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There has been a renewed interest in studying the stability of the supersonic mode
in hypersonic boundary layers. The supersonic mode, sometimes also referred to as the
spontaneous radiation of sound, is associated with an unstable Mack’s second mode syn-
chronizing with the slow acoustic spectrum, causing the disturbance to travel upstream
supersonically relative to the meanflow outside the boundary layer. Recent theoretical
results have shown the possibility of the supersonic mode existing in hot-wall flows, which
is contrary to decades of research on the supersonic mode suggesting it is an artifact of
hypersonic cold-wall (Tw/T∞ < 1) flows. The flow conditions leading to the supersonic
mode have not been thoroughly and systematically investigated. As a result, it is unknown
whether or not the supersonic mode can become the dominant boundary layer instability
over the traditional second mode. This work uses thermochemical nonequilibrium Direct
Numerical Simulation (DNS) along with thermochemical nonequilibrium Linear Stability
Theory (LST) to replicate the flow conditions used in the theoretical study to obtain a
more complete investigation of the supersonic mode in both hot-wall and cold-wall flow
conditions. The purpose is to analyze the effect of wall temperature on the supersonic
mode at high-enthalpy conditions. The simulation is Mach 10 flow over a 1mm nose radius
axisymmetric cone 1 meter in length. LST results indicate that the supersonic mode does
not exist in neither the hot-wall nor the cold-wall flows, however unsteady DNS results
indicate the presence of the spontaneous radiation of sound in both cases, going against
LST predictions. Further FFT analysis indicated that this sound radiation was an artifact
of the interaction between an unstable subsonic mode S, stable supersonic mode F1, and
the slow acoustic spectrum. The supersonic mode found in the cold-wall case had a signifi-
cantly higher magnitude than the hot-wall case, demonstrating that a colder wall produces
a stronger supersonic mode. Additionally, the magnitude of the supersonic mode in the
cold-wall case was higher than the magnitude of the traditional second mode and could
impact transition unexpectedly if not accounted for.

I. Introduction

It has long been known that boundary layer transition from laminar to turbulent has a considerable
impact on the design of hypersonic vehicles.1–3 Transition to turbulent flow drastically increases drag and
heating to the vehicle surface, and can have a prominent effect on control of the hypersonic vehicle. It also
affects engine performance and operability as well as vehicle structure and weight. The heating to the vehicle
surface is one of the primary considerations in hypersonic vehicle design. Thermal protection systems (TPSs)
are required to prevent the surface of the vehicle from overheating and failing. TPSs are usually specified
with a large factor of safety to ensure protection of the vehicle, although this often adds unnecessary weight,
reducing the maximum payload. The ability to predict accurately or even to delay the onset of transition
and maintain laminar flow can have a significant payoff in terms of the reduction in aerodynamic heating,
higher fuel efficiency, and weight of the thermal protection system.
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Mack4 found that the major instability waves leading to transition to turbulence in a perfect gas flow are
the first and second modes, which Fedorov3 recently described as acoustic rays physically trapped between
the wall and sonic line. A schematic for the second mode similar to Fedorov’s is shown in Fig. 1. First,
however, it is important to define Fedorov’s sonic line and the rationale for this physical description. A
useful parameter describing the speed of propagation of the disturbance relative to the mean flow is the local
relative Mach number

Mr(y) =
u(y)− cr
a(y)

(1)

where u(y) is the local mean flow velocity tangential to the wall, cr = ω/
√
β2
r + α2

r is the disturbance
propagation speed with ω the circular frequency, βr the spanwise wavenumber, and αr the real component
of the streamwise wave number, and a(y) is the local mean flow speed of sound. The local relative Mach
number appears in the nondimensional temporal stability equations, as presented by Mack5 as M in his Eq.
(9.16)a:

D
[
v̂/(α̃Ũ − ω)

]
− α̃2(1−M2

)
[
v̂/(α̃Ũ − ω)

]
= 0 (2)

where D = d/dy, v̂ is the wall-normal velocity complex eigenfunction, α̃Ũ = αU + βW , where α and β
are the streamwise and spanwise complex wavenumbers, respectively, and U and W are the streamwise and
spanwise mean flow velocities, respectively, α̃2 = α2 + β2, and ω is the complex frequency. From Eq. 2,
it is clear that the governing stability equation changes its character from an elliptic differential equation
to a hyperbolic equation as |Mr| increases past unity (M in Mack’s notation). This change in character is
responsible for different behavior of the boundary layer depending on the value of Mr.

The relative sonic line described by Fedorov3 is then given by Mr(y) = −1, or cr = u(y) + a(y) in Fig.
1. Near the wall, the disturbance is propagating downstream supersonically (Mr < −1) with respect to the
local mean flow velocity. In this region where Mr < −1, the stability equations are hyperbolic, resulting
in the acoustic disturbance waves trapped by the wall with the relative sonic line acting as a wave guide.3

Outside of Mr = −1, the disturbance is traveling subsonically with respect to the free stream, and creates a
“rope-like” wave pattern observed by many researchers both experimentally6,7 and numerically.8–10 These
structures are centered about Mr = 0, or equivalently cr = u(y).
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Figure 1. Schematic of Mack’s second mode similar to Fedorov’s.3

Researchers have developed numerical tools to predict transition to turbulence due to the first and second
mode. Malik11 implemented multiple numerical methods for solving the Linear Stability Theory (LST)
equations for a perfect gas. Chemical nonequilibrium effects in the LST framework were studied numerically
by Stuckert and Reed.12 Hudson et al.13 incorporated thermal nonequilibrium effects in addition to chemical
nonequilibrium for LST. Johnson et al.14–16 studied hypersonic boundary layer transition in thermochemical
nonequilibrium using the Parabolized Stability Equations (PSE), which account for nonparallel flow effects

asimplified version of the stability equation assuming large α̃2
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that are ignored in LST. Overall, the researchers determined that dissociation of air species is stabilizing
to the first mode, but destabilizing to the second mode. Additionally, it was determined that thermal
nonequilibrium has a slight destabilizing effect on the first mode, and a slight stabilizing effect on the second
mode.

When the traditional mode S is the unstable second mode, its phase speed is subsonic, i.e. 1− 1/M∞ <
cr < 1 + 1/M∞. Although most hypersonic boundary layer transition studies have primarily focused on the
second mode in which mode S is unstable, it has been shown that when mode F1 is unstable, there can be an
interaction between mode F1 and the slow acoustic spectrum downstream of the mode F1/S synchronization
location.17,18 That is, the unstable second mode (F1) can synchronize with the slow acoustic spectrum,
causing an energy exchange. Downstream of this synchronization with the slow acoustic spectrum, the
unstable mode F1 has a supersonic phase speed, i.e. cr < 1 − 1/M∞. When this situation occurs, the
unstable mode F1 is referred to as the supersonic mode, and it is associated with unique features not present
in traditional flows with a subsonic second mode. In particular, the supersonic modes cause second-mode
instabilities over a wider range of frequencies than subsonic modes and cause acoustic waves to radiate from
the wall into the free stream.

A schematic of the supersonic mode developed by Knisely and Zhong19 is presented in Fig. 2 for further
elaboration. Near the wall, the same structures exist as in the traditional second mode. The disturbance
is traveling supersonically downstream relative to the mean flow, indicated below a relative Mach number
of Mr < −1, or equivalently cr > u(y) + a(y). The sonic line Mr = −1 again acts as a wave guide for the
acoustic rays.3 Similar to the traditional second mode, outside of Mr = −1, the disturbance is traveling
subsonically with respect to the free stream, and creates the “rope-like” wave pattern. In some flows under
very particular flow conditions, a second supersonic region can be present. There can exist a second relative
sonic line Mr = 1, or equivalently cr < u(y) − a(y), outside of which the disturbance is traveling upstream
supersonically with respect to the free stream. Again, because |Mr| > 1, the stability equations are hyperbolic
and the solution is wave-like. This creates the “slanted” wave pattern outside of the boundary layer shown
in the schematic in Fig. 2. The angle created by this decaying wave pattern is analogous to a Mach wave
angle from traditional compressible flow theory, and is given by µ = arcsin(1/Mr).
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Figure 2. Schematic of supersonic mode.

Although early studies by Mack in 198517 and 199018 and Reshotko in 19911 came to the consensus
that the supersonic mode was insignificant due to its smaller disturbance amplification rate than the second
mode, there has been a renewed interest in studying the supersonic mode in hypersonic boundary layers due
to their presence in the flow conditions typical of the T5 shock tunnel at Caltech. In such high-enthalpy
shock tube experiments, the wall temperature remains ambient during the short test duration, resulting in a
cold wall with respect to the free stream. Cold wall conditions in high-enthalpy flows are also found in some
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real flight cases.20,21 It has long been known through studies by Lees22 and Mack17,23 that wall cooling
stabilizes the first mode but destabilizes the second mode. Bitter and Shepherd24 in 2015 took these studies
a few steps further and have shown through a chemical equilibrium, thermal nonequilibrium LST analysis
that high levels of wall cooling on a flat plate lead to unique features, in particular an unstable second mode
traveling upstream supersonically relative to the free stream. The supersonic modes cause instabilities over
a wider range of frequencies than subsonic modes and cause acoustic waves to radiate from the wall into the
free stream. This phenomenon has also been referred to as the spontaneous radiation of sound by Fedorov.25

Despite the existence of the supersonic mode being known since the mid 1980’s by Mack17,18 and Reshotko
in the early 1990’s,1 a comprehensive examination of its impact on transition to turbulence is yet to be
performed. There have been only a few studies in which the supersonic mode’s characteristics were the
direct focus of the investigation. In 1997 Chang, Vinh, and Malik26 reported supersonic modes in Mach
20 chemical nonequilibrium, thermal equilibrium flow over a 6 degree wedge with wall temperature ratio
Tw/Tad = 0.1, and noted the stability boundary conditions in the free stream are critical to resolving
the supersonic mode due to its oscillatory nature in the free stream. Additionally, they note that peak
species perturbation coincides with the location of maximum chemical production in the boundary layer,
and therefore the species eigenfunctions do not oscillate in the free stream, whereas pressure, temperature,
and velocity perturbations exhibit the oscillatory behavior outside of the boundary layer. Over a decade later
came a resurgence of the supersonic mode, however in most cases it was not the primary focus of the study.
In 2011 Fedorov et al.27 encountered unstable supersonic modes in flow with resonating micro-cavities on
a flat plate. Wagnild28 observed the spontaneous radiation of sound in 2012 on a 5-degree half-angle sharp
cone, although the focus of his study was the effect of vibrational nonequilibrium on boundary layer stability.
In 2013 Bres et al.29 also found this phenomenon in flow over a wall with a porous coating on a flat plate.
Klentzman and Tumin30 in 2013 also commented on the supersonic mode in a cold-wall flat plate flow using
oxygen. Jewell31 in 2014 performed numerical calculations to supplement experimental results from the T5
tunnel at Caltech. Jewell’s numerical results showed the supersonic mode on a 5-degree half-angle sharp
cone, although the focus of his dissertation was transition delay with CO2 concentration, turbulent spot
propagation, and transition control via gas injection. In the same year, Fedorov, Soudakov, and Leyva32

found unstable supersonic modes on a 5-degree half-angle cone with gas injection. Over the course of 2014-
2016, Salemi et al. also modeled the 5-degree half-angle sharp cone configurations typical of the T5 tunnel at
Caltech and investigated second mode synchronization with the slow acoustic spectrum. They investigated
the effect of nonlinear disturbances,33,34 a flared cone geometry,35 and high-temperature effects,36 although
the Prandtl number and ratio of specific heats were fixed in their real gas model. Overall, Salemi37 concluded
that the synchronization of mode F1 with the slow acoustic spectrum caused the emission of acoustic waves
from the boundary layer into the free stream. In 2017, the results of Sescu et al.38 were indicative of
the supersonic mode in cold-wall flat plate flow, although the focus of the study was the effect of surface
deformations on boundary layer stability. A contemporary study directly focusing on the supersonic mode
was performed in 2015 by Bitter and Shepherd,24 who provided clear evidence through LST of the supersonic
mode’s existence on a cold-wall flat plate, although they neglected chemical nonequilibrium effects. Bitter
and Shepherd also demonstrated the cause of the supersonic mode was the synchronization of mode F1 with
the slow acoustic spectrum that occurred on highly-cooled walls. The following year in 2016 Chuvakhov and
Fedorov25 largely confirmed Bitter and Shepherd’s24 findings through perfect gas LST analysis as well as
unsteady DNS analysis on a flat plate, although they used different free stream conditions.

Despite the evidence presented by Bitter and Shepherd24 and Chuvakhov and Fedorov,25 it is possible
that the impact of the highly-cooled wall on the spontaneous radiation of sound may have been overstated
because chemical nonequilibrium was not accounted for. Recent theoretical results by Anatoli Tumin in
201739 and Edwards and Tumin40 indicate the spontaneous radiation of sound in flows with Tw/Te > 1.
Edwards and Tumin40 incorporated additional source terms in their mean flow equations accounting for
kinetic fluctuations in the flow, but used a perfect gas stability solver. Edwards and Tumin suggested
that these kinetic fluctuations may play a role in the creation of the supersonic mode. In addition, in
2018 Knisely and Zhong19 performed thermochemical nonequilibrium LST and DNS studies using similar
hot wall flow conditions on a 5-degree half-angle blunt cone and confirmed the existence of the supersonic
mode, although it was quite weak and was due to the interaction of mode S, mode F1, and the slow
acoustic continuous spectrum. This phenomenon may be attributed to the real gas effect and may have
been overlooked in previous simulations assuming chemical equilibrium. This study performs a more in-
depth analysis of the supersonic mode incorporating real gas effects on a blunt cone. The blunt cone is
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intended to provide more practical results compared to the flat plate used in previous studies. The goals are
to use thermochemical nonequilibrium DNS and LST analyses to: (1) Determine the characteristics of the
supersonic mode and under what conditions it exists, and (2) Examine the impact of the supersonic mode
on transition to turbulence under realistic flight or experimental conditions.

II. Simulation Conditions

The flow conditions for this study are summarized in Table 1 and are intended to be similar to those
used by Edwards and Tumin.40 The geometry is a 5 degree half-angle axisymmetric blunt cone 1 meter in
length with a nose radius of 1 mm. The DNS simulations used 256 points in the wall-normal direction and
roughly 5 points per millimeter on the surface of the cone in the streamwise direction. In the azimuthal
direction, four points are used. LST simulations interpolated the DNS meanflow onto the LST grid defined
by the stretching methods discussed in the following sections.

Table 1. Flow conditions for DNS simulations.

Parameter Case 1 Case 2

M∞ 10 10

H0,∞ 14.78 MJ/kg 14.78 MJ/kg

ρ∞ 1.91 E-2 kg/m3 1.91 E-2 kg/m3

p∞ 4 kPa 4 kPa

Tw 1000 K 300 K

Tw/T∞ 1.43 0.43

As will be explained in the following sections, the DNS code used in this study utilizes a shock-fitting
method. Thus, the parameters in Table 1 are the free stream conditions upstream of the shock formed over
the body.

III. Governing Equations and Gas Model

The governing equations for the DNS and LST codes are those developed by Mortensen and Zhong,41–46

which are formulated for thermochemical nonequilibrium assuming a two-temperature model. Their formu-
lation is highlighted here for clarity. The rotational mode is assumed to be fully excited with up to eleven
non-ionizing species with finite-rate chemistry. Two-temperatures are used to represent translation-rotation
energy and vibration energy. There are two species models: an eleven-species model (N2, O2, NO, C3, CO2,
C2, CO, CN, N, O, C) used for ablation studies and a five-species model (N2, O2, NO, N, and O) used to
simulate air. The five species model is used here. The Navier-Stokes equations in conservative form consist of
five species mass conservation equations, three momentum conservation equations, the total energy equation,
and the vibration energy equation. The governing equations in vector form are written as

∂U

∂t
+
∂Fj
∂xj

+
∂Gj
∂xj

= W (3)

where U is the state vector of conserved quantities, W is the source terms, and Fj and Gj are the inviscid
and viscous flux vectors, respectively. For further details of the governing equations and thermochemical
model, see the work of Knisely and Zhong19,47 and Mortensen.46

IV. Numerical Methods

A. DNS

The thermochemical nonequilibrium code developed by Mortensen and Zhong41–46 utilizes a high-order
shock-fitting method extended from a perfect gas flow version by Zhong48 to compute the flow field between
the shock and the body. The numerical method is summarized here for clarity. For shock-fitting computations
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the shock location is not known a priori, so its position is solved along with the flow field. Since the shock
position is not stationary, the grid used to compute the flow field is a function of time. The Navier-Stokes
equations are transformed into computational space

1

J

∂U

∂τ
+
∂E′

∂ξ
+
∂F ′

∂η
+ +

∂G′

∂ζ
+
∂E′v
∂ξ

+
∂F ′v
∂η

+ +
∂G′v
∂ζ

+ U
∂(1/J)

∂τ
=
W

J
(4)

where J is the Jacobian of the coordinate transformation. Further details of this transformation can be
found in Knisely and Zhong19,47 and Mortensen.46 A seven point stencil is used to discretize the spatial
derivatives

∂fi
∂x

=
1

hbi

3∑
k=−3

αi+kfi+k −
α

6!bi
h5

(
∂f6

∂6x

)
(5)

where h is the step size, α < 0 is a fifth order upwind explicit scheme, and α = 0 reduces to a sixth order
central scheme. Here the inviscid terms use α = −6 which yields a low dissipation fifth order upwinded
difference and the viscous terms are discretized using α = 0. The derivatives in the transverse direction,
if required, are treated with Fourier collocation. To compute second derivatives, the first order derivative
operator is applied twice. Flux splitting is used for the inviscid flux terms with the eigenvalues of Λ for
thermochemical nonequilibrium derived by Liu and Vinokur.49

Conditions behind the shock are calculated from Rankine-Hugoniot relations. In the free stream, the
flow is assumed to be in thermal equilibrium and the chemical composition of the flow is frozen. The shock
is assumed to be infinitely thin which means that the flow has no time to relax as it crosses the shock as
relaxation rates are finite. This leads to the chemical composition remaining constant across the shock, as
well as the vibration temperature. Since neither process has any time to relax across the shock, the relaxation
zone is entirely downstream of the shock. A complete derivation of thermochemical nonequilibrium shock
fitting can be found in Prakash et al.50 A low storage 3rd-order Runge-Kutta method from Williamson51 is
used to advance the solution in time.

B. LST

The linear stability analysis used here is largely based on the LST code developed by Mortensen,46 however
here the assumption of zero wall-normal velocity is relaxed (i.e. v 6= 0), and freestream boundary conditions
incorporating a shock at the computational boundary are used. Mortensen’s46 original LST code has been
verified against the work of Hudson,52 and the modified LST code has been verified by Knisely and Zhong.47

The LST equations are derived from the governing equations (Eq. 3) where the instantaneous flow is
comprised of a mean and fluctuating component q = q + q′. Here q represents any flow variable such as
velocity, density, temperature, etc. The instantaneous flow is then substituted into the governing equations
where the steady flow is assumed to satisfy the governing equations and is subtracted out. The mean flow
is assumed to be a function of y only i.e. q(x, y, z) = q(y) and the flow disturbances are assumed to be
small i.e. linear. The perturbations are then assumed to be in the form of a normal mode described by
q′ = q̂(y) exp [i (αx+ βz − ωt)], where ω is the circular frequency of the disturbance and α and β are the
wavenumbers. For comparison to direct numerical simulation the spatial stability approach is used i.e. α is
complex which results in the dispersion relation α = Ω(ω, β). Substituting in the normal mode form for the
perturbation reduces the problem to a coupled set of ns+ 5 ordinary differential equations(

A
d2

dy2
+ B

d

dy
+ C

)
~φ = ~0. (6)

where ~φ =
[
ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂ , T̂V

]T
and A, B and C are complex square matrices of size ns+5. This

is now a boundary value problem where the derivative operators can be discretized and the equations solved
numerically.

For hypersonic compressible boundary layers it is important to have high grid resolution near the general-
ized inflection point.4 The grid used by Mortensen46 uses two different functions to cluster points around the
inflection point and near the wall. It is called the cosine-exponential grid. In hypersonic flows in which the
spontaneous radiation of sound occurs, the cosine-exponential grid may not provide enough grid resolution
in the free stream or near the outer shock boundary. The continuous modes oscillate to the computational
boundary in many cases. Therefore, it is helpful to use an additional exponential grid stretching function
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at the edge of the computational boundary. This second exponential grid stretching function gave better
grid spacing in the freestream and clustered points near the edge of the computational boundary,47 which is
desirable when a shock coincides with the boundary. The cosine-double-exponential grid retains the benefits
of capturing the sharp increases in eigenfunctions at the wall and at the generalized inflection point, while
adding additional resolution in the freestream and near the outer edge boundary.

With the grid defined, Eq. 6 can be transformed into computational space and a numerical representation
of the derivatives can be given. The first and second derivative operators in the wall-normal direction are
discretized by taking derivatives of Lagrange polynomials in physical space. Here, a five-point stencil is used,
resulting in a 4th order method similar to the one used by Malik.11

After discretization, nonlinearities exist in α so the global method suggested by Malik11 is used to compute
the eigenvalue spectrum with α2 = 0. This method computes the eigenvalues from a generalized eigenvalue
problem Ã~φ = αB̃~φ where the LAPACK53 subroutine ZGGEV is used here for solution. From the eigenvalue
spectrum an initial guess can be obtained for the local method which results in A~φ = B and the eigenvalue
is found iteratively without dropping the α2 terms. The LAPACK subroutine ZGESV is used to solve the
local problem. It is also possible to avoid the computationally intensive global method and obtain an initial
guess for α from a nearby streamwise location or a DNS simulation assuming the unsteady DNS results are
available.

The boundary conditions are required for the freestream and the wall. The wall boundary conditions are
linearized non-catalytic conditions for density, no slip, and zero temperature perturbation, although more
complex surface boundary conditions can be used for ablation studies.42,46 In the freestream, the shock
boundary conditions developed by Knisely and Zhong47 were used.

LST gives information about what disturbance frequencies are unstable and the corresponding growth
rates of those frequencies, but there is no information on the amplitude of the incoming disturbance. To
estimate boundary-layer transition using LST, the eN transition criterion is used which is defined as

eN =
A(s)

A0
= exp

[∫ s

s0

−αi(s, f)ds

]
(7)

where A(s) is the integrated disturbance amplitude, A0 is the initial disturbance amplitude, s0 is the location
where the disturbance first becomes unstable, and αi is the spatial amplification rate obtained from LST. The
integration is performed for a constant frequency f , and is done numerically using trapezoidal integration.
Note that a negative imaginary part of the wave number α results in disturbance growth while a positive
value results in disturbance decay. The N-factor is specifically the exponent of eN . In-flight transition
N-factors are commonly understood to be around 10. Malik21 showed that 9.5 and 11.2 correlated with
transition onset for two high Mach number flight tests. In ground test facilities the transition N-factor is
usually lower.

V. Steady DNS Results

A. Case 1 Steady DNS Results

Steady DNS translation-rotation temperature, vibration temperature, and mass fraction contours for the
nose region of the cone in Case 1 are shown in Fig. 3. The upper half of Fig. 3a is translation-rotation
temperature, T , and the lower half is vibration temperature, TV . Fig. 3a indicates the flow is in thermal
nonequilibrium in the nose region. Similarly, the mass fraction of N2 and O2 are shown in the upper and
lower halves of Fig. 3b, respectively. Fig. 3b indicates the flow is in chemical nonequilibrium. Specifically,
O2 dissociation is the predominant reaction in this flow field, whereas N2 does not dissociate as severely.
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(a) (b)

Figure 3. Case 1 (Hot Wall) Steady flow field contours in nose region. (a) Upper half: T . Lower half: TV . (b)
Mass fraction of N2 (upper half) and O2 (lower half).

Farther downstream, the nonequilibrium effects weaken, however there is still significant vibrational and
chemical effects. Fig. 4 shows the boundary layer profiles for temperature, vibration temperature, tangential
velocity, and species density of N2 and O2 at a streamwise distance from the stagnation point of s = 0.4
m. Hereafter, y denotes the wall-normal distance. Due to the cold wall, the boundary layer is relatively
thin in relation to the flow domain. The mean flow does not reach thermal equilibrium in the free stream,
and the species densities of N2 and O2 species vary in the free stream, thus demonstrating the necessity of
accounting for nonequilibrium effects in these types of flows.

(a) (b)

Figure 4. Case 1 (Hot Wall) mean flow boundary layer profiles at s = 0.4 m. (a) u, T , and TV . (b) Species
density ρs of N2 and O2 species. u denotes the component of velocity tangential to the surface of the cone. y
is the wall normal distance.
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B. Case 2 Steady DNS Results

The steady DNS translation-rotation temperature, vibration temperature, and mass fraction contours for
the nose region of the cone for Case 2 are shown in Fig. 5. Similar nonequilibrium effects occur in Case 2 as
in Case 1 because only the wall temperature is varied. Fig. 5a indicates the flow is in thermal nonequilibrium
in the nose region, and Fig. 5b indicates the flow is in chemical nonequilibrium. Again, O2 dissociation is
the predominant reaction in this flow field, whereas N2 does not dissociate as severely.

(a) (b)

Figure 5. Case 2 (Cold Wall) Steady flow field contours in nose region. (a) Upper half: T . Lower half: TV .
(b) Mass fraction of N2 (upper half) and O2 (lower half).

Farther downstream, the boundary layer profiles (Fig. 6) indicate that Case 4 is in thermal nonequilibrium
in the free stream, similar to the previous case. However, the species density of N2 and O2 appear to change
in magnitude much more than in Case 1, suggesting chemical effects play a larger role near the wall due to
the cold wall in Case 2.
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(a) (b)

Figure 6. Case 2 (Cold Wall) mean flow boundary layer profiles at s = 0.4 m. (a) u, T , and TV . (b) Species
density ρs of N2 and O2 species. u denotes the component of velocity tangential to the surface of the cone. y
is the wall normal distance.

VI. LST Results

For both Case 1 and Case 2 the freestream values used in nondimensionalizing the LST results were

u∗∞ = 5.303E + 03 m/s, ρ∗∞ = 1.991E − 02 kg/m3, µ∗∞ = 3.320E − 05 kg m/s.

where the nondimensional phase speed is defined as cr =
(ω∗/u∗∞)√
β2+α2

r

, where ω∗ = 2πf is the dimensional

circular frequency and u∗∞ is the free stream velocity upstream of the shock.

A. Case 1 LST Results

Linear Stability Theory (LST) calculations for Case 1 were performed by Knisely and Zhong;19 some im-
portant results are highlighted here. The phase speed and growth rate curves for f = 600 kHz are shown
in Figure 7. LST predictions indicated a stable mode F1 and an unstable mode S for Case 1, meaning that
there was no supersonic mode expected because the mode S phase speed does not go below the slow acoustic
wave speed cr = 1− 1/M∞.
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(a) (b)

Figure 7. Case 1 (Hot Wall) LST phase speed and growth rate for Modes F1, F2, and S at f = 600 kHz. (a)
Phase Speed. (b) Growth Rate.

For a complete picture of the second mode, the stability of mode S for a range of frequencies over the
entire length of the cone was computed, resulting in the neutral stability map for mode S (Figure 8a). The
neutral stability map indicates the locations and frequencies at which mode S is unstable. The region of
instability of the second mode is the area inside the thick black curve. At the lowest frequencies and near the
nose of the cone (left-hand side of Figure 8a), the numerical solver is not stable and a physical solution is not
obtained. The maximum growth rate occurs at approximately s = 0.24 m at a frequency of f = 840 kHz.
Because mode S is the unstable mode for these conditions, there can exist higher modes that are amplified.
Specifically, the third mode amplification is apparent in the upper right corner of Figure 8a. The third mode
is amplified after the synchronization of mode F2 with mode S, however this amplification is not sufficient to
make the third mode unstable. The second mode is significantly more amplified, and is the predicted cause
of transition. To relate the mode S instability to empirical estimates of transition to turbulence, the N-factor
curve was calculated, shown in Figure 10b. A maximum N-factor of approximately 6 due to a frequency of
f = 475 kHz is achieved by the end of the 1 m long cone.

11 of 24

American Institute of Aeronautics and Astronautics



(a) Neutral stability map for mode S. Dashed lines indicate
negative growth rates. Thick black line indicates points of
neutral stability.

(b) N-factor for unstable second mode frequencies. Frequen-
cies are in increments of ∆f = 25 kHz. The green line is an
approximation of the edge of the N-factor curve.

Figure 8. Case 1 (Hot Wall) LST Stability Results. (a) Neutral Contour. (b) N-factor curve.

B. Case 2 LST Results

The phase speed and growth rate curves for Case 2 at f = 700 kHz are shown in Figure 9. LST predictions
indicate a stable mode F1 and an unstable mode S for Case 2, similar to Case 1. Again, this means that
there is no supersonic mode expected because the mode S phase speed does not go below the slow acoustic
wave speed cr = 1− 1/M∞.

(a) (b)

Figure 9. Case 2 (Cold Wall) LST phase speed and growth rate for Modes F1, F2, and S at f = 600 kHz. (a)
Phase Speed. (b) Growth Rate.

The neutral stability map for mode S (Figure 10a) was computed for Case 2. Due to the cold wall
destabilizing mode S, the third mode is actually unstable in Case 2, while it was stable in Case 1. However,
the third mode amplitude is significantly weaker than the second mode, and therefore the second mode is
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still the predicted cause of transition. The region of instability of the second and third modes are the areas
inside the thick black curves. The maximum growth rate occurs at approximately s = 0.25 m at a frequency
of f = 860 kHz.

(a) Neutral stability map for mode S. Dashed lines indicate
negative growth rates. Thick black line indicates points of
neutral stability.

(b) N-factor for unstable second mode frequencies. Frequen-
cies are in increments of ∆f = 50 kHz. The green line is an
approximation of the edge of the N-factor curve.

Figure 10. Case 2 (Cold Wall) LST Stability Results. (a) Neutral Contour. (b) N-factor curve.

VII. Unsteady DNS Results

To study stability using DNS, it is required that the meanflow be perturbed in order to study the growth,
or decay, of the perturbation. Here, the flow is perturbed with a suction/blowing slot at the cone surface.
The equation for the mass flux of the slot is

ρv(x, t)′w = εb(ρu)∞ exp

{
− (t− µb)

2σ2
b

}
sin

{
2π(x− xb)

lb

}
(8)

where lb is the length of the slot, xb is the center of the slot measured from the leading edge of the cone, εb
scales the function, µb shifts the Gaussian component to avoid negative times, and σb adjusts the spectral
content of the function. Notice the time dependent Gaussian portion of the function. When transformed to
frequency space, this yields a continuous range of frequencies with non-zero amplitudes making this particular
approach for perturbing the meanflow an effective strategy when studying a wide range of frequencies.

The parameters for the unsteady pulse, given by Equation 8, are summarized in Table 2. The Gaussian
pulse and its Fourier transform (Figure 11) show the majority of the frequency content of the pulse is below
1.2 MHz. The same pulse parameters are used for Case 1 and Case 2.

Table 2. Gaussian pulse parameters for unsteady DNS

εb µb σb xb lb

1E − 4 3E − 6 3E − 7 0.1m 0.002m
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(a) (b)

Figure 11. Gaussian pulse for unsteady DNS. (a) Nondimensional mass flux amplitude. (b) Frequency content
of pulse.

A. Case 1 Unsteady DNS Results

The evolution of the Gaussian pulse in Case 1 is visualized in Figure 12 using snapshots in time of contours
of the pressure perturbation normalized by the local meanflow pressure (∆p

p ). The same value at the surface
of the cone is included to more clearly visualize the growth of disturbances. The traditional second mode
growth can be seen in Figure 12a between to x = 0.65 and x = 0.7 m. However, contrary to the LST
predictions, the start of the spontaneous radiation of sound appears in Figure 12a for x < 0.65 m. When the
pulse travels farther downstream, the spontaneous radiation of sound becomes much more apparent, shown
in Figure 12b. In particular, the sound radiation is shown very clearly between x = 0.73 m and x = 0.87 m.
Further Fourier decomposition analysis is required to determine whether or not this sound radiation is an
artifact of the supersonic mode.
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(a)

(b)

Figure 12. Case 1 (Hot Wall) snapshots in time of pressure perturbation ∆p/p contours and surface pressure
perturbation from Gaussian pulse. ∆t = 5.246 E-5 seconds.
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An FFT was performed on the time-history of the surface pressure perturbation at all streamwise loca-
tions, resulting in the contour map in Figure 13a. This contour shows the most unstable excited frequencies
due to the Gaussian pulse. The neutral stability curve predicted by LST from Figure 8a is overlayed in
Figure 13a for comparison. The most amplified frequency from the Gaussian pulse is approximately f = 475
kHz and appears most prominently for s > 0.95 m. This result agrees remarkably well the the N-factor
results from LST. The FFT results follow the LST predictions reasonably closely despite the absence of the
radiation of sound in the LST results. It is likely that the amplitude of the supersonic mode is relatively
weak in this flow, and the traditional second mode is the dominant instability.

It is useful to compare the FFT results to those obtained by Chuvakhov and Fedorov25 for a cold-wall flat
plate. Although the wall temperature ratio and blowing/suction slot are different than the current study,
similar trends are observed for their supersonic mode. The Fourier transform of the unsteady pressure
perturbation vs frequency for fixed streamwise locations is shown in Figure 13b. Near the blowing/suction
actuator (s ≤ 0.201 m), the curve shape is similar to a bell curve. However, as the pulse travels downstream,
the frequency content shifts and becomes asymmetrical. At each location s ≥ 0.252 m, there is a dominant
peak with at least one smaller amplitude peak occurring at a higher frequency than the dominant frequency.
Chuvakhov and Fedorov25 also obtained similar results for their study, in which they noted that rather than
the typical bell-shaped curves, multiple peaks are formed. Chuvakhov and Fedorov25 observed three peaks
at most in their FFT, which largely agrees with the results presented in Figure 13b.

(a) Fourier transform of unsteady surface pressure perturba-
tion time history of Gaussian pulse. The black line is the
neutral curve predicted by LST.

(b) Fourier transform of unsteady surface pressure perturba-
tion time history of Gaussian pulse as a function of frequency
for various streamwise locations s.

Figure 13. Case 1 (Hot Wall) FFT of unsteady surface pressure perturbation. (a) Contour map representation.
(b) FFT amplitude as a function of f .

It is possible to determine the growth rate and phase speed of an unsteady disturbance in DNS. The
Fourier decomposed perturbation variables can be used to reconstruct the perturbation flow field via

φ′(x, y, t) = ∆φ(x, y) exp [i(ψ(x, y)− 2πft)] (9)

where φ′ is the perturbation of some variable, ∆φ is the amplitude of that variable, ψ is the corresponding
phase angle, and f represents a single dimensional frequency. The response of the entire flow field for a
particular frequency as a result of the unsteady pulse can be given directly by Equation 9, provided FFT
data is available for all data points in the flow field.

The FFT of the entire flow field was performed and is shown in Figure 14 for 700 kHz. There is a
clear extension of the disturbance outside of the boundary layer, which is typical of the supersonic mode.
The onset of the radiation into the free stream for f = 700 kHz is near x = 0.35 m. For the f = 700 kHz
frequency, there is a clear amplification in the freestream for x > 0.7 m while there is very little amplification
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near the wall in this region.

Figure 14. Case 1 (Hot Wall) FFT of unsteady pressure perturbation at all points in the flow field for f = 700
kHz.

Multiple boundary layer modes are present simultaneously in DNS, however as one mode becomes dom-
inant, it is possible to derive growth rate, wave number, and phase speed equations for a given frequency f
from Equation 9, resulting in

−αi =
1

∆φ(f)

d

ds
∆φ(f) (10)

αr =
d

ds
ψ(f) (11)

cr =
2πf

αr
(12)

where s is the streamwise coordinate, ∆φ(f) represents a variable amplitude frequency f , and ψ(f) repre-
sents the corresponding phase angle at frequency f . Similar to previous researchers,54 the surface pressure
perturbations from DNS are used to compute −αi and cr.

The phase speed and growth rate calculated from DNS is compared to the LST predictions for a frequency
of f = 700 kHz in Figure 15. The DNS matches the LST predictions reasonably well, with a few areas of
exception. The DNS and LST mode S results are similar in the region 0.35 < s < 0.4 m due to mode S
being the dominant mode, although the DNS phase speed is slower than predicted by LST, and the DNS
growth rate is larger than predicted by LST. Downstream of s = 0.45 m, the DNS results oscillate about
the LST mode S predictions for both phase speed and growth rate. This oscillatory behavior is the result
of multiple modes existing simultaneously in the DNS simulation that are ignored in LST. However, the
agreement between DNS and LST is still strong considering the largely different methods used to obtain the
results.

This extension of the disturbance into the freestream is typical of the supersonic mode. However, upon
closer inspection of the growth rate, phase speed, and eigenfunctions of the DNS results, it is apparent that
the dominant mode S is not the cause of the sound radiation. Rather, it is the collective interaction of mode
S, mode F1, and the slow acoustic spectrum that causes the supersonic mode in this case.
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(a) (b)

Figure 15. Case 1 (Hot Wall) comparison of DNS to LST phase speed and growth rate at f = 700 kHz. (a)
Phase speed, cr. (b) Growth rate, −αi.

As Knisely and Zhong19 have noted, there is a modal energy exchange causing a resonant amplification
of the stable mode F1 disturbance. This interaction acts as a source term and causes sound to radiate away
from the wall. The sound radiation outside of the boundary layer continues to travel downstream and its
amplitude becomes slowly damped. Near the wall, however, the resonant interaction quickly ceases, mode F1
is stable, and mode S becomes stable as well, causing the disturbance amplitude to decrease. This scenario
would explain the sound radiation in the freestream and the decay of the perturbation at the wall observed
in Figure 14. This type of modal interaction is indeed very similar to the creation of the supersonic mode,
however it is not predicted by LST because of the assumption that each mode acts independently. In the
creation of the supersonic mode, the discrete mode undergoes significant modulation and can be predicted
by LST. However, the discrete mode S does not have a supersonic phase speed (cr < 1− 1/M∞) and mode
F1 is predicted to be stable by LST. Therefore, because the supersonic mode in this flow is the result of the
interaction of modes, it is not expected that the radiation of sound will be apparent in the LST results. To
investigate the relative contribution of each mode to the DNS disturbance, a multimode decomposition using
methods and tools developed by Gaydos and Tumin55 and Miselis, Huang, and Zhong56 must be performed.

B. Case 2 Unsteady DNS Results

Similar to Case 1, the evolution of the Gaussian pulse in Case 2 is visualized in Figure 16 using snapshots in
time of contours of ∆p

p with the same value at the surface of the cone. The traditional second mode growth can
be seen in Figure 16a between to x = 0.71 and x = 0.77 m. However, again contrary to the LST predictions,
the start of the spontaneous radiation of sound appears in Figure 16a for x < 0.71 m. When the pulse travels
farther downstream, the spontaneous radiation of sound becomes much more apparent, shown in Figure 16b.
In particular, the sound radiation is shown very clearly between x = 0.7 m and x = 0.95 m. The magnitude
of the surface pressure perturbation in this region of sound radiation is actually larger than the traditional
supersonic mode (x > 0.95 m), which is not observed in Case 1. Further Fourier decomposition analysis is
required to determine whether or not this sound radiation is an artifact of the supersonic mode.
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(a)

(b)

Figure 16. Case 2 (Cold Wall) snapshots in time of pressure perturbation ∆p/p contours and surface pressure
perturbation from Gaussian pulse. ∆t = 5.181 E-5 seconds.
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An FFT was performed on the time-history of the surface pressure perturbation at all streamwise loca-
tions, resulting in the contour map in Figure 17a. The neutral stability curve predicted by LST from Figure
10a is overlayed in Figure 17a for comparison. The FFT contour generally follows the LST prediction,
however the FFT shows streaky behavior with certain frequencies being amplified significantly more than
their neighboring frequencies. It is possible that this selective frequency amplification is an artifact of the
supersonic mode, as suggested by Chuvakhov and Fedorov.25 Indeed, when visualizing the FFT data vs.
frequency for fixed streamwise locations (Figure 17b), there appear multiple peak frequencies for each fixed
streamwise location, just as observed by Chuvakhov and Fedorov.25

(a) Fourier transform of unsteady surface pressure perturba-
tion time history of Gaussian pulse. The black line is the
neutral curve predicted by LST.

(b) Fourier transform of unsteady surface pressure perturba-
tion time history of Gaussian pulse as a function of frequency
for various streamwise locations s.

Figure 17. Case 2 (Cold Wall) FFT of unsteady surface pressure perturbation. (a) Contour map representation.
(b) FFT amplitude as a function of f .

The FFT of the entire flow field was performed and is shown in Figure 18 for 500 kHz. There is a clear
amplification in the freestream for x > 0.7 m, while there is still some amplification near the wall in this
region, as opposed to the disturbance near the wall decaying in Case 1. This indicates a longer region of
sound radiation in Case 2 than Case 1.

Figure 18. Case 2 (Cold Wall) FFT of unsteady pressure perturbation at all points in the flow field for f = 500
kHz.

The phase speed and growth rate calculated from DNS are compared to the LST predictions for a
frequency of f = 500 kHz in Figure 19. The DNS matches the LST predictions reasonably well for 0.4 < s <
0.75 m, with significant oscillations in both phase speed and growth rate for s < 0.4 m and s > 0.75 m. In
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the region 0.4 < s < 0.75 m, the DNS growth rate and phase speed are similar to the LST mode S growth
rate and phase speed. However, downstream of s = 0.75 m, the DNS phase speed continues to follow the
supersonic mode F1 phase speed, rather than the dominant mode S. This type of situation is atypical. There
are multiple competing modes in DNS, however there is usually a single dominant mode in this region of
instability. In this particular case, the resonant interaction between mode S, mode F1, and the slow acoustic
spectrum is strong enough to cause mode F1 to become the dominant instability over mode S. Therefore, the
DNS phase speed and growth rate oscillations for s > 0.75 m are centered about the supersonic (yet stable
according to LST) mode F1. This region of supersonic disturbance propagation causes the sound radiation
observed in Figures 16 and 18.

(a) (b)

Figure 19. Case 2 (Cold Wall) comparison of DNS to LST phase speed and growth rate at f = 500 kHz. (a)
Phase speed, cr. (b) Growth rate, −αi.

Again, similar to Case 1, there is a modal energy exchange causing a resonant amplification of the stable
mode F1 disturbance which acts as a source term and causes sound to radiate away from the wall. However,
in Case 2 the amplification of mode F1 is significantly greater than Case 1, causing this brief supersonic
mode to actually have higher magnitude than the traditional second mode. The higher magnitude of the
supersonic mode is attributed to the colder wall in Case 2. Such a high magnitude resonant amplification has
not yet been observed and requires further in depth study. While the conclusion for Case 2 is that a resonant
tri-modal interaction between mode F1, mode S, and the slow acoustic spectrum causes the supersonic mode,
it is reasonable to suggest this as the mechanism for the creation of the supersonic mode in general.

VIII. Summary and Conclusions

The flow conditions considered here induced significant thermochemical nonequilibrium in the flow down-
stream of the stagnation point for both the hot and cold wall cases. For both Case 1 (Hot Wall) and Case 2
(Cold Wall), the LST results indicate that mode S is the unstable mode, and therefore no supersonic mode
was expected to exist. However, unsteady DNS results of both cases did indicate the presence of sound
radiation away from the wall despite LST predicting mode F1 to be stable and mode S to be subsonic.
Further FFT analysis indicated that this sound radiation was not due to the dominant mode S directly,
but was actually due to the interaction of mode S and mode F1 with the slow acoustic spectrum; a subtle
but important distinction. Because mode S is stable and subsonic when this interaction occurs, most LST
solvers will not predict the radiative behavior and could affect boundary layer transition prediction. Case 2
exhibited a significantly higher magnitude supersonic mode than Case 1, which was attributed to the colder
wall. Surprisingly, the supersonic mode in Case 2 (Cold Wall) actually had a higher magnitude than the
traditional second mode and could impact transition unexpectedly if not accounted for. Overall, however,
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the results are consistent with previous research24 showing that a colder wall produces a stronger supersonic
mode. In both the hot and cold wall cases, the radiated sound from the wall may have an impact on the
stability of the boundary layer, and it is possible the sound radiation acts as an energy sink for the second
mode, as suggested by Chuvakhov and Fedorov.25 Transition prediction tools such as the eN method should
be used with caution when applied to hypersonic boundary layers with the spontaneous radiation of sound.
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