
αβ

(38)
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The coefficients for z
(k)
αβ above are found by imposing the boundary conditions at the wall. To avoid a

trivial solution, the boundary condition on temperature is omitted and instead the solution is normalized
by the pressure at the wall. The wall temperature condition is instead imposed as a convergence criteria in
the calculation of the spatial eigenvalue, α. As the same value of α is used for both the direct and adjoint
solutions, the selection of the normalization variable for use in construction of the adjoint solution appears
ambiguous, and is found to be arbitrary. In the results that follow, the wall value of the third element of the
adjoint solution vector was selected as the normalization variable.

Though the coefficients are now determined at the wall, it remains to revert the orthonormalization
performed during integration to obtain the fundamental solutions. This is accomplished by recognizing that,
for a non-orthonormalized system, the constants used in the superposed solution will be identical to those
determined at the wall throughout the entirety of the domain. Thus, in the vicinity of any point yn where
orthonormalization has been performed, we have:

fn(y) = QnCn, yn − h ≤ y ≤ yn
fn+1(y) = Qn+1Cn+1, yn ≤ y ≤ yn + h

(39)

where Qn is the matrix of orthonormalized solutions determined during numerical integration and Cn is
the vector of coefficients for the fundamental solution superposition. Recognizing that at the point y = yn,
the solutions should be continuous:

QnCn = Qn+1Cn+1

Qn = mn+1

(40)

Combining these two results and reducing yields:

Cn+1 = Rn+1Cn (41)

As the coefficients are known at the wall, we can use this relation and the known transformation matrices
Rn at each orthonormalization point to obtain coefficients across the domain. Combining the orthonor-
malized solutions at each point in proportion to the coefficients determined as above gives us the solutions
corresponding to the system’s discrete modes.

The solution for the full 16 element system Aαβ is found from that of the 8 element system zαβ as:

Aαβ = [zαβ (1) , zαβ (2) , zαβ (3) , zαβ (4) , zαβ (5) , zαβ (6) , zαβ (7) , zαβ (8) ,

iαzαβ (1) , iαzαβ (3) , iαzαβ (5) , iαzαβ (7) , iβzαβ (1) , iβzαβ (3) , iβzαβ (5) , iβzαβ (7)] (42)

while the full adjoint solution Bαβ is related to Yαβ as specified in the reference.17

C. Continuous Modes

Continuous mode computations generally proceed in a manner analogous to the methods described above
for discrete modes. The key difference relative to the discrete mode computation arises from the nature of
the continuous spectrum as representing freestream modes that do not decay as y →∞. While the far-field
boundary condition of the system requires that the solutions of Equation 20 and Equation 26 are bounded

as y →∞, the condition imposed on discrete modes is more stringent - that is, that z
(j)
αβ → 0 and Y

(j)
αβ → 0

as y → ∞. By expanding our consideration to fundamental solutions that are oscillatory at y → ∞, the
condition of boundedness is still satisfied, and a new class of solutions is available for consideration. By
specifying α, it is possible to choose values such that λ2(2j−1,2j) = −k2 where j = 1, 2, 3, 4 and k is any

real number with Im(k) = 0. This corresponds to enforcing that two fundamental solutions, z
(2j−1,2j)
αβ are

proportional to exp(±iky) and thus oscillatory as y → ∞. The values of k can therefore be considered as
wavenumbers for the oscillatory fundamental solutions in the wall-normal direction.

For the case where ω = 0, there can be overlap of separate branches of the continuous spectrum, com-
plicating the solutions in those regions. However, for the considerations of this paper, we are not concerned
with stationary instabilities and thus disregard this case. The choice of j thus corresponds to the different
branches of the continuous spectrum, while the selection of k corresponds to variations in α that describe
the path of that continuous spectrum branch in the complex plane. The continuous spectrum branches are
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characterized by their behavior in the freestream, with the acoustic branch related to pressure fluctuations,
the vorticity branch corresponding to velocity perturbations, and the entropy branch corresponding to tem-
perature and density perturbations . After specifying a particular branch for analysis through the choice
of j, k is specified, with α determined from the definitions of the eigenvalues together with the equation
λ2(2j−1,2j) = −k2. Fundamental solution superposition then proceeds in a manner similar to the discrete
modes, though with the inclusion of an additional solution:

zαβ = C1z
(1)
αβ + C3z

(3)
αβ + C5z

(5)
αβ + C7z

(7)
αβ + C2jz

(2j)
αβ

Yαβ = C2Y
(2)
αβ + C4z

(4)
αβ + C6z

(6)
αβ + C8z

(8)
αβ + C2j−1z

(2j−1)
αβ

(43)

An exception to the equation above is required, however, due to the multiplicity of the eigenvalue pairs
λ1,2 and λ7,8. When α is selected such that either of these pairs is oscillatory in the freestream, the other
pair will similarly oscillate, and in these cases there are six bounded fundamental solutions but only five
boundary conditions. The ambiguity here is resolved by analytical evaluation of the integrals along the
branch cuts that comprise the continuous spectra in the complex plane. Analysis of these terms proceeds as
in Tumin’s 2006/2007 papers,16,17 and the fundamental solutions for each of the two overlapped vorticity
modes - A and B - are specified:

zV Aαβ = C1z
(1)
αβ + C2z

(2)
αβ + C3z

(3)
αβ + C5z

(5)
αβ + C8z

(8)
αβ

YV A
αβ = C1Y

(1)
αβ + C2z

(2)
αβ + C4z

(4)
αβ + C6z

(6)
αβ + C7z

(7)
αβ

(44)

zV Bαβ = C2z
(2)
αβ + C3z

(3)
αβ + C5z

(5)
αβ + C7z

(7)
αβ + C8z

(8)
αβ

YV B
αβ = C1Y

(1)
αβ + C4z

(4)
αβ + C6z

(6)
αβ + C7z

(7)
αβ + C8z

(8)
αβ

(45)

The determination of coefficients proceeds as before, however, an additional boundary condition is re-
quired due to the additional solution. Unlike the discrete modes, α is known prior to analysis, and thus the
solutions are solved for directly with no need for iteration. The four wall boundary conditions can therefore
be applied directly, along with an additional normalization condition. As above, unless otherwise stated
we normalize each mode by the value of its pressure perturbation at the wall. The adjoint is determined
similarly, where, as noted previously, we normalize by the wall value of element three of the adjoint solution
vector.

With the coefficients at the wall thus determined, the corresponding coefficients of the orthonormalized
system are determined at each orthonormalization point in the same manner as was done for the discrete
modes, and the five fundamental solutions combined. Once completed, the systems are mapped to the full 16
element vectors Aαβ and Bαβ . Our solutions thus computed, we are able to continue to the decomposition
of the DNS signal into elements of these modes.

D. Biorthogonal Decomposition

It has been demonstrated in both the outlining source17 as well as in Tumin and Fedorov’s 1983 paper15

that a solution to the linearized Navier-Stokes equation can be written as a summation of the solutions of
both the normal and continuous spectra for that system:

A =
∑
n

CnAαn
(y)eiαnx +

∑
j

∫ ∞
0

CjAαj
(y)eiαj(k)x dk (46)

where the first term represents summation over the discrete modes and the second term represents
integration over the continuous modes. In the expression above, n represents the discrete modes which, for
the purposes of this paper, are primarily limited to mode F and mode S, elsewhere referred to as the first
and second Mack modes, while j represents the different types of continuous modes, i.e. vorticity, entropy,
and acoustic. Together, the solutions Aαβ and Bαβ comprise the basis of the biorthogonal eigenfunction
system.

We proceed to take the dot product of the system of equations for the direct problem Aαβ , together with
the adjoint solution, Bα′β , and integrate from y = 0 to y =∞. Recognizing that α is not necessarily equal
to α′, we integrate by parts to find:
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i (α− α′)
∫ ∞
0

(
H2A

T
αβ ,Bα′β

)
dy = 0 (47)

This orthogonality relation can then be rewritten in the more explicit form:

〈H2A
T
αβ ,Bα′β〉 =

∫ ∞
0

((
H2A

T
αβ

)T
,Bα′β

)
dy = Γ∆αα′ (48)

The bracketed terms indicate the inner product, while the term ∆αα′ is either a Kronecker delta if α or α′

are eigenvalues of the discrete spectrum, or a Dirac delta if both α and α′ are eigenvalues of the continuous
spectrum. The term Γ depends on the normalization of Aαβ and Bα′β , where in our case Aαβ is normalized
by the pressure values at the wall and Bα′β is normalized by the third element of the adjoint solution vector,
as specified above. In the analysis performed below, the term Γ was determined by letting α = α′ and
calculating the inner product numerically according to the equation above.

With the help of this orthogonality relation, and by substituting in the definition of A given by Equation
46, we can calculate the values of the coefficients, C, as:

C =
〈H2A,Bαβ〉

Γ
e−iαx (49)

In particular, as we are interested in calculating the coefficients of modes contained within the DNS data,
we have:18

CDNS =
〈H2ADNS ,Bαβ〉

Γ
e−iαxDNS (50)

In this case, where we have the exact DNS data available across the entirety of the domain, we concern
ourselves primarily with the local amplitude rather than spatial evolution and so set xDNS = 0 to recover
the values. Although the method described above and implemented in the following analysis is appropriate
for a three dimensional perturbation, the DNS results analyzed are characterized by a two-dimensional
perturbation, and the spanwise wavenumber, β, is specified as zero accordingly.

IV. Theoretical Boundary Layer Receptivity Verification

The theoretical analysis of the DNS data obtained was performed using the multimode decomposition
scheme outlined in Section III above. Prior to performing this analysis, however, extensive verification was
attempted using the figures and data available from relevant sources.14,16,17

The first phase of verification was ensuring that the eigenfunctions of both the continuous and discrete
spectra were computed accurately. These eigenfunctions are necessary for determining the mode amplitude
coefficients, as they comprise the Aαβ terms that are used in equations above. Furthermore, accurate
determination of the spatial eigenvalue α, is necessary for the computation of both the discrete and continuous
eigenfunctions. Thus, a comparison of these eigenfunctions to those from previous work ensures the accurate
determination of both the eigenvalues and eigenfunctions of these modes.

Unlike the analysis of the DNS data, for these verification cases the meanflow pressure was assumed
constant and equal to 1/γM2 while the pressure derivatives were set to zero, consistent with the boundary
layer assumption and the non-dimensionalization used.24 Thus, these computations also served to verify
that the derived system of equations correctly reduces when assigned a constant pressure meanflow profile.

Being arguably the simplest of the two mode types both in concept and implementation, the discrete
spectrum was selected as our first means of verification. Through prior work, a second order finite difference
(2FD) scheme had been implemented for the determination of global eigenvalue spectra, along with a fourth
order compact difference (4CD) scheme for local eigenvalue searches. These two routines were implemented
in accordance with the framework laid out in Malik’s 1990 paper,24 and were tested against the results from
Balakumar and Malik’s 1992 paper,26 with the results presented in Table 3 and Table 4. Once verified,
these routines were used as the baseline for comparing our implementation of the fundamental solution
superposition method for discrete modes. The comparison between eigenfunction results for both schema
is illustrated in Figure 8. Having verified the global second-order finite difference method and fourth order
compact difference scheme, these were later used in the DNS analysis to obtain initial guesses for the discrete
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Table 3: Flat plate, M = 4.5, T0 = 311 K, Pr = 0.72, Re = 1000, ω = 0.2, β = 0

Balakumar, Malik 2FD 4CD Fund. Soln. Superposition

0.220− i3.091× 10−3 0.220− i3.486× 10−3 0.220− i3.091× 10−3 0.220− i3.091× 10−3

0.221− i1.569× 10−2 0.221− i1.484× 10−2 0.221− i1.569× 10−2 0.221− i1.570× 10−2

−0.565−i5.559×10−2 −0.561−i6.767×10−2 −0.565−i5.560×10−2 −0.565− i5.560× 10−2

0.560− i5.659× 10−1 0.610− i5.824× 10−1 0.560− i5.636× 10−1 0.561− i5.660× 10−1

Table 4: Flat plate, M = 4.5, T0 = 311 K, Pr = 0.72, Re = 1000, ω = 0.2, β = 0.12

Balakumar, Malik 2FD 4CD Fund. Soln. Superposition

0.2181 + i2.969× 10−4 0.2179 + i9.464× 10−5 0.2181 + i2.971× 10−4 0.2181 + i2.973× 10−4

0.2124 + i1.288× 10−2 0.2129 + i1.194× 10−2 0.2124 + i1.288× 10−2 0.2124 + i1.288× 10−2

−0.5498+i5.684×10−2 −0.5457+i6.850×10−2 −0.5499+i5.685×10−2 −0.5499 + i5.685× 10−2
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Figure 8: Comparison of eigenfunctions from fourth-order compact difference scheme and fundamental so-
lution superposition. Flat plate, M = 4.5, T0 = 311 K, Pr = 0.72, Re = 1000, ω = 0.2, β = 0.12.
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Figure 9: Comparisons of continuous vorticity mode A (a) and continuous entropy mode (b) from Fig. 2 of
reference T0616 to computed values, M = 5.95, Tw/Tad = 0.1, F = 10−4, Re = 1500, β = 0.16, k = 1.

mode eigenvalues. The values obtained with these techniques were then refined with the fundamental solution
integration method.

The results for our implementation of the fundamental solution superposition technique were also tested
against those presented in Tumin’s 2006 work.16 As in the source, the eigenfunctions are normalized by
the derivative of streamwise velocity at the wall, rather than the pressure at the wall as is the general case
throughout this paper. The results are presented in Figures 9-15 with both continuous and discrete modes
represented. For the continuous modes, the value of the parameter k is set to 1 in each case. In most of
these cases, the stagnation temperature was not specified in the source. By matching eigenfunction profiles
it was found that T0 = 640 K was the best estimate, and this is the specification used unless otherwise
noted. Figures 9-13 show comparisons to plots given in Tumin’s 2006 paper,16 abbreviated as [T06], with
the source figure cited in the legend.

In the majority of these comparisons the agreement is near exact, with some error attributable to the
hand digitization of the verified plots. One exception is Figure 11b, where the source indicates a coefficient
CV = 2 for the continuous vorticity mode. It was found, however, that the calculated values compare much
more closely when a coefficient of CV = 1 is used. The computed values shown in the plot thus include
the case where CV = 1, and it is presumed that the coefficient claimed in the source is erroneous. This
assumption is bolstered by the comparisons shown in Figures 9a and 12b, which both include continuous
vorticity modes of weight CV = 1 and CV = 0.1 respectively. These figures rely on similar calculations -
the only difference being the flow conditions - and show excellent comparison to the source plots. A similar
issue is also noted in Figures 13a and 13b, where the source claims a mode sum with the weights CS = 1,
CF = −1, and Ccontinuous = 2 for each, with the continuous spectrum mode being fast acoustic for Figure
13a and slow acoustic for Figure 13b. Better accuracy was noted, however, when the coefficients of the two
discrete modes are switched, with CS = −1 and CF = 1 for both cases. The two modes were identified as
indicated in the global eigenvalue spectrum shown in Figure 14, and the discrepancy in results is assumed
to be due to a simple mislabeling of either the modes or coefficients.

Our next aspect of verification was the testing of the decomposition technique itself. This followed along
the same lines as the methods used in Tumin’s 200616 and 200717 outlines, whereby signals were composed
by summing several different eigenfunctions of both the discrete and continuous spectra with various weights.
This composite signal is then decomposed in an attempt to recover the known weights used in its construction.
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Figure 10: Comparisons of continuous vorticity mode A (a) and continuous entropy mode (b) from Fig. 2
of reference T0616 to computed values, M = 5.95, Tw/Tad = 0.1, F = 10−4, Re = 1500, β = 0.16, k = 1.
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Figure 11: Comparisons of discrete modes (a) and discrete and continuous vorticity mode sum (b) from Fig.
15 in reference T0616 to computed values, M = 5.95, Tw/Tad = 0.1, F = 10−4, Re = 1895, β = 0.16, k = 1.
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[T06] Fig.16a Mode S

Computed Mode S
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[T06] Fig.16b S− F + 0.1V
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Figure 12: Comparisons of discrete modes (a) and discrete and continuous vorticity mode sum (b) from Fig.
16 in reference T0616 to computed values, M = 5.95, Tw/Tad = 0.1, F = 10−4, Re = 2300, β = 0.16, k = 1.
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[T06] Fig.17a S− F + 2FA

Computed S − F + 2FA
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[T06] Fig.17b S− F + 2SA

Computed S − F + 2SA

Computed F − S+ 2SA

(b)

Figure 13: Comparisons of discrete and continuous fast acoustic mode sum (a) and discrete and continuous
slow acoustic mode sum (b) from Fig. 17 in reference T0616 to computed values, M = 5.95, Tw/Tad =
0.1, F = 10−4, Re = 2300, β = 0.16, k = 1.
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Figure 14: Global eigenvalue spectrum and local eigenvalue search results for the conditions specified in Fig.
12 and 13, M = 5.95, Tw/Tad = 0.1, F = 10−4, Re = 2300, β = 0.16.

We begin with the composite signals that have already been constructed in our previous figures. In Figure
11b, we have a flow over a flat plate with the properties M = 5.95, Tw/Tad = 0.1, F = 10−4, Re = 1895, β =
0.16, and k = 1. For this figure the coefficients used are CS = 1, CF = −1, and CV = 1, where we again note
that we have assumed a different value of CV than that claimed in the source. Decomposing this composite
signal using the method outlined in Section III D recovers the coefficients: CS = 1.00014 + i3.82155× 10−5

and CF = −1.00089− i1.50343× 10−4.
For Figures 13a and 13b, we have flow over a flat plate with the properties M = 5.95, Tw/Tad =

0.1, F = 10−4, Re = 2300, β = 0.16,and k = 1. Figure 13a constructs a composite signal using the two
discrete modes and a weighted fast acoustic continuous mode, while Figure 13b constructs a composite signal
using the two discrete modes and a weighted slow acoustic continuous mode. The exact coefficients for the
composite signal in the two cases are CF = 1, CS = −1, CFA = 2 and CF = 1, CS = −1, CSA = 2
respectively. Upon performing the decomposition, the recovered discrete coefficients for the first case are
CF = 1.00035− i4.28462× 10−5 and CS = −1.00001 + i1.14985× 10−4. For the second case, the coefficients
are determined as CF = 0.99679 + i1.95036× 10−3 and CS = −0.99911− i7.13535× 10−4.

In Figure 15, a signal is constructed using the two discrete modes, mode F and mode S, and also two
continuous modes, one fast acoustic (FA) and one slow acoustic (SA). The flow conditions for this case are the
same as those specified for Figure 11b, M = 5.95, Tw/Tad = 0.1, F = 10−4, Re = 1895, β = 0.16,and k = 1,
however, with coefficients CF = −1, CS = 1, CFA = 2, and CSA = 0.1. Performing the decomposition, we
recover coefficients for the discrete modes, CF = −0.999944−i2.25455×10−4, CS = 1.00006+i6.91611×10−5.
In the figure, the re-composed signal, including both the discrete and continuous modes, is plotted against
the original as an indicator of the total error of the process.

Some level of verification was also performed for the specific case to be analyzed, that is, the DNS data
for the hotspot perturbation on a flared cone. Using the meanflow from various stations, the mode F and
mode S eigensolutions were characterized by applying the fundamental solution superposition technique to
this data. A comparison of these results was made to the LST results described in Huang and Zhong’s 2014
paper.14 The comparisons are illustrated in Figure 16a with the neutral stability frequency/locations for both
branches of Mode S, and in Figures 16b and 17 where the non-dimensional phase speed, non-dimensional
wave number, and growth rate are shown for both discrete modes. The definitions for the terms in the plots
are briefly recapitulated:
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Figure 15: Comparison of exact signal and recomposed signal, CS = 1, CF = −1, CFA = 2, CSA =
0.1, M = 5.95, Tw/Tad = 0.1, F = 10−4, Re = 1895, β = 0.16, k = 1.

Non− dimensional Phase Speed =
ω

αr
(51)

Non− dimensional Wave Number = αr (52)

Dimensional Growth Rate =
−αi
L∗

(53)
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Figure 16: Comparison of Mode S neutral stability curve (a) and non-dimensional phase speed for f ≈
293 kHz (b) from Huang & Zhong’s 2014 analysis14 to computed values.
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[H14] Fig.29 Mode F
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[H14] Fig.30 Mode F

Computed Mode F

[H14] Fig.30 Mode S

Computed Mode S

(b)

Figure 17: Comparison of f ≈ 293 kHz non-dimensional wave number (a) and dimensional growth rate (b)
from Huang & Zhong’s 2014 analysis14 to computed values.
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V. Simulation Results and Analysis

For the DNS analysis, the regions of consideration were discretized with a computational grid, a portion
of which is shown in Figure 4. Due to the limited computational power available, the simulation was divided
into 21 zones, with zone 1 encompassing the cone’s hemispherical nose and zones 2 through 21 proceeding
downstream and along the compression walls of the cone. As the data sets arising from DNS computations
can be vast, the data was only saved at the entrance of each zone and the analysis to follow was limited to
these locations. For more information about the DNS computations, the reader is referred to the source.11

A. Qualitative Receptivity Analysis

The wall pressure perturbation evolution on the compression cone is recorded in time at various spatial
locations in the downstream direction. Figure 18 and Figure 19 plot the time-history traces, where the wall
pressure perturbation amplitude is given relative to the freestream pressure. In Figure 18, one may note
that the perturbation time-history profile begins with a relatively monotonic shape consisting of a main
peak and a lower peak. It was concluded in Huang & Zhong’s 2014 analysis14 that these are likely fast
acoustic and slow acoustic waves, which gradually decay as they travel downstream - eventually splitting
into multiple peaks. It was further suggested that this may be due to the energy shift from one wave mode
to another, caused by viscous effects within the boundary layer. In Figure 19, the multiple peaks in the
perturbation begin to split into two distinct components - one with more a oscillatory profile and another that
is comparatively smooth. As these perturbations travel further downstream, it is seen that the amplitudes
decay and the two components depart from each other. In this analysis, it was determined that these two
elements constitute separate wave modes, with distinct perturbation profiles and group velocities. Moving
further downstream, another new perturbation mode appears that quickly grows to become the dominant
instability in the boundary layer. This new mode, appearing in the time-history profile around x∗ = 0.25m,
was attributed in the previous LST analysis to the mode S instability.

Applying the Fourier transform method described in Section II C permits transition of the analysis
from the temporal domain to the frequency domain. This transformation, also performed in the previous
work, is given by Figure 20, which demonstrates the spectrum of pressure perturbations on the wall over a
range of frequencies and streamwise locations. We note the logarithmic scaling of the plot, and the clearly
demonstrated spatially growing peak within the approximately 260 kHz to 320 kHz frequency range. By
contrast, the peak to the left of this range, at approximately 190 kHz to 260 kHz, appears to be decaying
spatially and was attributed to the stable mode F perturbation. In the prior analysis,14 the DNS data
downstream was considered in the downstream regions where the perturbation is clearly dominated by the
260-320 kHz frequency peak. By comparing the DNS values of growth rate, mode shapes, wave speed,
phase velocity, etc., it was determined that in these regions, the flow was indeed mode S dominant. It was
postulated that the full mechanism by which receptivity proceeds for this problem is the initial excitement
of mode F by incoming acoustic waves, followed by the later stimulation of mode S in the vicinity of the
synchronization point via the intermodal exchange mechanism discussed by Fedorov and Khokhlov.27 The
full analysis is available in the reference works,13,14 with more information on the methods used available
therein.

A peculiarity of the analysis to follow is noted in Figure 20, where the reader may note the frequencies
considered. The range of the spectral analysis consists of the frequencies 100 kHz to 600 kHz, generally
encompassing the regions considered in the prior works. The exceptions to this are the three upstream
locations, ξ∗ = 0.019m, ξ∗ = 0.055m, and ξ∗ = 0.094m where, for these locations, the analysis is instead
limited to the 100 kHz and 300 kHz frequency range. The discrepancy arises from the method of storing DNS
data, with the first 10 zones storing the sum of meanflow and perturbation quantities, and with the later
zones separating these values. When the perturbation values become small - as they do for frequencies greater
than ∼300 kHz at ξ∗ = 0.094m - the difference in scale between the meanflow quantities and the perturbed
quantities becomes so vast as to induce significant numerical error in the isolation of the perturbation values.
This error makes analysis of these frequencies prohibitive without re-computation of the zones in question,
and so we note the region of analysis for these zones is truncated for the purposes of this paper.
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Figure 18: Time-history traces of pressure wall-perturbation at various streamwise locations on the upstream
portion of the cone. 26 of 45
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Figure 19: Time-history traces of pressure wall-perturbation at various streamwise locations on the down-
stream portion of the cone.
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Figure 20: Wall pressure perturbations from DNS/FFT at various locations and frequencies normalized by
the freestream temperature perturbation.
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Figure 21: Freestream temperature perturbation of the hot spot, transformed to the frequency domain.

B. Theoretical Receptivity Analysis

With the multimode decomposition implementation verified against previous results, the method was then
applied to the DNS data via the procedure outlined in Section III. The DNS data at each point along the
cone consisted of the meanflow data and perturbation data in the wall-normal direction across the shock-
fitting domain. The perturbation data, consisting of the time history of the perturbed flow, was transformed
into the individual frequencies of the wave packet using the Fourier transform method as described in Section
II C. For each frequency, the multimode decomposition could then be performed as specified in Section III
D and the coefficients calculated.

As outlined above, with the previous analysis it was only possible to make qualitative assessments of the
behavior of the DNS perturbation values by utilizing comparisons to LST modes to assess the prevalence
of instabilities. In the present analysis, however, we can determine the local coefficient amplitudes of each
mode for different frequencies and locations along the cone - thus performing an analysis of the data that is
more anchored in the problem’s theoretical background.

The decomposition was performed primarily for the two discrete modes F and S, with the results shown
in Figures 22-34 illustrating the data determined from these decompositions. The y-value in Figures 22-24
represents the ratio between the two terms:

|dPwall/P∞|
dT∞/T∞

(54)

The term in the numerator is the magnitude of the perturbation pressure at the wall, non-dimensionalized
by the freestream pressure. The term in the denominator is the freestream temperature perturbation - that
is, the hotspot temperature - normalized by the freestream meanflow temperature. As shown in Figure 21,
the hotspot perturbation has an amplitude that varies by frequency, and is not constant across the frequency
spectrum. To account for this, the perturbation values for both the response, dPwall, and the freestream
forcing, dT∞, are separated into their component values for each frequency and compared only to their
corresponding values at the same frequency. The frequency range thus forms the x-axis in Figures 22-24,
while the terms given by the y-axis provide a reference ratio of the boundary layer’s response relative to the
initial input. These are values which we generally term the “receptivity coefficients” for the problem:

Crecpt =
|dPwall/P∞|
dT∞/T∞

(55)
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Figure 20, therefore, shows these values exactly as they arise from the DNS results, with the total response
of the system related to the initial perturbation, across the range of many frequencies and at several locations
along the cone. In our new analysis, we take the DNS data given by Figure 20 and apply the decomposition
of Section III D to determine the contribution of each boundary layer mode. These results are presented
in Figures 22 and 23, showing the decomposition into mode F and mode S respectively. The coefficients
determined for each mode are given by lines, while the markers indicate the full DNS data transformed to
the frequency-spectrum for each location.

1. Discrete Modes

The results of the previous LST analysis are largely confirmed, with each peak matching their expected
mode. The low frequency peak of the DNS data in the region of ∼ 120 kHz to ∼ 240 kHz matches that of
the decomposed mode F result very closely. By comparison, in this frequency range the mode S coefficients
are generally about one order of magnitude smaller, with the overall perturbation therefore dominated by
mode F in the upstream regions. Both modes are observed to be decaying relatively steadily as they travel
downstream over this frequency range, tending to indicate an initial excitation of both modes in the frequency
range in which the freestream perturbations are strongest.

Similarly, as the perturbation signal moves downstream, both mode F and mode S are excited in the
vicinity of the ∼ 240 kHz to ∼ 320 kHz peak, suggesting interaction between the modes. In this frequency
range, the mode S coefficients are initially excited but decaying in the upstream regions, and at approximately
ξ∗ = 0.134m, these values appear to reach a minimum. For locations downstream of this, beginning with
ξ∗ = 0.172m, the peak in the mode S coefficients begins to take shape and quickly grow. This location
corresponds to the first station analyzed that is downstream of the synchronization point for the most
unstable frequency, ∼ 293 kHz. The exact location of the synchronization point for this frequency is given
as approximately ξ∗ = 0.16m.14 Thus, the observed excitation of this frequency at that location is significant,
and indicative of the intermodal exchange suggested during the previous analysis. Although both modes are
excited in this frequency range, the decomposed mode F coefficients are still several orders of magnitude
smaller than the DNS peak values, while the mode S results are quite comparable. As expected, our results
thus indicate the flow is given to mode S dominance due to a growing perturbation in the ∼ 240 to ∼ 320 kHz
frequency range that begins at or near the ∼ 293 kHz synchronization point.

An interesting result not captured by the previous analysis is the high frequency mode F peak in the
region furthest downstream. Although the flow is still mode S dominant in this region, the amplitude of
this high frequency mode F regime appears larger even than that of the upstream, low frequency peak. We
do reiterate, however, that the coefficient plotted is relative to the freestream temperature perturbation,
which decreases in value significantly at higher frequencies. Thus, the high frequency mode F peak is only
indicative of large perturbations in the high frequency regime relative to the inputs at the same frequency
from the freestream. It is further noted that at these high frequencies, a third discrete mode was observed
to emerge from the continuous fast acoustic spectrum. Although decomposition was not performed for this
accessory mode, the link, if any, between these high frequency phenomena as they relate to the problem at
hand may bear further investigation.

Figure 24 compares the sum of both the mode F and mode S contributions to the DNS data at each
frequency and location. The close match between the mode sum and the DNS data indicates that the vast
majority of the contribution to the results within the boundary layer arise due to the influence of these two
modes. The continuous modes, by comparison, appear to have limited influence within the boundary layer,
although this can not necessarily be said of the flow field in general.

2. Continuous Modes

Figures 25-26 demonstrate examples of continuous mode eigenfunctions at individual frequencies and loca-
tions along the cone. As is immediately apparent from the amplitudes of the eigenfunctions for different
branches, the vorticity and entropy spectra experience strong decay as they penetrate the shock and bound-
ary layer. As such, they provide very little contribution to the total observed result, with the main influences
from the continuous spectrum being due to the fast and slow acoustic spectra. This finding is in line with
the results of previous work that considered blowing/suction perturbations,16,26 and found that the input
of the vorticity and entropy modes were small relative to the acoustic modes.18
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Figure 22: Magnitude of Mode F coefficients by frequency and location compared to DNS/FFT data.
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Figure 23: Magnitude of Mode S coefficients by frequency and location compared to DNS/FFT data.
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Figure 24: Magnitude of Mode F and Mode S coefficient sum by frequency and location compared to
DNS/FFT data.
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Figure 25: Streamwise velocity eigenfunctions for vorticity A (a) and entropy (b) continuous modes at
ξ∗ = 0.172m, f = 301 kHz, and k = 1.
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Figure 26: Streamwise velocity eigenfunctions for fast acoustic (a) and slow acoustic (b) continuous modes
at ξ∗ = 0.172m, f = 301 kHz, and k = 1.
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Figure 27: Continuous spectrum mode coefficient magnitudes for various k - fast acoustic (a) and slow
acoustic (b) continuous modes at ξ∗ = 0.172m and f = 100 kHz.

Decomposing the DNS data into components of the continuous spectrum requires discretization using the
parameter k. In order to adequately resolve these spectra, a sufficiently fine stepping, ∆k, is required, as well
as a judicious choice of the range of k to analyze. As this typically involves the calculation of several hundred
modes at each frequency and location of consideration, only a few such decompositions were performed to
obtain a general picture of the influence of these mode types.

For the purpose of the continuous spectrum analysis, and in keeping with the finding above regarding
the influence of the various continuous spectrum mode types, only the fast and slow acoustic branches were
considered. For each location/frequency pair, the spectrum was discretized into 400 modes, with 0 ≤ k ≤ 4.
As with the discrete modes, the coefficient for each continuous spectrum mode is calculated with Equation
50. As shown in Figure 27, the continuous spectrum coefficients are generally largest for moderate values of
k: 0 . k . 1. In future work, it may be possible to achieve better accuracy and minimize the computations
required by focusing on these values, perhaps through use of a stretched grid in k.

With the relevant continuous spectrum modes computed, it is then possible to construct a recomposed
signal, comprising the elements of both the discrete and continuous spectra. These reconstructed modes
are plotted in Figures 28-29, with locations and frequencies indicated. It is observed that although the fast
and slow acoustic modes generally have marginal influence within the boundary layer, there is generally a
comparatively large packet of acoustic waves located between the boundary layer and the shock. This is
generally in line with the findings of the previous analyses1,14 that indicated that the interaction of a hotspot
and shock leads to the formation of fast and slow acoustic waves in the region behind the shock.

In addition to the fully recomposed modes, Figures 28-29 also indicate the components of the recomposed
eigenfunctions that are attributable solely to the decaying boundary layer modes. As expected from our
previous receptivity coefficient analysis, within the boundary layer the vast majority of the DNS perturbation
is attributable to the sum of the mode F and mode S discrete modes. Outside of the boundary layer,
however, there is generally a comparatively large packet of acoustic waves that exists in the region between
the boundary layer and the shock. Of particular interest is the case shown in Figure 29b, representing
a case far downstream at s∗ = 0.172m and localized within the frequency spectrum mode S peak, with
f = 301 kHz. For this case, we note that there still exists a continuous acoustic spectrum wave packet in
the region outside the boundary layer, however, the magnitude of the mode S peak in this unstable, mode S
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Figure 28: Comparison of DNS pressure data with recomposed sum of mode F, mode S, and fast and slow
acoustic continuous modes at location ξ∗ = 0.172m for f = 100 kHz (a) and f = 301 kHz (b).

dominant location dwarfs the acoustic wave packet. This can be compared to Figure 28b, which represents
the region just past the synchronization point where the mode S perturbation is just beginning to grow, and
we note that the overall perturbation signal in this region is dominated by the acoustic waves external to the
boundary layer. By contrast, Figure 28a and Figure 29a together demonstrate the evolution of the upstream,
low frequency forcing in the boundary layer, with notable decay of the excitation within the boundary layer
as these perturbations travel downstream. In the cases considered, we note that the inclusion of the two
acoustic branches permits recomposition of the DNS eigenfunctions to a high level of accuracy.

We note another contribution of the continuous spectrum - the effect by which it influences mode F eigen-
functions. It is found that, in the vicinity of the mode F coalescence with the continuous vorticity/entropy
spectrum, shown in Figure 30a, the eigenfunctions associated with mode F take on characteristics of the
continuous spectrum. This is noted by the oscillatory nature of the discrete mode in the region near and
outside of the boundary layer edge displayed in Figure 30b. Unlike the continuous spectrum modes, however,
these values continue to decay as they oscillate, eventually going to zero to satisfy the boundary condition
imposed on discrete modes. This finding is in line with the similar observation in the analysis conducted by
Tumin, Wang, & Zhong in 2007,18 and indicates that the existence of the continuous spectrum has an effect
even on the discrete modes.

3. Receptivity Coefficients

In Figures 31-34, we present the same information given from Figures 22-23 in a clearer, though less precise
format. In Figures 31 and 32, the decomposition of the DNS data into elements of mode F and S respectively
are indicated by the color of the plot at that location and frequency. In Figures 33 and 34, we instead employ
contours to indicate the range of data for each of the mode F and mode S decompositions. On each of the
plots, we also include two lines which indicate the branch I and branch II neutral frequencies for each
location. In both plots the branches indicate the mode S neutral frequencies at each location, with branch
I corresponding to the lower frequency and branch II corresponding to the larger. This allows us to define
the more typical receptivity coefficient,28,29 the branch I receptivity coefficient:
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Figure 29: Comparison of DNS pressure data with recomposed sum of mode F, mode S, and fast and slow
acoustic continuous modes at location ξ∗ = 0.357m for f = 101 kHz (a) and f = 300 kHz (b).
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Figure 30: Global eigenvalue spectrum (a) and mode F streamwise velocity eigenfunction at ξ∗ = 0.357m
and f = 238.5 kHz.
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Figure 31: Magnitude of Mode F coefficients by location and frequency, with lines showing the branch I/II
neutral stability frequencies/locations for Mode S

CI =
|dPwall/P∞|I
dT∞/T∞

(56)

where the subscript indicates that the pressure perturbation is evaluated at the branch I neutral point.
The receptivity coefficients that characterize a system are typically given at frequencies/locations on the
neutral stability curve, as perturbation amplitudes along the neutral stability curve represent the initial
disturbance amplitudes. These can be contrasted with amplitudes at other frequencies/locations, which are
attributable in part to spatial growth of the perturbation. The receptivity coefficients along the neutral
stability curve thus give a truer picture of the basic response of the system to freestream forcing.

The values of these receptivity coefficients are then presented in figure 35, where results are given for both
branch I and branch II neutral points. We see that, although the values are varying along the cone, there
is a relatively dramatic increase in each for the furthest downstream location. The values are comparatively
constant, however, taken in the context of the mode S pressure perturbation at the least stable frequency
- which varies by location from ∼ 10−3 to ∼ 102. The phase angles of the branch I and II receptivity
coefficients, however, are difficult to discern any patterns from, with the angle typically changing by > 180◦

from location to location. In future work, an analysis of additional locations along the cone may serve to
better reveal the characteristic trend for these values.

In Balakumar & Kegerise’s 2010 study,28 receptivity coefficients were obtained for the same flared cone
considered in our work, under identical freestream conditions. The receptivity coefficients determined therein
were obtained via an eN analysis facilitated by LST and PSE computations, and examined the cone’s
receptivity to acoustic waves. The frequency examined in that work was specified as f = 292.5 kHz, and the
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Figure 32: Magnitude of Mode S coefficients by location and frequency, with lines showing the branch I/II
neutral stability frequencies/locations for Mode S.
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Figure 33: Magnitude of Mode F coefficients by location and frequency, with lines showing the branch I/II
neutral stability frequencies/locations for Mode S.
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neutral stability frequencies/locations for Mode S.
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Figure 35: Phase I and phase II receptivity coefficient magnitudes (a) and phase angles (b) for various
locations along the flared cone.

coefficients determined as Crecpt = 4.9×10−3 for slow acoustic waves and Crecpt = 9.3×10−3 for fast acoustic
waves. While our results arise from consideration of receptivity to a freestream entropy perturbation, it was
shown here (Figures 25 - 29) and in previous work1,14 that the interaction of the freestream hotspot with
the shock primarily induces acoustic waves behind the shock. The frequencies examined here, however,
differ from those examined previously, with the phase I neutral points considered her typically specifying
frequencies in the range of 240 kHz to 260 kHz. Regardless, the receptivity coefficients we determine are of
the same order as those obtained in the work above via eN , suggesting some level of agreement between the
two methods. The results are thus shown to be reasonable, and the receptivity coefficients are demonstrated
to be obtainable for this system via a rigorous method based in the problem’s theoretical background.

VI. Conclusion

A multimode decomposition scheme for the analysis of DNS data is implemented. The tool is specified
with an eye towards transition prediction via analysis of perturbation amplitudes, with the specific goal of
obtaining the receptivity coefficients that characterize a system’s response to freestream disturbances. In
contrast to prior applications of this method, the tool is herein used to analyze the DNS data for hypersonic
flow over a real-world geometry. Where the system has been analyzed by other methods previously, generally
good agreement is observed with the current results, and findings of the previous analyses are confirmed.
The verification of the implementation and its application further opens the door for consideration of a wide
range of future receptivity problems.

The biorthogonal eigenfunction system as specified for a three-dimensional perturbation in a two di-
mensional boundary layer is first characterized and implemented.17 It was found that the technique of
fundamental solution integration and recombination produced eigenvalues and eigenfunctions that compared
well with both prior published results as well as the results of a fourth order compact difference scheme.
The method of recombining fundamental solutions to recover continuous spectrum modes was also com-
pared against published results, showing good agreement. The scheme of multimode decomposition was
then implemented and tried against signals composed as a sum of modes with known weights. The outputs
are compared with the known weights as a measure of the accuracy of the scheme. Verification was also
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performed relative to the DNS results to be analyzed, with the discrete mode results of the fundamental
solution recombination compared to the values presented from the LST analysis of previous work.

Finally, the method of multimode decomposition was applied to the DNS results, with the weights
of the boundary layer discrete modes determined. These results were recombined and compared to the
DNS receptivity coefficients as defined, illustrating that the boundary layer discrete modes are of primary
importance within the boundary layer itself. The receptivity coefficients for the individual modes were also
analyzed across a range of frequencies and locations. This confirmed the prior qualitative/LST analysis’
conclusion that the freestream hotspot initially excites the low frequency mode F boundary layer mode,
with rapid growth of the mode S disturbance downstream of the mode F/S synchronization point for the
most unstable frequency. The receptivity coefficients were further noted to agree in order of magnitude for a
previous, similar analysis that utilized the eN method. Limited continuous spectrum analysis was performed,
confirming previous conclusions by showing that the vorticity and entropy modes are of limited importance.
The weighted sum of the discrete and continuous modes was compared to the frequency spectrum DNS data
for different locations and frequencies, verifying the accuracy of the decomposition. The acoustic spectrum
modes were shown to be generally localized outside of the boundary layer, with little influence in the region
near the wall. The branch I and branch II receptivity coefficients were also determined for the system.
Although exact trends are unclear given the lack of spatial resolution, the coefficients were seen to be fairly
constant across the region of analysis relative to nearby values in the mode S frequency spectrum.

The opportunity for future work exists in performing modal decomposition at additional locations along
the cone for this case. A finer spatial analysis of the system at hand could help to reveal any hidden trends
in the spatial evolution for the receptivity coefficients’ magnitudes and especially the phase angles. With
a multimode decomposition schema implemented and verified, a more in-depth investigation of receptivity
mechanisms for further systems is also enabled. Ultimately, the implementation of this technique in tandem
with advanced DNS methods makes the characterization of receptivity problems significantly more manage-
able, and thus serves as a step forward in the uncovering of pathways by which laminar-turbulent transition
takes place.

Appendix A

Given below are the elements corresponding to the matrix H0 with meanflow pressure included. As in
Tumin’s 200616 and 200717 papers, we define r = 2(ε+ 2)/3 and m = 2(ε− 1)/3, where ε is the ratio of bulk
viscosity to dynamic viscosity and ε = 0 corresponds to Stokes’ hypothesis. Coefficients not specified below
are to be assumed zero.
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