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ABSTRACT
There has been renewed interest in supersonic modes in hypersonic boundary layers, which have been previously thought to
be insignificant due to their smaller amplitudes than Mack’s traditional second mode. Supersonic modes are associated with an
unstable second mode synchronizing with the slow acoustic spectrum, causing sound to radiate outwards from the boundary
layer. Because supersonic modes have not been observed experimentally, the majority of previous investigations either relied on
Linear Stability Theory (LST) to study supersonic modes on a flat plate or observed them in the context of other research objec-
tives. This two-part study uses a combined LST and Direct Numerical Simulation (DNS) approach to investigate the mechanism
of supersonic modes in Mach 5 flow over a blunt cold-wall cone with thermochemical nonequilibrium effects. Paper I focuses on
LST with new shock boundary conditions, whereas Paper II [C.P. Knisely and X. Zhong, “Sound radiation by supersonic unstable
modes in hypersonic blunt cone boundary layers. II. Direct numerical simulation,” Phys. Fluids 31, 024104 (2019)] focuses on DNS
with the overall goal of investigating the impact of supersonic modes on transition. LST results indicate that supersonic modes
exist in the flow with wall-to-free-stream temperature ratio Tw/T∞ = 0.2 and create an abnormal growth pattern. However,
supersonic modes were not shown to exist using LST in the case with Tw/T∞ = 0.667. Subsequent DNS analysis in Paper II shows
supersonic modes in the Tw/T∞ = 0.667 case, although they are significantly weaker than the second mode and are unlikely to
lead to transition. Understanding the mechanism of supersonic modes can yield more accurate transition location predictions
leading to improved estimates for drag and heat transfer to the vehicle.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5055761

I. INTRODUCTION
It has long been known that boundary layer transition

from laminar to turbulent has a considerable impact on the
design of hypersonic vehicles.1–3 Transition to turbulent flow
drastically increases drag and heating to the vehicle surface
and can have a prominent effect on control of the hyper-
sonic vehicle. It also affects engine performance and operabil-
ity as well as vehicle structure and weight. The heating to the
vehicle surface is one of the primary considerations in hyper-
sonic vehicle design. Thermal protection systems (TPSs) are
required to prevent the surface of the vehicle from overheat-
ing and failing. TPSs are usually specified with a large factor of
safety to ensure protection of the vehicle, although this often

adds unnecessary weight, reducing the maximum payload. The
ability to predict accurately or even to delay the onset of tran-
sition and to maintain laminar flow can have a significant pay-
off in terms of the reduction in aerodynamic heating, higher
fuel efficiency, and weight of the thermal protection system.

Mack4 found that the major instability waves leading to
transition to turbulence in hypersonic flow are the first and
second modes, although it should be noted that these instabil-
ities are not distinctive modes in the mathematical definition.5
For a linear disturbance in a variable q, its perturbation can be
described by

q′ = q̂(y) exp[i(αx + βz −ωt)], (1)
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where q̂(y) is the eigenfunction, ω is the circular frequency
of the disturbance, and α and β are the wavenumbers. For a
2D disturbance, β = 0. Commonly, ω and β are assumed to be
real and the wavenumber α is assumed to be complex, which
means that the disturbances grow in space, resulting in a spa-
tial stability analysis. If ω is complex and α and β are real,
then the disturbances grow in time, resulting in a temporal
stability analysis. When ω is real, the speed of the disturbance
propagation in space is related to the real component of the
wavenumber via the phase speed, cr = ω/αr, with the neg-
ative of the imaginary component representing the growth
rate. Therefore, for a neutral disturbance all wavenumbers are
real.

Assuming neutral instabilities, the second mode has been
visualized as acoustic rays physically trapped between the
wall and the sonic line by Morkovin6 in 1987, Mack7 in 1990,
Reshotko1 in 1991, and later by Fedorov3 in 2011. Mack7 also
noted that the second mode (and higher acoustic modes) is
present, whenever there is a region of local supersonic flow
relative to the phase speed of the instability wave between the
wall and the relative sonic point. It is instructive to examine
a schematic for the second mode with acoustic-like behav-
ior for comparison to 2D Linear Stability Theory (LST) and
Direct Numerical Simulation (DNS) contours. An illustration
similar to Morkovin’s,6 Mack’s,7 Reshotko’s,1 and Fedorov’s,3
which assumes the large wavenumber limit of a neutral mode,
is shown in Fig. 1. However, for non-neutral second mode
waves, the physical picture is less obvious,7 although one
would expect a qualitatively similar physical illustration for
weakly non-neutral waves despite being quantitatively dif-
ferent. Including the imaginary component of the wavenum-
ber can be thought of as a damping effect. The develop-
ment of such a visualization of the second mode requires the
understanding of the role of the sonic line in the hypersonic
boundary layer stability equations.

A useful parameter describing the speed of propagation of
the disturbance relative to the mean flow is the complex local
relative Mach number

M(y) =
u(y) − c
a(y)

, (2)

where u(y) is the local mean flow velocity tangential to the
wall, c = ω/α is the complex disturbance propagation speed
with ω being the circular frequency, α is the streamwise
wavenumber, and a(y) is the local mean flow speed of sound.
The real component of the phase speed is denoted as cr. The
local relative Mach number appears in the nondimensional
stability equations, as presented by Mack4 in his Eq. (9.8),
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where D = d/dy, v̂ is the wall-normal velocity complex eigen-
function, α̃Ũ = αU + βW, where α and β are the stream-
wise and spanwise complex wavenumbers, respectively, and U
and W are the streamwise and spanwise mean flow velocities,
respectively, α̃2 = α2 + β2, and ω is the complex frequency.

Taking the large wavelength limit of Eq. (3) allows for
an analytical solution to be obtained by the WKB method.4
Making this simplification results in Mack’s4 Eq. (9.16),

D2
[
v̂/(α̃Ũ −ω)

]
− α̃2(1 −M

2
)
[
v̂/(α̃Ũ −ω)

]
= 0. (4)

It must be noted that Mack’s4 original Eq. (9.16) included a
typo and should not be copied directly. From Eq. (4), it is clear
that there is a turning point as |M | increases past unity. The
solution of the second order ordinary differential equation
(ODE) changes its behavior at the turning point, resulting in
the different nature of the solution depending on the value
of M. However, it must be noted that the second mode actu-
ally does not strictly satisfy Eq. (4) due to the limiting case
assumption of a large α̃2 wavenumber.8 For a finite wavenum-
ber, the extra first derivative term appears in Eq. (3). In the
limit of large wavenumber, the simplified Eq. (4) becomes
exact for the second mode; however, in reality it is only
approximate.

The relative sonic line, or turning point (denoted here as
ys), described by Morkovin,6 Mack,7 Reshotko,1 and Fedorov3

FIG. 1. Visualization of neutral second
mode similar to Morkovin’s,6 Mack’s,7

Reshotko’s,1 and Fedorov’s3 assuming
a large wavenumber. The sonic line is
denoted by M(ys) = −1, and the criti-
cal layer is by M(yc) = 0. The reflec-
tion at the sonic line changes waves
from compression to expansion and vice
versa.
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for a neutral mode is then given by M(ys) = −1 or c
= u(ys) + a(ys) in Fig. 1. More generally, the relative sonic line
can be defined as any location where the magnitude of the
real component of the relative Mach number is equal to unity,
i.e., |Real(M) | = 1. Near the wall, the disturbance is propagating
downstream supersonically (M < −1) with respect to the local
mean flow velocity. In this region where M < −1, the solu-
tion to the stability equations is acoustic-like, resulting in the
acoustic disturbance waves trapped by the wall with the rela-
tive sonic line acting as a wave guide in the large wavenumber
limit. Outside of the M = −1 turning point at y = ys, the distur-
bance is traveling subsonically with respect to the free stream
and creates a “rope-like” wave pattern observed by many
researchers both experimentally9,10 and numerically.11–13

These structures are centered about M(yc) = 0, or equiva-
lently c = u(yc), with yc denoting the critical layer. Because
the phase speed of the mode is subsonic in the freestream,
i.e., M < 1 such a mode is referred to as a subsonic mode.
The new illustration of the second mode in Fig. 1 is presented
rather than the classical schematics1,3,6,7 in preparation of a
new illustration of the supersonic mode based on the same
principles.

The nomenclature for hypersonic boundary layer insta-
bility modes has evolved throughout the decades, so it is per-
tinent to describe the first and second modes with respect to
Fedorov and Tumin’s5 contemporary notation using mode S
and mode F1 in conjunction with the continuous modes; the
fast and slow acoustic, entropy, and vorticity spectra. Mode S
and mode F1 are discrete modes that originate in the slow and
fast acoustic spectra at the leading edge of the body. That is,
mode S begins with a phase speed cr = 1 − 1/M∞ and mode F1
begins with a phase speed of cr = 1 + 1/M∞. In typical super-
sonic flows, the interaction of mode S with the slow acoustic
spectrum can cause mode S to become unstable. This first
unstable mode is referred to as Mack’s first mode and is a vis-
cous instability4 and is the compressible analog of Tollmien-
Schlichting waves. In hypersonic flows, however, due to the
increased Mach number, the viscous instability is insignificant
and can be completely stabilized. Further downstream from
the leading edge, mode S increases in phase speed while mode
F1 decreases in phase speed. Eventually mode S and mode F1
synchronize, defined here as both modes having equal phase
speeds, regardless of the growth rate. During synchronization,
one mode can become unstable, while the other is stabilized.5
Typically, mode S is the unstable mode, although under cer-
tain flow conditions mode F1 can become unstable instead.14

Regardless of which mode is unstable, Mack’s second mode
refers to the unstable mode occurring after synchronization
between mode F1 and mode S. Mack4 referred to an infi-
nite number of higher unstable modes in hypersonic flows.
Indeed, there are additional fast acoustic discrete modes that
occur farther downstream, denoted as modes F2, F3, etc.
These higher modes follow a similar pattern to mode F1 in that
they originate in the fast acoustic spectrum and decrease in
phase speed downstream. Mode F2 eventually synchronizes
phase speed with mode S (downstream of the mode F1/S

synchronization location), which can again result in an unsta-
ble mode. In general, this unstable mode is mode S and is
referred to as Mack’s third mode. Similarly, synchronization
of mode F3 with mode S can result in Mack’s fourth mode.
The third and higher modes are decreasing in amplitude from
the second mode;4 therefore, the focus of the majority of
hypersonic boundary layer transition studies is on the second
mode.

Researchers have developed numerical tools to predict
transition to turbulence due to the first and second modes.
Malik15 implemented multiple numerical methods for solv-
ing the LST equations for a perfect gas. Chemical nonequilib-
rium effects in the LST framework were studied numerically
by Stuckert and Reed.16 Hudson et al.17 incorporated thermal
nonequilibrium effects in addition to chemical nonequilibrium
for LST. Johnson et al.18–20 studied hypersonic boundary layer
transition in thermochemical nonequilibrium using the Parab-
olized Stability Equations (PSE), which account for nonparallel
flow effects that are ignored in LST. Overall, the researchers
determined that the dissociation of air species is stabilizing
to the first mode but destabilizing to the second mode. Addi-
tionally, it was determined that thermal nonequilibrium has
a slight destabilizing effect on the first mode, and a slight
stabilizing effect on the second mode.

When the traditional mode S is the unstable second mode,
its phase speed is subsonic, i.e., 1 − 1/M∞ < cr < 1 + 1/M∞.
Although most hypersonic boundary layer transition studies
have primarily focused on the second mode in which mode S
is unstable, it has been shown that when mode F1 is unsta-
ble, there can be synchronization between mode F1 and the
slow acoustic spectrum downstream of the mode F1/S syn-
chronization location.7,21 That is, the unstable second mode
(F1) can synchronize with the slow acoustic spectrum, causing
a peculiarity in the eigenvalue spectrum due to the proximity
of a discrete mode to a continuous mode. Downstream of this
synchronization with the slow acoustic spectrum, the unsta-
ble mode F1 has a supersonic phase speed, i.e., cr < 1 − 1/M∞.
When this situation occurs, the unstable mode F1 is referred
to as the supersonic mode, and it is associated with unique
features not present in traditional flows with a subsonic sec-
ond mode. Specifically, the supersonic mode is characterized
by a second region of relative supersonic flow outside of the
critical layer, resulting in the radiation of sound from the
boundary layer.

Although early studies by Mack in 198521 and 19907 and
Reshotko in 19911 came to the consensus that the super-
sonic mode was insignificant due to its smaller disturbance
amplification rate than the second mode, there has been
renewed interest in studying the supersonic mode in hyper-
sonic boundary layers due to their presence in the flow con-
ditions typical of the T5 shock tunnel at Caltech. In such
high-enthalpy shock tube experiments, the wall temperature
remains ambient during the short test duration, resulting in
a cold wall with respect to the free stream. Cold wall con-
ditions in high-enthalpy flows are also found in some real
flight cases.22,23 It has long been known through studies by
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Lees24 and Mack21,25 that wall cooling stabilizes the first mode
but destabilizes the second mode. Bitter and Shepherd26 in
2015 took these studies a few steps further and have shown
through a chemical equilibrium, thermal nonequilibrium LST
analysis that high levels of wall cooling on a flat plate lead
to unique features, in particular an unstable second mode
traveling upstream supersonically relative to the free stream.
The supersonic modes are associated with instabilities over a
wider range of frequencies than subsonic modes during which
acoustic waves radiate from the wall into the free stream. This
phenomenon has also been referred to as the spontaneous
radiation of sound by Fedorov.27,28

Despite the existence of the supersonic mode being
known since the mid-1980s by Mack7,21 and Reshotko in the
early 1990s,1 a comprehensive examination of its impact on
transition to turbulence is yet to be performed. There have
been only a few studies in which the supersonic mode’s char-
acteristics were the direct focus of the investigation. In 1997,
Chang, Vinh, and Malik29 reported supersonic modes in Mach
20 chemical nonequilibrium, thermal equilibrium flow over a
6◦ wedge with wall temperature ratio Tw/Tad = 0.1, and noted
that the stability boundary conditions in the free stream are
critical to resolving the supersonic mode due to its oscilla-
tory nature in the free stream. Additionally, they noted that
peak species perturbation coincides with the location of max-
imum chemical production in the boundary layer, and there-
fore the species eigenfunctions do not oscillate in the free
stream, whereas pressure, temperature, and velocity pertur-
bations exhibit the oscillatory behavior outside of the bound-
ary layer. Over a decade later came a resurgence of the super-
sonic mode; however, in most cases it was not the primary
focus of the study. In 2011, Fedorov et al.30 encountered unsta-
ble supersonic modes in flow with resonating micro-cavities
on a flat plate. Wagnild31 observed the spontaneous radiation
of sound in 2012 on a 5◦ half-angle sharp cone, although the
focus of his study was the effect of vibrational nonequilibrium
on boundary layer stability. In 2013, Bres et al.32 also found
this phenomenon in flow over a wall with a porous coating on
a flat plate. Klentzman and Tumin33 in 2013 also commented
on the supersonic mode in a cold-wall flat plate flow using
oxygen. Jewell34 in 2014 performed numerical calculations to
supplement experimental results from the T5 tunnel at Cal-
tech. Jewell’s numerical results showed the supersonic mode
on a 5◦ half-angle sharp cone, although the focus of his disser-
tation was transition delay with CO2 concentration, turbulent
spot propagation, and transition control via gas injection. In
the same year, Fedorov, Soudakov, and Leyva35 found unsta-
ble supersonic modes on a 5◦ half-angle cone with gas injec-
tion. Over the course of 2014-2016, Salemi et al. also modeled
the 5◦ half-angle sharp cone configurations typical of the T5
tunnel at Caltech and investigated second mode synchroniza-
tion with the slow acoustic spectrum. They investigated the
effect of nonlinear disturbances,36,37 a flared cone geome-
try,38 and high-temperature effects,39 although the Prandtl
number and ratio of specific heats were fixed in their real
gas model. Overall, Salemi40 concluded that the synchroniza-
tion of mode F1 with the slow acoustic spectrum caused the

emission of acoustic waves from the boundary layer into the
free stream. In 2017, the results of Sescu et al.41 were indicative
of the supersonic mode in cold-wall flat plate flow, although
the focus of the study was the effect of surface deformations
on boundary layer stability.

A contemporary study directly focusing on the super-
sonic mode was performed in 2015 by Bitter and Shepherd,26

who provided clear evidence through LST of the supersonic
mode’s existence on a cold-wall flat plate, although they
neglected chemical nonequilibrium effects. Bitter and Shep-
herd also demonstrated that the cause of the supersonic mode
was the synchronization of mode F1 with the slow acous-
tic spectrum that occurred on highly cooled walls. The fol-
lowing year in 2016 Chuvakhov and Fedorov27,28 largely con-
firmed Bitter and Shepherd’s26 findings through perfect gas
LST analysis as well as unsteady DNS analysis on a flat plate,
although they used different free stream conditions. Edwards
and Tumin42 in 2017 found the supersonic mode on a hot wall
with chemical effects, upending the notion that the super-
sonic mode occurs only on highly cooled walls. Edwards and
Tumin incorporated additional source terms in their mean
flow equations accounting for kinetic fluctuations in the flow
but used a perfect gas stability solver. Edwards and Tumin
suggested that these kinetic fluctuations may generate a dis-
crete mode in the vicinity of the neutral point. Depending on
the flow parameters, the excited mode can become super-
sonic far downstream in the vicinity of the upper neutral
branch curve. Therefore, the effect of wall temperature on
the supersonic mode in thermochemical nonequilibrium flow
must be re-evaluated. In 2018, Knisely and Zhong43 performed
thermochemical nonequilibrium LST and DNS studies using
similar hot wall flow conditions on a 5◦ half-angle blunt
cone and confirmed the existence of the supersonic mode,
although it was quite weak. Knisely and Zhong44 later in
2018 showed with unsteady DNS that the cold wall is desta-
bilizing to the supersonic mode so much so that it is pos-
sible for the supersonic mode to have a greater magnitude
than the traditional second mode. Furthermore, Mortensen45

in 2018 discovered the supersonic mode in Mach 20 ther-
mochemical nonequilibrium flow over very blunt cones and
determined the supersonic mode to have a significantly
higher amplitude than the second mode for nose radii
greater than approximately 36 mm. Such a finding is novel
and raises concerns of a dominant supersonic mode exist-
ing in other seldomly studied (but still practically relevant)
flows. Therefore, a comprehensive examination of the super-
sonic mode’s impact on transition to turbulence must be
performed.

A schematic of a neutral supersonic mode (similar to the
one developed by Knisely and Zhong46) is presented in Fig. 2
for further elaboration based on the same argument as the
neutral subsonic second mode in Fig. 1, except a second rel-
ative sonic line is included. Specifically, it must again be noted
that the visualization presented here is developed for the lim-
iting case of a large wavenumber neutral mode, although there
are qualitative similarities for finite wavenumber non-neutral
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FIG. 2. Visualization of neutral super-
sonic mode in a large wavenumber
limit. The first sonic line is denoted by
M(ys1) = −1, the critical layer is by
M(yc) = 0, and the second sonic line
is by M(ys2) = 1. The reflection at the
first sonic line changes waves from com-
pression to expansion and vice versa.

modes. Nevertheless, it is indicative of the results one might
expect to obtain from LST, DNS, or experiments in future
studies. Near the wall, the same structures exist as in the tra-
ditional subsonic second mode. The disturbance is traveling
downstream supersonically relative to the mean flow, indi-
cated below a relative Mach number of M < −1, or equivalently
c > u(y) + a(y). The first sonic line M(ys1) = −1 again acts as
a wave guide for the acoustic rays. Similar to the traditional
subsonic second mode, outside of M(ys1) = −1, the distur-
bance is traveling subsonically with respect to the free stream
and creates the “rope-like” wave pattern centered about the
critical layer M(yc) = 0. When the phase speed of the dis-
turbance is slow enough under very particular flow condi-
tions, a second supersonic region can be present. There can
exist a second relative sonic line M(ys2) = 1, or equivalently
c < u(ys2) − a(ys2), outside of which the disturbance is travel-
ing upstream supersonically with respect to the free stream.
Again, because |M | > 1, the solution is wave-like. This cre-
ates the “slanted” wave pattern outside of the boundary layer
shown in the schematic in Fig. 2. As y → ∞, the disturbance
will reduce back to a pure acoustic wave. The angle created
by this decaying wave pattern is analogous to a Mach wave
angle from traditional compressible flow theory and is approx-
imated by µ ≈ arcsin(1/M). For a neutral supersonic wave, this
relation is exact. However because a non-neutral wave will
have an imaginary component of the wavenumber, the Mach
wave angle for a non-neutral instability will have a slightly
different angle. Again, the schematic in Fig. 2 is simply an
extension of the well-established visualization for the tradi-
tional subsonic second mode in the large wavenumber limit
to include a second relative sonic line. In reality, the super-
sonic mode has a finite wavenumber and the extra first deriva-
tive term appears in Eq. (3). In the limit of large wavenumber,
the simplified Eq. (4) becomes exact for the supersonic mode
as well as the traditional subsonic second mode; however, in
reality it is only an approximate relation used for instructive
purposes.

The schematics of the subsonic second mode (Fig. 1) and
the supersonic mode (Fig. 2) are simplified representations
of the LST results of Bitter and Shepherd26 and Knisely and
Zhong.46 Knisely and Zhong’s46 results are shown in Fig. 3 for
further clarification. Near the wall below the M = −1 sonic line,
the disturbance is traveling supersonically downstream with
respect to the mean flow. This is evident by the alternating red
and blue wave patterns in both the subsonic mode [Fig. 3(a)]
and the supersonic mode [Fig. 3(b)]. Outside of the first sonic
line, both the subsonic and supersonic modes demonstrate the
“rope-like” pattern centered about the critical layer at M = 0.
The relative Mach number for the subsonic mode [Fig. 3(a)]
does not exceed unity in the freestream and strongly resem-
bles the subsonic second mode diagram in Fig. 1. The relative
Mach number of the supersonic mode [Fig. 3(b)], on the other
hand, exceeds unity in the freestream. The disturbance is trav-
eling upstream supersonically with respect to the mean flow,
resulting in the acoustic-like wave pattern. Again, as y → ∞,
this would be a pure acoustic wave.

This description of the supersonic mode is also in agree-
ment with Mack’s21 description of the supersonic mode. Mack
commented on neutral supersonic waves in flow over a flat
plate and further described the phenomenon as a region of
local supersonic flow relative to the disturbance phase speed
outside of the boundary layer.7 As Mack stated in scenario (3)
on p. 106 of Ref. 7, “There can be supersonic neutral solutions
(i.e., cphx < 1 − 1/M̃1) which, in the free stream, are either pure
outgoing, or pure incoming, Mach waves of the flow relative
to the phase speed. These solutions are supersonic acous-
tic modes, because. . . they require an embedded region of
locally supersonic relative flow within the boundary layer that
is distinct from the outer supersonic relative flow.” This sce-
nario that Mack described is exactly the physical basis for the
schematic introduced in Fig. 2 and agrees with the results of
Knisely and Zhong46 in Fig. 3.

In summary, the supersonic mode diagram developed
here is simply an extension of the same principles used by
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FIG. 3. Normalized contours of temperature fluctuations with relative Mach number M(y) = u(y)−cr
a(y) overlaid (the solid black line corresponding to the top axis). Tw /T∞ =

0.2, Tw = 300 K, M∞ = 5: (a) Subsonic mode: cr = 0.871 > 1 − 1/M∞ at s = 0.302 m and f = 800 kHz. (b) Supersonic mode: cr = 0.719 < 1 − 1/M∞ at s = 0.733 m and f
= 550 kHz. Reproduced with permission from C. Knisely and X. Zhong, “An investigation of sound radiation by supersonic unstable modes in hypersonic boundary layers,”
AIAA Paper 2017-4516, 2017. Copyright 2017 American Institute of Aeronautics and Astronautics, Inc.46

Morkovin,6 Mack,7 Reshotko,1 and Fedorov3 in their devel-
opment of a subsonic second mode schematic that has been
invaluable over the past 30+ years. The limiting case of the
large wavenumber assumption is useful to obtain an ana-
lytical expression, demonstrating the trapped acoustic wave
behavior. However, because this is a limiting case, in reality the
second mode does not follow the simplified equation assum-
ing a large wavenumber, i.e., the first derivative term in the
stability equations cannot be neglected, making the physical
picture less obvious. That being said, qualitatively the illus-
tration will be similar. The supersonic mode diagram simply
includes a second relative sonic line to the well-established
diagrams.1,3,6,7 Rather than having a single supersonic region
and an outer subsonic region, the supersonic mode has two
supersonic regions—one near the wall and the other outside
of the critical layer. As y → ∞, this would be a pure acous-
tic wave in the free stream. The traditional subsonic second
mode diagram is still valid (as are those of Morkovin,6 Mack,7
Reshotko,1 and Fedorov3), and therefore the supersonic mode
diagram is valid as well because it is an extension of the
original diagrams including a second sonic line.

Despite the evidence presented by Bitter and Shepherd26

and Chuvakhov and Fedorov,27,28 it is possible that the impact
of the highly cooled wall on the spontaneous radiation of
sound may have been overstated because chemical nonequi-
librium was not accounted for. The recent theoretical results
by Tumin47 and Edwards and Tumin42 in 2017 indicate the
spontaneous radiation of sound in flows with Tw/Te > 1. In

addition, in 2018 Knisely and Zhong43 performed thermo-
chemical nonequilibrium LST and DNS studies using similar
hot wall flow conditions on a 5◦ half-angle blunt cone and con-
firmed the existence of the supersonic mode, although it was
quite weak. This phenomenon may be attributed to the real gas
effect and may have been overlooked in previous simulations
assuming chemical equilibrium.

This study performs a two-part in-depth analysis of the
supersonic mode incorporating real gas effects on a blunt
cone. Paper I focuses on LST, whereas Paper II focuses on
DNS. It is critical to performing both analyses when studying
the supersonic mode because results here and by Knisely and
Zhong43,44 indicate that the supersonic mode may be excited
via a modal interaction that is not accounted for in LST. There-
fore, to more accurately model the supersonic mode, full DNS
studies to compliment LST predictions are necessary. In addi-
tion, as part of the investigation new less-restrictive LST equa-
tions and new LST shock boundary conditions are derived and
verified. The goals are to use thermochemical nonequilibrium
analysis to (1) determine the characteristics of the supersonic
mode and under what conditions it exists and (2) examine the
impact of the supersonic mode on transition to turbulence
under realistic flight or experimental conditions.

II. SIMULATION CONDITIONS
The flow conditions for both simulations considered this

study are intended to be similar to those used by Bitter and
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TABLE I. Freestream flow conditions for direct numerical simulations.

Parameter Value Parameter Value

M∞ 5 H0,∞ 9.17 MJ/kg
ρ∞ 2.322 × 10−2 kg/m3 p∞ 10 kPa
T∞ 1500 K U∞ 3882.42 m/s
cN2 0.78 cO2 0.22

Shepherd26 and are summarized in Table I. Two different
mean flow cases are considered in this study; the only differ-
ence between the two cases is the isothermal wall tempera-
ture. All free stream conditions are identical. Case 1 had a wall
temperature of Tw = 300 K, resulting in a wall-temperature
ratio of Tw/T∞ = 0.2. Case 2 had a wall temperature of Tw =
1000 K, resulting in a wall-temperature ratio of Tw/T∞ = 0.667.
Note the use of Tw/T∞ rather than Tw/Taw as used in many
studies. The free stream temperature T∞ was used instead
because Taw varies in the streamwise direction in the simula-
tions. Using T∞ results in a constant parameter characterizing
the whole flow field.

The flow conditions for this study are intended to con-
firm that the DNS and LST methods were capable of pro-
ducing the same physical artifacts on a blunt cone observed
by Bitter and Shepherd26 on a flat plate, and expand on the
results of Knisely and Zhong.46 The geometry is a 5◦ half-
angle axisymmetric blunt cone 1 meter in length with a nose
radius of 1 mm. The DNS used 256 points in the wall-normal
direction and roughly 10 points/mm on the surface of the
cone in the streamwise direction. In the azimuthal direction, a
Fourier collocation method is used with four points. LST sim-
ulations interpolated the DNS mean flow onto the LST grid
stretching methods discussed in Sec. IV B. As will be explained
in Secs. III and IV, the DNS code used in this study utilizes a
shock-fitting method. Thus, the parameters in Table I are the
free stream conditions upstream of the shock formed over the
body.

III. GOVERNING EQUATIONS AND GAS MODEL
The governing equations for the DNS and LST codes

are those developed by Mortensen and Zhong,48–53 which
are formulated for thermochemical nonequilibrium assuming
a two-temperature model. Their formulation is highlighted
here for clarity. The rotational energy mode is assumed to
be fully excited with up to eleven non-ionizing species with
finite-rate chemistry. Two-temperatures are used to repre-
sent translation-rotation energy and vibration energy, and a
five-species model (N2, O2, NO, N, and O) is used here to sim-
ulate air. The Navier-Stokes equations in conservative form
consist of five species mass conservation equations, three
momentum conservation equations, the total energy equation,
and the vibration energy equation. The governing equations in
vector form are written as

∂U
∂t

+
∂Fj
∂xj

+
∂Gj

∂xj
=W, (5)

where U is the state vector of conserved quantities, W is
the source terms, and Fj and Gj are the inviscid and viscous
flux vectors, respectively. For further details of the governing
equations and thermochemical model, see the work of Knisely
and Zhong43,46 and Mortensen.53

IV. NUMERICAL METHODS
A. DNS

In order to perform a stability analysis using LST, a steady
mean flow from DNS must be obtained. Here, only a brief
overview of the DNS numerical methods is given, with addi-
tional details in Paper II.65 The thermochemical nonequilib-
rium code developed by Mortensen and Zhong48–53 utilizes
a high-order shock-fitting method to compute the flow field
between the shock and the body. For shock-fitting computa-
tions, the shock location is not known a priori, so its position
is solved along with the flow field. Since the shock position
is not stationary, the grid used to compute the flow field
is a function of time. A seven point stencil is used to dis-
cretize the spatial derivatives, resulting in a low dissipation
fifth order upwinded difference for the inviscid terms and
a central scheme for the viscous terms. The derivatives in
the transverse direction, if required, are treated with Fourier
collocation. To compute second derivatives, the first order
derivative operator is applied twice. A low storage 1st-order
Runge-Kutta method from Williamson54 is used to advance
the solution in time. Conditions behind the shock are calcu-
lated from Rankine-Hugoniot relations. In the free stream, the
flow is assumed to be in thermal equilibrium and the chemical
composition of the flow is frozen. The shock is assumed to be
infinitely thin with all relaxation occurring downstream due to
finite relaxation rates. This leads to the chemical composition
remaining constant across the shock, as well as the vibration
temperature.

B. LST
The linear stability analysis used here is largely based

on the LST code developed by Mortensen;53 however, here
the assumption of zero wall-normal velocity is relaxed (i.e.,
v , 0), and new free stream boundary conditions incorporat-
ing a shock at the computational boundary are used. Curva-
ture in the streamwise and transverse directions is included
similar to Malik and Spall,55 with further details in Appendix
A. The LST equations are derived from the governing equa-
tions [Eq. (5)], where the instantaneous flow is comprised of
mean and fluctuating components, where the mean flow is
assumed to satisfy the governing equations and is subtracted
out. The mean flow is assumed to be a function of y only
and the flow disturbances are assumed to be small, i.e., lin-
ear. The perturbations are then assumed to be in the form
of a normal mode described by q′ = q̂(y) exp[i(αx + βz −ωt)],
where ω is the circular frequency of the disturbance and α

and β are the wavenumbers. For comparison to direct numer-
ical simulation, the spatial stability approach is used, i.e., α is
complex which results in the dispersion relation α = Ω(ω, β).

Phys. Fluids 31, 024103 (2019); doi: 10.1063/1.5055761 31, 024103-7

Published under license by AIP Publishing

 10 O
ctober 2024 21:07:43

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Substituting in the normal mode form for the perturba-
tion reduces the problem for a species model with ns
species to a coupled set of ns + 5 ordinary differential
equations

(
A

d2

dy2
+ B

d
dy

+ C
)
~φ = ~0, (6)

where ~φ =
[
ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂, T̂V

]T
and A, B, and C are

complex square matrices of size ns + 5 and are included in
Appendix A. This is now a boundary value problem where
the derivative operators can be discretized and the equations
solved numerically.

For hypersonic compressible boundary layers, it is impor-
tant to have high grid resolution near the generalized inflec-
tion point.4 The grid used by Mortensen53 uses two differ-
ent functions to cluster points around the inflection point
and near the wall. It is called the cosine-exponential grid.
In hypersonic flows in which the spontaneous radiation of
sound occurs, the cosine-exponential grid may not provide
enough grid resolution in the free stream or near the outer
shock boundary. The continuous modes oscillate to the com-
putational boundary in many cases. Therefore, it is helpful
to use an additional exponential grid stretching function at
the edge of the computational boundary used by Knisely and
Zhong.46

With the grid defined, Eq. (6) can be transformed
into computational space and a numerical representation of
the derivatives can be given. The first and second deriva-
tive operators in the wall-normal direction are discretized
by taking derivatives of Lagrange polynomials in physi-
cal space. Mortensen’s53 scheme can be applied for vari-
able stencil sizes and can be used to obtain high-order
approximations. Here, a five-point stencil is used, result-
ing in a 4th order method similar to the one used by
Malik.15

After discretization, nonlinearities exist in α so the global
method suggested by Malik15 is used to compute the eigen-
value spectrum with α2 = 0. This method computes the eigen-
values from a generalized eigenvalue problem Ã~φ = αB̃~φ,
where the LAPACK56 subroutine ZGGEV is used here for solu-
tion. From the eigenvalue spectrum, an initial guess can be
obtained for the local method which results in A~φ = B and
the eigenvalue is found iteratively without dropping the α2

terms. This iterative method of solution requires the veloc-
ity perturbation at the wall û(0) be treated as a free parameter
and be iteratively driven to zero within a small tolerance. The
LAPACK subroutine ZGESV is used to solve the local problem.
It is also possible to avoid the computationally intensive global
method and obtain an initial guess for α from a nearby stream-
wise location or a DNS assuming the unsteady DNS results are
available.

To estimate boundary-layer transition using LST, the eN

transition criterion is used which is defined as

eN =
A(s)
A0
= exp



s∫
s0

−αi(s, f)ds


, (7)

where A(s) is the integrated disturbance amplitude, A0 is
the initial disturbance amplitude, s0 is the location where
the disturbance first becomes unstable, and αi is the spa-
tial amplification rate obtained from LST. In-flight transi-
tion N-factors are commonly understood to be around 10.
Malik23 showed that 9.5 and 11.2 correlated with transition
onset for two high Mach number flight tests. In ground-based
experimental test facilities, the transition N-factor is usually
lower.

1. New LST shock boundary conditions
Boundary conditions to solve the LST problem are

required at the wall and in the free stream. There are ns + 5
independent variables in LST, and therefore ns + 5 conditions
are needed at the free stream boundary, with ns + 4 conditions
specified at the wall due to the iteration on û(0) discussed
previously. At the wall, a high-order pressure extrapolation
condition assuming zero mass flux from the wall and zero
temperature perturbation are used

dp̂
dy
= 0, v̂ = ŵ = T̂ = T̂V = 0, (8)

although more complex ablation boundary conditions can
be used.53 In the free stream, in flows in which the super-
sonic modes are not a concern, all perturbations except v̂
at the outer edge can simply be set to zero, and the v̂

boundary condition is obtained from the continuity equation.
When this is the case, the free stream boundary conditions
are

ρ
dv̂
dy

+
dρ
dy
v̂ = 0, ρ̂s = û = ŵ = T̂ = T̂V = 0. (9)

However, in flows with supersonic modes, there is highly
oscillatory eigenfunction behavior in the free stream. Using
these zero-boundary conditions may not be physically rele-
vant in this situation, especially when the boundary coincides
with a shock. Therefore, free stream boundary conditions
based on the Rankine-Hugoniot relations with a free shock
approximation were derived, following similar methods to
Chang et al.29,57

The LST shock boundary conditions make the same
assumptions as the DNS shock-fitting scheme. The flow
upstream of the shock is assumed to be in thermal equilibrium
with a fixed chemical composition. The shock is assumed to
be infinitely thin, resulting in no relaxation across the shock.
In other words, there is no change in chemical composition
or vibrational temperature across the shock. The flow sur-
rounding the shock is assumed to be inviscid. Under these
conditions, the governing equations in conservative form can
be rewritten as

∂U
∂t

+
∂Fj
∂xj
= 0, (10)
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where

U =



ρ1

...

ρns

ρu1

ρu2

ρu3

ρe

ρev



,
∂Fj
∂xj
=

∂

∂xj



ρ1uj + ρ1u1j

...

ρnsuj + ρ1unsj

ρu1uj +pδ1j

ρu2uj +pδ2j

ρu3uj +pδ3j

(p + ρe)uj

ρevuj



=
∂E
∂x

+
∂F
∂y

+
∂G
∂z

,

(11)

where it can be shown usi = Ds
(
cs

∂ρ
∂xi
−
∂ρs
∂xi

)
. Equation (10) is

transformed into a coordinate system of the shock, illustrated
in Fig. 4.

The position of the shock in Cartesian coordinates is
ys = f(x, z, t), with the mean shock position ys = f(x). Thus the

local slope of the shock can be written as a = tan θ = df
dx . The

transformation between (x, y, z) and (ξ , η) is

ξ =
x
b

, (12)

η = b[y − f(x, z, t)], (13)

where b = cos θ.

Under this transformation, Eq. (10) becomes

∂f
∂t
∂U
∂η
−

1
b2

∂E
∂η

+
∂f
∂x

∂E
∂η
−
∂F
∂η

+
∂f
∂z

∂G
∂η
= 0. (14)

FIG. 4. Schematic of the unsteady position of a shock in (ξ , η) and (x, y, z)
coordinate systems.

Integrating Eq. (14) from η = −ε to η = ε and taking the limit as
ε → 0 result in

∂f
∂t
∆U +

∂f
∂x
∆E − ∆F +

∂f
∂z
∆G = 0, (15)

where the ∆ terms are the jump conditions across the shock.
For example, ∆U = U∞ − Ushock where the subscript ∞ denotes
the conditions immediately upstream of the shock and shock
denotes conditions immediately downstream of the shock. All
flow variables, including f, are perturbed and linearized such
that φ = φ + φ′. Assuming the perturbed variables behave as a
normal mode, φ′ = φ̂(y)ei(αx+βz−ωt) results in

f̂
(
−iω∆U + iα∆E + iβ∆G

)
+ a∆E′ − ∆F′ = 0, (16)

where

∆E′ =



ρ1û + ρ̂1u + D1

(
c1iα

ns∑
s=1
ρ̂s − iαρ̂1

)
...

ρnsû + ˆρnsu + Dns

(
cnsiα

ns∑
s=1
ρ̂s − iαρ̂ns

)
ρ̂u2 + 2ρuû + p̂

ρ̂uv + ρvû + ρuv̂

ρ̂uw + ρwû + ρuŵ

û(ρe + p) + u(ρ̂e + p̂)

ρev û + ˆρevu



, ∆F′ =



ρ1 v̂ + ρ̂1v

...

ρns v̂ + ˆρnsv

ρ̂uv + ρvû + ρuv̂

ρ̂v2 + 2ρvv̂ + p̂

ρ̂vw + ρwv̂ + ρvŵ

v̂(ρe + p) + v(ρ̂e + p̂)

ρev v̂ + ˆρev v



. (17)

Linearizing the Rankine-Hugoniot relations introduces an
extra perturbation variable for the shock position, f̂. To elim-
inate the extra variable, f̂ is solved for in terms of the other

perturbation variables using the x-momentum equation. How-
ever, this reduces the system to ns + 4 equations for ns + 5
independent perturbation variables. The ns + 4 equations can
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be represented by

ns+5∑
j=1

B̂ijφ̂j = 0, i = 1, 2, . . . ,ns + 4, (18)

where the terms in B̂ are included in Appendix B.

To close the system of equations for the shock bound-
ary conditions, an extra equation is needed, for which there
are a number of options. The first considered uses the mixture
continuity equation, which, when set into the LST framework
becomes

v
dρ̂
dy

+ ρ̂
(
−iω + iα +

dv
dy

)
+ iαρû + ρ

dv̂
dy

+
dρ
dy
v̂ + iβρŵ = 0. (19)

The second closure equation considered was the y-
momentum equation, which has already been put into the LST
framework and is contained in the matrices A, B, and C in
Appendix A.

The third closure equation used was the right-running
characteristic equation derived from the 2D Euler equations
for a perfect gas. Transforming to the LST framework, the
characteristic equation becomes

ns∑
s=1


−iω

R
Ms

T + iαRT
(
kxu + kyv + c

)
+
R
Ms

dT
dy

+ c
(
kx

du
dy

+ ky
dv
dy

)
ρ̂s + ρckx

[
−iω + iα

(
kxu + kyv + c

)
+ kx

du
dy

+ ky
dv
dy

]
û

+ ρcky

[
−iω + iα

(
kxu + kyv + c

)
+ kx

du
dy

+ ky
dv
dy

]
v̂ + ρ

[
−iωR + iαR

(
kxu + kyv + c

)
+
R
ρ

dρ
dy

+
1
2
c

T

(
kx

du
dy

+ ky
dv
dy

)
(1 + ρc)

]
T̂ +

ns∑
s=1

R
Ms

T
dρ̂s
dy

+ kxρc
(
kxu + kyv + c

) dû
dy

+ kyρc
(
kxu + kyv + c

) dv̂
dy

+ ρRdT̂
dy
= 0, (20)

where u∗ = ukx + vky, kx and ky are unit vectors in the x
and y directions, respectively, and c is the local speed of
sound.

As will be shown in verifying these closure schemes for
the LST shock boundary condition, there were only mini-
mal differences in results depending on which the closure
equation was used. However since the y-momentum equa-
tion was already cast into the LST framework and hard-
coded into the LST program, it was the simplest closure

equation to implement yet also produced the smoothest
solution near the shock. Therefore, the y-momentum equa-
tion was used as the shock boundary condition closure
equation.

V. STEADY FLOW FIELD SOLUTION
In the nose region of the cone for both cases, there is sig-

nificant chemical and thermal nonequilibrium. Farther down-
stream, however, the chemical nonequilibrium effects weaken.

FIG. 5. Case 1 mean flow boundary layer
profiles at s = 0.4 m. (a) u, T, and TV .
(b) Species density ρs of N2 and O2
species. u denotes the component of
velocity tangential to the surface of the
cone. y is the wall normal distance.

Phys. Fluids 31, 024103 (2019); doi: 10.1063/1.5055761 31, 024103-10

Published under license by AIP Publishing

 10 O
ctober 2024 21:07:43

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 6. Case 2 mean flow boundary layer
profiles at s = 0.4 m. (a) u, T, and TV .
(b) Species density ρs of N2 and O2
species. u denotes the component of
velocity tangential to the surface of the
cone. y is the wall normal distance.

Boundary layer profiles for temperature, vibration tempera-
ture, tangential velocity, and species density of N2 and O2 at
a streamwise distance from the stagnation point of s = 0.4
m are shown in Fig. 5 for case 1 and Fig. 6 for case 2. Here-
after, y denotes the wall-normal distance. Due to the cold wall,
the boundary layer is thin in relation to the flow domain in
both cases. The mean flow does not reach thermal equilib-
rium in the free stream, thus demonstrating the necessity of
accounting for nonequilibrium effects in these types of flows.
The species densities of N2 and O2 are nearly identical in the
free stream between cases 1 and 2, however, due to the colder
wall in case 1, the air is denser and there is a very steep density
gradient near the wall.

VI. LST VERIFICATION
The steady DNS results were used to obtain stability pre-

dictions using LST. Before presenting results from the LST
analysis, however, the modifications to the LST code must be
verified. This was accomplished by comparing the new LST
code with the LST code developed by Mortensen,53 which has
already been successfully verified against Hudson’s58 code.
The test case is a supersonic mode at s = 0.73 m at a frequency
of f = 550 kHz in case 1.

A. Nonparallel meanflow
First, the assumption of v = 0 made in the previous

iterations of the LST code by Mortensen53 is relaxed. For
traditional modes whose eigenfunctions decay rapidly out-
side the boundary layer, the assumption of v = 0 is suitable.
However, far outside the boundary layer, the magnitude of v
may become non-negligible and may have an impact on the
eigenfunction behavior of the supersonic mode in the free
stream.

Because the original LST code with v = 0 has already
been verified,53 this previous version of the code is used as
a benchmark for the new code with v , 0. The eigenval-
ues and eigenfunctions for f = 550 kHz at s = 0.73 m using

1500 LST points are used as the test case. The initial com-
parison between v = 0 and v , 0 utilize the Dirichlet (zero)
free stream boundary condition. This particular location and
frequency was chosen because it represents the supersonic
continuous mode F1+. The comparison of the eigenvalues of
the two codes is summarized in Table II. Relaxing the v = 0
assumption results in very small differences in αr and there-
fore cr (approximately 0.02% difference); however, there is a
considerable difference in growth rate −αi. The growth rate
increases by about 27.6%, which can cause a significant dif-
ference in transition prediction calculations such as the eN

method.

The mode shapes of the pressure eigenfunction are also
compared between the v = 0 and v , 0 codes. The whole
domain is shown in Fig. 7(a), and the outer edge region is
shown in detail in 7(b). From Fig. 7(a), there is a clear differ-
ence in the magnitude of the pressure eigenfunction, |p|, in
the center region of the domain from about y = 0.01 m and
y = 0.07 m. The v , 0 code predicts a slightly smaller ampli-
tude in the pressure eigenfunction in this region. Within the
boundary layer (y < 0.01 m), however, the v , 0 results are
in agreement with the v = 0 results. At the outer edge of the
computational domain, the amplitude of the pressure eigen-
function is smaller for v , 0. Additionally, it appears that the
two codes are slightly out of phase with one another, although
the magnitudes are quite small in relation to the magnitudes
in the boundary layer.

TABLE II. Comparison of eigenvalues between LST codes with v = 0 and v , 0.
f = 550 kHz, s = 0.73 m, and 1500 LST points. Nondimensional phase speed cr =

(ω∗/u∗∞)/
√
β2 + α2

r , where ω∗ = 2πf is the dimensional circular frequency and
u∗∞ is the free stream velocity upstream of the shock.

Mode F1+ values

αr (m−1) −αi (m−1) cr

v = 0 1240.6008 5.307 05 0.717 476
v , 0 1240.2478 6.772 75 0.717 681
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FIG. 7. Comparison of the pressure
eigenfunction for v = 0 and v , 0. f
= 550 kHz, s = 0.73 m, and 1500 LST
points. (a) Whole domain and (b) outer
edge region.

FIG. 8. Comparison of (a) phase speed
and (b) growth rate for v = 0 and v , 0,
f = 1 MHz. M∞ = 4.44 is the mean flow
Mach number immediately downstream
of the shock.

Finally, the growth rate and phase speed for each stream-
wise location are compared for the v = 0 and v , 0 assump-
tions. For a fixed frequency of f = 1 MHz, shown in Fig. 8, the
phase speed between v = 0 and v , 0 is virtually indistin-
guishable. Note near s = 0.15 m the small oscillations in growth
rate and jump in phase speed. This phenomenon is due to the
synchronization of mode F1 with the entropy/vorticity spec-
tra.59 The growth rate agreement between v = 0 and v , 0
is quite good upstream; however, v , 0 begins to deviate for
s > 0.3 m. This area of disagreement corresponds to the region
in which cr < 1 − 1/M∞, where M∞ = 4.44 is taken hereafter
in the LST analysis as the Mach number immediately down-
stream of the shock, which is the region of interest for super-
sonic modes. Therefore, it is important to include v , 0 in the
LST analysis.

B. LST shock boundary conditions
As evidenced in Fig. 7(a), the eigenfunctions of the

supersonic mode can be significantly oscillatory outside
of the boundary layer. In order to determine whether or

not the Dirichlet (zero) boundary conditions are appropri-
ate in this situation, the shock boundary conditions are
implemented and compared. Additionally, the impact of
the closure equation for the shock boundary conditions is
explored.

TABLE III. Comparison of eigenvalues between Dirichlet (zero) bound-
ary conditions and shock boundary conditions for each closure equation.
f = 550 kHz, s = 0.73 m, and 1500 LST points. Nondimensional phase speed

cr = (ω∗/u∗∞)/
√
β2 + α2

r , where ω∗ = 2πf is the dimensional circular frequency
and u∗∞ is the free stream velocity upstream of the shock.

Mode F1+ values

Closure equation αr (m−1) −αi (m−1) cr

Zero 1240.2478 6.772 757 0.717 681
Continuity 1240.2478 6.772 861 0.717 681
y-momentum 1240.2478 6.772 866 0.717 681
Characteristic 1240.2478 6.772 906 0.717 681
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FIG. 9. Comparison of the pressure
eigenfunction for Dirichlet (zero) bound-
ary conditions and shock boundary con-
ditions for each closure equation. f = 550
kHz, s = 0.73 m, and 1500 LST points.
(a) Whole domain and (b) outer edge
region.

The test case is again the supersonic continuous mode
F1+ from the mean flow from case 1 at f = 550 kHz and s =
0.73 m using 1500 LST points. The difference in eigenvalues
between the zero boundary conditions and between each clo-
sure equation is summarized in Table III, while the pressure
eigenfunctions are compared in Fig. 9. The whole domain is
shown in Fig. 9(a), and the edge of the computational domain
is enlarged in Fig. 9(b). There is no difference within com-
putational accuracy in this particular case between the zero
and shock boundary condition eigenvalues or eigenfunctions.
This is likely due to the computational domain being very
large with respect to the boundary layer. For locations further
upstream, this may not be the case and the shock boundary
conditions may be more critical. However, because the shock
boundary conditions do not add any additional computational
cost and are more physically relevant to the flow, they are
used instead of the zero boundary conditions. Between each
shock boundary condition closure equation, there is minimal
difference. The y-momentum closure equation converged the
quickest of the three equations and is therefore used in future
computations.

VII. NUMERICAL ACCURACY
A. Steady flow field solution grid independence

The steady flow field grid points in the wall-normal
direction for case 1 were doubled to 512 points from 256 to
determine the number of grid points required for a grid-
independent solution. The wall-normal grid density is known
to be much more critical than the wall-tangent grid density.
Mean flow boundary layer profiles at s = 0.4 m (Fig. 10) indi-
cate very little difference in the mean flow profiles when the
grid is doubled. Furthermore, doubling the grid for the steady
flow field solution significantly increased the computational
expense to obtain a converged solution. Therefore, 256 grid
points in the wall-normal direction were sufficient to provide
an accurate solution.

B. LST grid independence
The number of grid points in the LST simulation was var-

ied between 500 and 1500 points in the wall-normal direc-
tion to determine the number of grid points to obtain a

FIG. 10. Wall-normal grid point compari-
son of case 1 mean flow boundary layer
profiles at s = 0.4 m. (a) u, T, and TV .
(b) Species density ρs of N2 and O2
species.
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FIG. 11. Comparison of (a) phase speed,
cr , and (b) growth rate, −αi , for case 1
mode F1 at f = 800 kHz with 500, 1000,
and 1500 LST grid points. M∞ = 4.44 is
the mean flow Mach number immediately
downstream of the shock.

grid-independent solution. The 800 kHz mode F1 from case
1 was used as the benchmark for the grid refinement study,
as shown in Fig. 11. There are small differences in both phase
speed and growth rate for 500 grid points compared to the
1500 point case. The 1000 grid point case and the 1500 grid
point case are nearly identical, indicating that 1000 grid points
are sufficient. However, to err on the side of caution, 1500 grid
points are used in the LST calculations. Furthermore, increas-
ing the number of grid points in LST did not increase the
computational time severely.

VIII. LST RESULTS
LST was performed to determine which modes were

unstable. All LST calculations performed here assume a span-
wise wavenumber of β = 0. As previously stated, 1500 wall-
normal grid points were used, and the shock free stream
boundary condition with the y-momentum closure equation
was used. The global method, which assumes α2 = 0, was
used at a fixed streamwise location and frequency to obtain

an initial guess for the eigenvalues of the physical modes.
The local method, which does not neglect α2, then used
this initial guess and iterated to a converged solution. Once
the eigenvalues of a physical mode have been obtained, it
is possible to march in the streamwise direction using the
eigenvalues from the previous location as an initial guess. At
each streamwise location, the spatial growth rate is given by
the negative of the imaginary component of the eigenvalue
(−αi), and the phase speed is calculated from the real com-
ponent of α. The nondimensional phase speed is defined as
cr =

(ω∗/u∗∞)
√
β2+α2

r

, where ω∗ = 2πf is the dimensional circular fre-

quency and u∗∞ is the free stream velocity upstream of the
shock.

A. Case 1 LST results
A phase speed and growth rate plot in the style of Ma and

Zhong14 is shown for case 1 in Fig. 12 for a frequency of f =
1 MHz. Following similar notation as Fedorov60 discussed in
the introduction, the results in Fig. 12 indicate that mode F1

FIG. 12. Case 1 LST phase speed and
growth rate for modes F1, F2, and S at f
= 1 MHz. (a) Phase speed and (b) growth
rate. M∞ = 4.44 is the mean flow Mach
number immediately downstream of the
shock.
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FIG. 13. Case 1 neutral stability map for second mode. Dashed lines indicate neg-
ative growth rates. The thick black line indicates points of neutral stability. The
white arrow indicates the onset of supersonic mode. The white box indicates the
region of supersonic mode.

becomes unstable, while mode S is stable. Again, it is con-
ventional to describe the unstable mode as “Mack’s second
mode,” even though mode S is stable here. Therefore, all ref-
erences to the second mode hereafter indicate the mode F1
instability. Mode F1 becoming the dominant instability is con-
sistent with Bitter and Shepherd.26 It should be noted that
the discontinuity in mode S in Fig. 12 (and in Figs. 14, 19,
and 20) is due to the LST solver having difficulty resolving
the synchronization region of two discrete modes. Due to
the iterative method of solution, the weaker discrete mode
is more difficult to capture. Furthermore, as Fedorov and

Tumin5 noted, the synchronization of the two discrete modes
actually creates a singularity in the LST framework and causes
difficulties in traditional stability methods.

The streamwise marching procedure was repeated for a
number of frequencies, producing the neutral stability map for
the second mode in Fig. 13, indicating the locations and fre-
quencies in which a disturbance grows. Neutrally stable points
(−αi = 0) are shown as the thick black line. All points inside of
the curve formed by the neutral points have positive growth
rates. At frequencies below roughly f = 800 kHz, and stream-
wise distances greater than s = 0.4, the upper branch of the
neutral curve broadens, indicating the presence of the super-
sonic mode. The onset of the supersonic mode coincides with
the “kink” in the upper branch of the neutral curve, indicated
by the white arrow in Fig. 13. Bitter and Shepherd26 noted that
the unstable supersonic modes increase the range of insta-
bility; therefore, this particular region on the neutral stability
curve indicated by the white box in Fig. 13 was examined in
finer detail through growth rate and phase speed plots for
individual frequencies.

Supersonic unstable modes were found for frequencies
below f = 800 kHz. The growth rate and phase speed plots for
a number of unstable supersonic modes are shown in Fig. 14.
The effect of mode S and mode F1 synchronizing can be seen
in the “bending” and “jumping” of the phase speeds of the
modes.5 Similar to Bitter and Shepherd,26 mode F1 bifurcates
into two distinct modes upon synchronization with the slow
acoustic spectrum, indicated by the kink in the growth rate
curves. Following similar notation to Bitter and Shepherd26

and Fedorov and Tumin,5 the unstable mode is denoted as
F1+, and the new stable mode as F1−. Synchronization with the
slow acoustic spectrum causes mode F1+ to change from a dis-
crete mode to a continuous mode and simultaneously creates
the discrete mode F1−. The major difference between discrete
and continuous modes is the behavior of the eigenfunctions
in the free stream. Discrete modes have eigenfunctions which
decay in amplitude outside of the boundary layer, whereas

FIG. 14. Case 1 LST phase speed
and growth rate for supersonic unsta-
ble modes. (a) Phase speed and (b)
growth rate. Dashed lines indicate the
new modes created by synchronization
with the slow acoustic spectrum. M∞
= 4.44 is the mean flow Mach number
immediately downstream of the shock.
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FIG. 15. Case 1 pressure eigenfunction
normalized by local pressure for unstable
and stable supersonic mode branches
at f = 550 kHz and s = 0.73 m. Phase
speed and growth rate for mode F1+: cr
= 0.717, − αi = 5.33 m−1. Mode F1−: cr
= 0.728, − αi = −10.59 m−1. (a) Highly
oscillatory boundary layer region and (b)
weakly oscillatory region near the shock.

continuous modes have oscillatory behavior in the free stream.
From Fig. 14, mode F1+ (solid line) remains unstable for longer
along the streamwise distance, which may lead to transition
earlier on the body. After becoming stable, mode F1+ ceases to
exist and merges with the slow acoustic continuous spectrum,
as it does in results presented by Bitter and Shepherd.26 Mode
F1− (dotted line) becomes increasingly stable downstream but
exhibits a similar eigenfunction to mode F1+ at first, as shown
in Fig. 15 for f = 550 kHz at s = 0.73 m. The pressure eigenfunc-
tion is scaled by local flow values and is equal to unity at the
wall. The axis limits for the eigenfunctions shown in Fig. 15 are
modified to show details in each oscillatory region. For both
the unstable and stable modes, the fluctuations in the eigen-
functions extend well into the free stream, similar to results
presented by Bitter and Shepherd.26

In visualizing the merging of mode F1+ with the slow
acoustic continuous spectrum, it is instructive to examine the
dispersion relation shown in Fig. 16. The data are exactly the
same as in Fig. 14; however, the dispersion relation shows
the relationship between the phase speed cr and growth
rate −αi. Also shown in Fig. 16 are the slow acoustic and
entropy/vorticity continuous spectra, which are a function
of frequency, Reynolds number, and Mach number in the
free stream. Further discussion of the continuous spectra and
their calculation is available from Balakumar and Malik61 and
Tumin.62–64 It should be noted that the continuous spectra
calculations performed here are for a perfect gas and may
not be entirely representative of this flow field. They are
intended to be used as an approximation for visualizing syn-
chronization. Mode F1+ begins in the fast acoustic continu-
ous spectrum (not pictured) and decreases in phase speed as
streamwise distance s increases. Near cr = 1, the second mode
synchronizes with the continuous entropy/vorticity spectra
(which are actually two overlapping branches). This interac-
tion with the continuous modes causes a damping effect in
mode F1+. Fedorov and Tumin59 noted that the boundary layer
is particularly receptive to entropy/vorticity disturbances
in this synchronism region. Further downstream, the mode
becomes unstable. The point at which the mode first becomes

unstable corresponds to the lower neutral branch on the
stability curve. As s increases, the mode behaves differently
for lower frequencies. At f = 800 kHz and above, the mode
becomes stable before synchronizing with the slow acous-
tic spectrum (cr = 1 − 1/M∞). The point at which the second
mode becomes stable again corresponds to the upper branch
of the neutral stability curve. The lower frequencies, however,
synchronize while still unstable. This causes the cessation of
mode F1+ being discrete and causes the creation of the new
discrete mode F1−, shown by the dotted line in Fig. 16. Mode
F1+ remains unstable for longer along the body until it finally
becomes stable and merges with the rest of the slow acous-
tic continuous spectrum. This delay in mode F1+ becoming

FIG. 16. Case 1 dispersion relation for second mode. Black lines correspond
to the continuous spectra evaluated at M∞ = 4.44, R = 1000, and Ω = RF
= 0.4. Dashed lines indicate the new mode F1− created during synchronization
with the slow acoustic spectrum.
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FIG. 17. Case 1 N-factor for unstable second mode frequencies. Frequencies are
in increments of ∆f = 50 kHz. The green line is an approximation of the edge of
the N-factor curve. The frequency f = 450 kHz leads to the largest N-factor.

stable is visualized in the broadening of the region of insta-
bility, shown in the neutral stability map in Fig. 13. The syn-
chronization of mode F1+ with the slow acoustic spectrum is
akin to the synchronization with the entropy/vorticity modes.
Similarly, the boundary layer may be receptive to slow acous-
tic disturbances in the free stream near this region. However,
as Bitter and Shepherd26 have pointed out since the synchro-
nism region is near the upper branch of the neutral curve, it
is unlikely to cause significant amplifications to the second
mode.

The mode F1+ growth rate for each frequency was inte-
grated along the surface numerically using the trapezoidal
method to determine the N-factor curve for this particular
case. The N-factor is presented as a function of streamwise
distance s. Frequency increments of ∆f = 50 kHz were used to
obtain the N-factor results in Fig. 17. An N-factor of roughly 9
will be achieved by the end of the length of the 1 meter cone.
Note the influence of the supersonic modes in changing the
shape of the peaks of the N-factor for each frequency. For
example, the high-frequency peaks ( f = 1000 kHz, for example)
are nearly symmetric. After the supersonic mode is encoun-
tered, the curve is elongated due to mode F1+ being unstable.
The elongated region of instability causes the N-factor curve
to become asymmetric, and the peak of the curve occurs far-
ther downstream. These supersonic modes seem to have only
a small impact on the edge of the N-factor curve, however,
as shown by the green line in Fig. 17. Because the supersonic
mode occurs downstream of the maximum growth rate for
each frequency, the N-factor for each frequency displays the
elongated effect downstream of its peak N-factor, which does
not affect the green N-factor envelope in Fig. 17. Therefore,
the supersonic modes contribute very little to the maximum
N-factor for this case. However, because this N-factor curve is
only valid for the flow conditions in case 1, it is difficult to draw
a definitive conclusion on the role of the supersonic modes in
N-factor transition prediction methods. More cases with dif-
ferent flow conditions are necessary to evaluate the effect of
the spontaneous radiation of sound on transition using the eN

method.

Finally, the temperature perturbation contour predicted
by LST for a fixed wavenumber and frequency was created
to demonstrate the role of the relative Mach number [Eq. (2)]
in flows with the supersonic mode. The contour in Fig. 18 is
obtained from

T′(s, y) = Real
[
T̂ei(αs+βz−ωt)

]
, (21)

FIG. 18. Case 1 LST temperature pertur-
bation contours. (a) Subsonic mode: s =
0.302 m, f = 800 kHz and (b) supersonic
mode: s = 0.733 m, f = 550 kHz.
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where α is the complex wavenumber at the fixed streamwise
location s0 and frequency f0 and T̂ is the complex temper-
ature eigenfunction at the fixed streamwise location s0 and
frequency f0. The streamwise distance s is varied only slightly
because in general, α and T̂ are functions of s, making this
technique invalid for regions far from s0. The temperature
perturbation contour at time t = 0 in Fig. 18 illustrates very
clearly the distinct regions of the disturbance behavior sum-
marized by the supersonic mode diagram in Fig. 2. For both the
subsonic and supersonic modes, the first sonic line M = −1 acts
as a wave guide for the acoustic waves traveling downstream
supersonically relative to the mean flow velocity. Centered
about M, the “rope-like” wave structures can be seen for both
the supersonic and subsonic modes. However, outside of these
“rope-like” wave structures is where the subsonic and super-
sonic modes differ fundamentally. For the subsonic mode
[Fig. 18(a)], the relative Mach number does not exceed M = 0.6.
The relative Mach number for the supersonic mode [Fig. 18(b)],
on the other hand, exceeds M = 1 near the edge of the bound-
ary layer (location at which M does not change greatly; similar
to δ99). The effect of this supersonic disturbance propagation
is the “slanted” wave pattern in the free stream. Indeed, the
angle this wave pattern makes is quite close with the predicted
Mach angle µ ≈ arcsin(1/M) = 50.3◦. The agreement is not
exact due to the small imaginary component of α.

The results presented in this section indicate that the LST
numerical methods used are capable of capturing the unique
physics that occur when the second mode is unstable and
traveling supersonically with respect to the free stream. Fur-
ther analysis through unsteady DNS was performed to verify
the phenomena predicted by the LST analysis.

B. Case 2 LST results
The growth rate and phase speed for the discrete modes

of a f = 700 kHz disturbance are shown in Fig. 19. There
are very notable differences in the stability characteristics
between case 1 and case 2. In case 2, mode S appears to

transitions into mode F1 upon synchronization near s = 0.35 m.
Of course, the modes do not actually transition from one to
another; rather it is an alternate behavior of mode S after syn-
chronization with mode F1. This phenomenon is uncommon
but has been encountered and analyzed by Ma and Zhong.14

Furthermore, Fedorov and Tumin5 have also encountered this
seemingly strange stability characteristic, although it can be
described by their model of discrete mode branching. This
behavior still creates the possibility of a supersonic mode,
however, due to the phase speed of the unstable mode S/F1
decreasing below cr < 1 − 1/M∞. In the synchronization
region of mode F1 with mode S, the weaker modes are dif-
ficult to identify with LST, resulting in the discontinuity in
phase speed and growth rate. At this particular frequency
of f = 700 kHz, the mode becomes stable prior to synchro-
nization with the slow acoustic spectrum. Therefore, there
is no unstable supersonic mode at this frequency. Interest-
ingly, however, at lower frequencies below f = 610 kHz, the
“transition” from mode S into mode F1 does not occur. Rather,
mode F1 is the unstable mode just as in case 1, as shown
in Fig. 20.

A neutral stability contour for case 2 [Fig. 21(a)] was cre-
ated to determine if the supersonic mode was present at lower
frequencies than f = 700 kHz. However, the upper branch of
the neutral stability curve does not display a “kink” as it did in
case 1, indicating that the supersonic mode is not present in
case 2. For all frequencies, the unstable mode S/F1 becomes
stable before obtaining a supersonic phase speed. Therefore,
no unstable supersonic mode or sound radiation from the
boundary layer is expected. This result agrees with the find-
ings of Bitter and Shepherd26 in that the supersonic mode is
not encountered in the warmer wall temperature case. Nev-
ertheless, it is still useful to compute the N-factor for case
2 to determine the effect the wall temperature has on tran-
sition. The N-factor curve for case 2 is shown in Fig. 21(b).
The largest N-factor achieved by the end of the 1 meter long
cone is approximately 5.5 and is due to the f = 550 kHz fre-
quency. This is significantly lower than case 1, which had a

FIG. 19. Case 2 LST phase speed and
growth rate for modes F1, F2, and S at
f = 700 kHz. (a) Phase speed and (b)
growth rate. M∞ = 4.44 is the mean flow
Mach number immediately downstream
of the shock.
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FIG. 20. Case 2 LST phase speed and
growth rate for modes F1, F2, and S at
f = 600 kHz. (a) Phase speed and (b)
growth rate. M∞ = 4.44 is the mean flow
Mach number immediately downstream
of the shock.

FIG. 21. Case 2 LST results. (a) Neutral
stability map for second mode. Dashed
lines indicate negative growth rates. The
thick black line indicates the points of
neutral stability. (b) N-factor for unsta-
ble second mode frequencies. Frequen-
cies are in increments of ∆f = 50 kHz.
The green line is an approximation of the
edge of the N-factor curve.

maximum N-factor of almost 9. This result is expected, how-
ever, as is well known that wall cooling destabilizes the second
mode.

IX. DISCUSSION OF RESULTS AND CONCLUSION
New LST equations with v , 0 and new LST shock bound-

ary conditions were derived and verified with the applica-
tion of more accurately studying the supersonic mode in an
axisymmetric Mach 5 flow over a blunt 1 mm nose radius
isothermal cold-wall cone. Two cases were considered: case
1 with a highly cooled wall (Tw/T∞ = 0.2) and case 2 with
a more moderately cooled wall (Tw/T∞ = 0.667). Assuming
v = 0 underpredicts the growth rate of a supersonic mode
but has very little impact on subsonic modes. Therefore, it is
important to include these nonparallel effects when study-
ing the supersonic mode. The LST shock boundary condi-
tions do not have a significant impact when the mean flow
extends well beyond the boundary layer edge to allow the

oscillatory perturbation to decay. The steady flow fields
for both case 1 and case 2 showed strong thermochemical
nonequilibrium effects in the nose region; however, the chem-
ical nonequilibrium effects became less significant farther
downstream. Thermochemical nonequilibrium LST analysis
was performed on the mean flow to identify unstable modes
and prescribe conditions for the unsteady DNS conditions
used in Paper II.65

The supersonic mode has been shown to exist on an
axisymmetric cone through LST analysis for case 1 (Tw/T∞
= 0.2); however, no supersonic mode was found for case 2
(Tw/T∞ = 0.667). These findings on an axisymmetric blunt
cone with thermochemical nonequilibrium effects reinforce
the results obtained for the flat plate geometry by Bitter and
Shepherd26 and Chuvakhov and Fedorov27,28 that the cold
wall is destabilizing to the supersonic mode. The formation of
the unstable supersonic modes is only predicted by LST for
an individual frequency as a peculiarity of the synchroniza-
tion of the unstable discrete boundary layer mode F1 and the
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continuous slow acoustic spectrum. Upon synchronization
with the slow acoustic spectrum, an unstable mode F1 bifur-
cates into two simultaneously coexisting modes: the unstable
mode F1+ and the stable mode F1−. Mode F1+ gradually joins the
slow acoustic spectrum and becomes stable, whereas mode
F1− becomes increasingly stable as the streamwise distance
increases.

LST analysis has also shown that the relative Mach num-
ber plays a critical role in the structure of the boundary layer
disturbances. Specifically, below the first sonic line M(ys1) =
−1 the disturbance travels downstream supersonically with
respect to the mean flow. Between the two sonic lines M(ys1) =
−1 and M(ys2) = 1, the disturbance travels subsonically with
respect to the mean flow, resulting in “rope-like” structures
centered about the critical layer M(yc) = 0. For supersonic
modes, there exists a second sonic line at M(ys2) = 1, outside
of which the disturbance travels upstream supersonically with
respect to the mean flow, resulting in “slanted” wave patterns
at an angle µ ≈ arcsin(1/M).

Overall, the radiation of sound by the supersonic mode
has been shown to coincide with the synchronization of an
unstable mode F1 with the slow acoustic spectrum. Because
it is difficult to resolve the behavior of the boundary layer
modes in the vicinity of this synchronization with LST, fur-
ther analysis using DNS is required to fully understand the
mechanism of the supersonic mode. This task is performed
in Paper II,65 which indicates the presence of the supersonic
mode in both case 1 (Tw/T∞ = 0.2) and case 2 (Tw/T∞ = 0.667),
in contrast to LST predictions. The mechanism of the super-
sonic mode is attributed to the interaction of the unstable
subsonic mode S, stable supersonic mode F1, and the slow
acoustic spectrum. LST assumes that each mode acts inde-
pendently, however, and consequently the supersonic mode
is not resolved with LST in all cases. Therefore, performing
such a joint study of LST and DNS is necessary to reliably
assess the impact of the supersonic mode on transition to
turbulence.
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APPENDIX A: LST MATRIX ELEMENTS
The nonzero elements of each complex matrix for the

nonequilibrium LST perturbation equations are given below,
where ~φ = [ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂, T̂V]T and δij is the Kro-
necker delta. The subscripts i, j = 1, 2, . . . , ns, where ns is
the number of species in the model. The overbars indicat-
ing the steady mean flow components have been dropped for
simplicity. Elemental lengths are defined as h1dx, dy, and h3dz,
where

h1 = 1 + κy, (A1)

h3 = rb + y cos(θ) (A2)

and where κ is the streamwise curvature, rb is the local radius
of the body, and θ is the local half angle of the body. The
coordinate system for a flat plate is recovered by setting
h1 and h3 to unity. For a straight cone, only h3 is required
and h1 is set to unity. The grid transformation effects are
incorporated by

α0 =
α

h1
,

β0 =
β

h3
,

m11 =
1
h1

∂h1

∂y
,

m13 =
1

h1h3

∂h3

∂x
,

m33 =
1
h3

∂h3

∂y
.

The LST perturbation equation is repeated here for clarity(
A

d2

dy2
+ B

d
dy

+ C
)
~φ = ~0,

where the nonzero components of matrices A, B, C are

Ai,j = Di(ci − δij),

Ans+1,ns+1 = 1,

Ans+2,ns+2 = 1,

Ans+3,ns+3 = 1,
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Ans+4,j =
∑ns

s=1
hsDscs − hjDj,

Ans+4,ns+4 = −k,

Ans+4,ns+5 = −kV ,

Ans+5,j =
∑ns

s=1
evsDscs − evjDj,

Ans+5,ns+5 = −kV ,

Bi,j = δij

[
v − ρ

d
dy

(
Di

ρ

)
− (m11 +m33)Di

]
+ ρ

d
dy

(
Dici
ρ

)

+
(
ci
dρ
dy
−
dρi
dy

)
∂Di

∂ρj
+ (m11 +m33)Dici,

Bi,ns+2 = ρi,

Bi,ns+4 =

(
ci
dρ
dy
−
dρi
dy

)
∂Di

∂T
,

Bns+1,j =
1
µ

dµ
dρj

(
du
dy
−m11u

)
,

Bns+1,ns+1 =
1
µ

dµ
dy

+ m11 +m33 −
1
µ
ρv,

Bns+1,ns+2 =
1
3
iα0,

Bns+1,ns+4 =
1
µ

∂µ

∂T

(
du
dy
−m11u

)
,

Bns+2,j = −
3
4

1
µ

R
Mj
−

1
2

1
µ

∂µ

∂ρj
[m13u + (m11 +m33)v]

+
1
µ

∂µ

∂ρj

dv
dy

,

Bns+2,ns+1 =
1
4

(m13 + iα0),

Bns+2,ns+2 =
1
µ

dµ
dy

+ m11 +m33 −
3
4

1
µ
ρv,

Bns+2,ns+3 =
1
4
iβ0,

Bns+2,ns+4 = −
3
4

1
µ

p
T
−

1
2

1
µ

∂µ

∂T
[m13u + (m11 +m33)v]

+
1
µ

∂µ

∂T
dv
dy

,

Bns+3,ns+2 =
1
3
iβ0,

Bns+3,ns+3 =
1
µ

dµ
dy

+ m11 +m33 −
3
4

1
µ
ρv,

Bns+4,j = v
(
Tcv ,j + evj + hoj

)
−
dT
dy

∂k
∂ρj
−
dTV

dy
∂kV
∂ρj

+
∑ns

s=1
hs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂ρj

+ ρ
d
dy

[
1
ρ

(∑ns

s=1
hsDscs − hjDj

)]

+ (m11 +m33)
(∑ns

s=1
hsDscs − hjDj

)
,

Bns+4,ns+1 = 2µ
(
m11u −

du
dy

)
,

Bns+4,ns+2 =
4
3
µ

(
m13u + (m11 +m33)v − 2

dv
dy

)
+ p

+T
∑ns

s=1
ρscv ,s +

∑ns

s=1
ρsevs +

∑ns

s=1
ρshos ,

Bns+4,ns+4 = ρcv v −
dk
dy
−
dT
dy

∂k
∂T
−
dTV

dy
∂kV
∂T

− (m11 +m33)k +
∑ns

s=1
hs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂T

+
∑ns

s=1
Ds

(
cs
dρ
dy
−
dρs
dy

) (
cv ,s +

R
Ms

)
,

Bns+4,ns+5 = v
∑ns

s=1
ρs
∂evs
∂TV

−
dkV
dy
−
dTV

dy
∂kV
∂TV

− (m11 +m33)kV +
∑ns

s=1
Ds

(
cs
dρ
dy
−
dρs
dy

)
∂evs
∂TV

,

Bns+5,j = −
dTV

dy
∂kV
∂ρj

+ ρ
d
dy

[
1
ρ

(∑ns

s=1
evsDscs − evjDj

)]

+
∑ns

s=1
evs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂ρj

+ (m11 +m33)
(∑ns

s=1
evsDscs − evjDj

)
+ vevj,
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Bns+5,ns+2 =
∑ns

s=1
ρsevs,

Bns+5,ns+4 = −
dTV

dy
∂kV
∂T

+
∑ns

s=1
evs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂T
,

Bns+5,ns+5 = v
∑ns

s=1
ρs
∂evs
∂TV

−
dkV
dy
−
dTV

dy
∂kV
∂TV

+
∑ns

s=1
Ds

(
cs
dρ
dy
−
dρs
dy

)
∂evs
∂TV

− (m11 +m33)kV ,

Ci,j = δij
[
i(α0(u −m13Di) −ω) +Di(α2

0 + β2
0)

]
+Dici

[
iα0m13

− (α2
0 + β2

0)
]

+ δij

[
m13u + (m11 +m33)v +

dv
dy

+
d
dy

(
Di

ρ

dρ
dy

)
+ (m11 +m33)

Di

ρ

dρ
dy

]
−
∂ωi

∂ρj

+ (m11 +m33)
[(
ci
dρ
dy
−
dρi
dy

)
∂Di

∂ρj
−
Dici
ρ

dρ
dy

]

−
d
dy

(
Dici
ρ

dρ
dy

)
+

d
dy

[(
ci
dρ
dy
−
dρi
dy

)
∂Di

∂ρj

]
,

Ci,ns+1 = ρi(iα0 + m13),

Ci,ns+2 =
dρi
dy

+ (m11 +m33)ρi,

Ci,ns+3 = iβ0ρi,

Ci,ns+4 =
d
dy

[(
ci
dρ
dy
−
dρi
dy

)
∂Di

∂T

]

+ (m11 +m33)
(
ci
dρ
dy
−
dρi
dy

)
∂Di

∂T
−
∂ωi

∂T
,

Ci,ns+5 = −
∂ωi

∂TV
,

Cns+1,j = iα0

[
4
3

1
µ
m11v

∂µ

∂ρj
−

2
3

1
µ

(
m13u + m33v +

dv
dy

)
∂µ

∂ρj

−
1
µ

R
Mj

T
]

+
1
µ

d
dy

(
du
dy

∂µ

∂ρj

)
+

1
µ

[
(m11 +m33)

du
dy

+ vm13

(
2m11 −

4
3
m33

)
− u

(
m2

11 + m11m33 +
4
3
m2

13

)]

−
1
µ
v
du
dy
−

1
µ
m11u

d
dy

(
∂µ

∂ρj

)
,

Cns+1,ns+1 = i
[
α0

(
4
3
m13 −

1
µ
ρu

)
−

1
µ
ωρ

]
−m11

(
1
µ
ρv +

1
µ

dµ
dy

+m11 +m33

)
−

4
3
m2

13 −
4
3
α2

0 − β
2
0,

Cns+1,ns+2 = iα0

(
7
3
m11 +

1
3
m33 +

1
µ

dµ
dy

)
− ρ

1
µ

du
dy
−m11

1
µ
ρu

+m13

(
2m11 −

4
3
m33

)
,

Cns+1,ns+3 = −β0

(
7
3
im13 +

1
3
α0

)
,

Cns+1,ns+4 = iα0

[
∂µ

∂T

(
4
3
m11v −

2
3
m33v −

2
3
dv
dy
−

2
3
m13u

)
−
p
T

]

−
1
µ
m11u

d
dy

(
∂µ

∂T

)
+

1
µ

∂µ

∂T

[
m13v

(
2m11 −

4
3
m33

)

−u
(
m2

11 + m11m33 +
4
3
m2

13

)
+ (m11 +m33)

du
dy

]

+
1
µ

d
dy

(
du
dy

∂µ

∂T

)
,

Cns+2,j = iα0
3
4

1
µ

∂µ

∂ρj

(
du
dy
−m11u

)
−

3
4

1
µ
v
dv
dy

−
3
4

1
µ

R
Mj

dT
dy

+
1
µ

d
dy

(
dv
dy

∂µ

∂ρj

)
+

3
4

1
µ
m11u2

+
1
µ

∂µ

∂ρj

[
1
4
m13

du
dy
−m13u

(
1
4
m11 + m33

)

− v
(
m2

11 + m2
33

)
+ (m11 +m33)

dv
dy

]

−
1
2

1
µ

[m13u + (m11 +m33)v]
d
dy

(
∂µ

∂ρj

)
,

Cns+2,ns+1 = −iα0

(
1
2

1
µ

dµ
dy

+
7
4
m11

)
+

3
2

1
µ
m11ρu

−m13

(
1
4
m11 −m33 −

1
2

1
µ

dµ
dy

)
,

Cns+2,ns+2 =
3
4
i

[
ωρ − α0

(
1
µ
ρu −m13

)]
−

3
4

(
α2

0 + β2
0

)
−

3
4

1
µ
ρ
dv
dy
−

1
2

(m11 +m33)
1
µ

dµ
dy
−

(
m2

11 + m2
33

)
,

Cns+2,ns+3 = −iβ0

(
1
2

1
µ

dµ
dy

+
7
4
m33

)
,
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Cns+2,ns+4 =
3
4
iα0

1
µ

(
du
dy
−m11u

)
∂µ

∂T

−
1
2

1
µ

[m13u + (m11 +m33)v]
d
dy

(
∂µ

∂T

)

−
3
4

1
µ

d
dy

( p
T

)
+

1
µ

∂µ

∂T

[
−m13u

(
1
4
m11 + m33

)

− v
(
m2

11 + m2
33

)
+

1
4
m13

du
dy

+ (m11 +m33)
dv
dy

]

+
1
µ

d
dy

(
dv
dy

∂µ

∂T

)
,

Cns+3,j = −iβ0
1
µ

[ R
Mj

T −
4
3
∂µ

∂ρj
(m13u + m33v)

+
2
3
∂µ

∂ρj

(
m11v +

dv
dy

)]
,

Cns+3,ns+1 = iβ0

(
7
3
m13 −

1
3
α0

)
,

Cns+3,ns+2 = iβ0

(
1
µ

dµ
dy

+
1
3
m11 +

7
3
m33

)
,

Cns+3,ns+3 = i
[

1
µ
ωρ +α0

(
m13 −

1
µ
ρu

)]
−m13

1
µ
ρu−m33

1
µ
ρv

−m2
13 −m

2
33 −m11m33 −m33

1
µ

dµ
dy
− α2

0 −
4
3
β2

0,

Cns+3,ns+4 = −iβ0
1
µ

[
p
T
−

4
3
∂µ

∂T
(m13u + m33v)

+
2
3
∂µ

∂T

(
m11v +

dv
dy

)]
,

Cns+4,j = i
[
(α0u −ω)

(
Tcv ,j + evj + hoj

)
+ α0m13

(∑ns

s=1
Dscshs − hjDj

)]
−

d
dy

(
dT
dy

∂k
∂ρj

)
−

d
dy

(
dTV

dy
∂kV
∂ρj

)

+ [m13u + (m11 +m33)v]
(
Tcv ,j + evj + hoj +

R
Mj

T
)

+
d
dy

[
v

(
Tcv ,j + evj + hoj +

R
Mj

T
)]

− (m11 +m33)
(
dT
dy

∂k
∂ρj

+
dTV

dy
∂kV
∂ρj

)
+
∂µ

∂ρj


−

4
3
v2

(
m2

11 + m2
33 + m11m33

)
−

4
3

(
dv
dy

)2

−u2
(

4
3
m2

13 + m2
11

)
−

(
du
dy

)2
+
∂µ

∂ρj

[
4
3
uvm13(m11 − 2m33) +

4
3
v
dv
dy

(m11 +m33) +
4
3
u
dv
dy

m13 + 2m11u
du
dy

]

+
d
dy

(∑ns

s=1
hs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂ρj

)
+

d
dy

(hjDj

ρ

dρ
dy

)
+ hjDj(α2

0 + β2
0) + (m11 +m33)

[∑ns

s=1
hs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂ρj

]

−
d
dy

(∑ns

s=1

hsDscs
ρ

dρ
dy

)
−

∑ns

s=1
hsDscs(α2

0 + β2
0) + (m11 +m33)

1
ρ

dρ
dy

(
hjDj −

∑ns

s=1
hsDscs

)
,

Cns+4,ns+1 =
4
3
iα0µ

(
m13u + m33v +

dv
dy
− 2m11v

)
+ iα0

(
p + Tρcv + EV +

∑ns

s=1
ρshos

)

+ 2µ
[
m13v

(
2
3
m11 −

4
3
m33

)
− u

(
4
3
m2

13 + m2
11

)
+

2
3
m13

dv
dy

+ m11
du
dy

]
+ m13

(
p + Tρcv + EV +

∑ns

s=1
ρshos

)
,

Cns+4,ns+2 = −2µiα0

(
du
dy
−m11u

)
+

d
dy

(∑ns

s=1
ρscv ,sT

)
+
∑ns

s=1

dρs
dy

h0
s

+
4
3
µ

[
m13u(m11 − 2m33) + 2v

(
m11m33 −m2

11 −m
2
33

)
+ (m11 +m33)

dv
dy

]

+ (m11 +m33)
(
p + Tρcv + EV +

∑ns

s=1
ρshos

)
,
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Cns+4,ns+3 = iβ0

[
p + Tρcv + EV +

∑ns

s=1
ρshos +

4
3
µ

(
−2m13u + v(m11 − 2m33) +

dv
dy

)]
,

Cns+4,ns+4 = i[α0(ρucv −m13k) −ωρcv ] + (α2
0 + β2

0)k + ρcv
dcv
dy
−

d
dy

(
dT
dy

∂k
∂T

)
−

d
dy

(
dTV

dy
∂kV
∂T

)

+
(
ρcv +

p
T

) [
m13u + (m11 +m33)v +

dv
dy

]
+
∂µ

∂T

[
4
3
v2(m11m33 −m2

11 −m
2
33)

+
4
3
uvm13(m11 − 2m33) +

4
3
v
dv
dy

(m11 +m33)
]

+
∂µ

∂T


−

4
3

(
dv
dy

)2

+
4
3
u
dv
dy

m13 − u2
(

4
3
m2

13 + m2
11

)

+ 2m11u
du
dy
−

(
du
dy

)2
+

d
dy

[∑ns

s=1
hs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂T

]
+
∑ns

s=1

(
cv ,s +

R
Ms

)
d
dy

[
Ds

(
cs
dρ
dy
−
dρs
dy

)]

+ (m11 +m33)
[∑ns

s=1
hs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂T
+
∑ns

s=1

(
cv ,s +

R
Ms

)
Ds

(
cs
dρ
dy
−
dρs
dy

)]

− (m11 +m33)
[
dT
dy

∂k
∂T

+
dTV

dy
∂kV
∂T

]
,

Cns+4,ns+5 = i
[
α0

(
u
∑ns

s=1
ρs
∂evs
∂TV

−m13kV

)
−ω

∑ns

s=1
ρs
∂evs
∂TV

]
+ v

d
dy

(∑ns

s=1
ρs
∂evs
∂TV

)

+
(
m13u + (m11 +m33)v +

dv
dy

)∑ns

s=1
ρs
∂evs
∂TV

+ (α2
0 + β2

0)kV −
d
dy

(
dTV

dy
∂kV
∂TV

)

− (m11 +m33)
dTV

dy
∂kV
∂TV

+ (m11 +m33)
[∑ns

s=1
Ds

(
cs
dρ
dy
−
dρs
dy

)
∂evs
∂TV

]
+

d
dy

[∑ns

s=1
Ds

(
cs
dρ
dy
−
dρs
dy

)
∂evs
∂TV

]
,

Cns+5,j = i
[
α0

(
uevj + m13

(∑ns

s=1
evsDscs − evjDj

))
−ωevj

]
−

∑ns

s=1
evs

∂ωs

∂ρj
−
∂QT−V

∂ρj
−

d
dy

(
dTV

dy
∂kV
∂ρj

)

+
(
α2

0 + β2
0

) [
evjDj −

∑ns

s=1
evsDscs

]
+ evj

[
m13u + (m11 +m33)v +

dv
dy

]
−

d
dy

(
dTV

dy
∂kV
∂ρj

)

− (m11 +m33)
dTV

dy
∂kV
∂ρj

+
d
dy

(
evjDj

1
ρ

dρ
dy

)
−

d
dy

(∑ns

s=1

evsDscs
ρ

dρ
dy

)
+

d
dy

(∑ns

s=1
evs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂ρj

)

+ (m11 +m33)
[
evjDj

1
ρ

dρ
dy
−

∑ns

s=1

evsDscs
ρ

dρ
dy

∑ns

s=1
evs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂ρj

]
,

Cns+5,ns+1 = (iα0 + m13)
∑ns

s=1
ρsevs,

Cns+5,ns+2 = (m11 +m33)
∑ns

s=1
ρsevs +

d
dy

(∑ns

s=1
ρsevs

)
,

Cns+5,ns+3 = iβ0

∑ns

s=1
ρsevs,
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Cns+5,ns+4 = −
d
dy

(
dTV

dy
∂kV
∂T

)
−
∂QT−V

∂T
−

∑ns

s=1
evs

∂ωs

∂T
+

d
dy

[∑ns

s=1
evs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂T

]

+ (m11 +m33)
[∑ns

s=1
evs

(
cs
dρ
dy
−
dρs
dy

)
∂Ds

∂T
−
dTV

dy
∂kV
∂T

]
,

Cns+5,ns+5 = i
[
α0

(
u
∑ns

s=1
ρs
∂evs
∂TV

−m13kV

)
−ω

∑ns

s=1
ρs
∂evs
∂TV

]
−
dQT−V

dy
−

∑ns

s=1
evs

∂ωs

∂TV
−

∑ns

s=1
ωs
∂evs
∂TV

+
(
m13u + (m11 +m33)v +

dv
dy

)∑ns

s=1
ρs
∂evs
∂TV

−
d
dy

(
dTV

dy
∂kV
∂TV

)
+

(
α2

0 + β2
0

)
kV

+
d
dy

[∑ns

s=1
Ds

(
cs
dρ
dy
−
dρs
dy

)
∂evs
∂TV

]
+ v

d
dy

(∑ns

s=1
ρs
∂evs
∂TV

)
+ (m11 +m33)

[∑ns

s=1
Ds

(
cs
dρ
dy
−
dρs
dy

)
∂evs
∂TV

−
dTV

dy
∂kV
∂TV

]
.

APPENDIX B: LST SHOCK BOUNDARY CONDITION
MATRIX ELEMENTS

The nonzero elements of each complex matrix for the
nonequilibrium LST shock boundary conditions are given
below, where ~φ = [ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂, T̂V]T and δij is the
Kronecker delta. The subscripts i, j = 1, 2, . . . , ns, where
ns is the number of species in the model. The overbars
indicating the steady mean flow components have been
dropped for simplicity.

The shock boundary equations are repeated here for
clarity,

ns+5∑
j=1

B̂ijφ̂j = 0, i = 1, 2, . . . ,ns + 4.

This represents ns + 4 equations for ns + 5 independent vari-
ables, and therefore an additional equation is required to close
the system. The closure equations considered were mixture
continuity, y-momentum, and the right-running characteris-
tic equations. The following simplifying terms are introduced:

Xs = iα∆(ρsu) − iω∆(ρs), s = 1, 2, . . . ,ns,

Xns+1 = iα∆(ρu2 + p) − iω∆(ρu),

Xns+2 = iα∆(ρuv) − iω∆(ρv),

Xns+3 = iβ∆p,

Xns+4 = iα∆(u(ρe + p)) − iω∆(ρe),

Xns+5 = iα∆(uρev ) − iω∆(ρev ),

where ∆() is the jump condition across the shock. For exam-
ple, ∆(ρu) = (ρu)∞ − (ρu)shock where the subscript ∞ denotes
upstream of the shock and shock denotes immediately down-
stream of the shock. The nonzero components of B̂ are

B̂i,j = Xns+1δij(au − v) − Xi

(
a
R
Mj

T + au2 − uv
)
,

B̂i,ns+1 = Xns+1aρi − Xi(2aρu − ρv),

B̂i,ns+2 = −Xns+1ρi + Xiρu,

B̂i,ns+4 = −Xia
p
T

,

B̂ns+1,j = Xns+1

(
auv − v2 +

R
Mj

T
)

−Xns+2

(
au2 − uv + a

R
Mj

T
)
,

B̂ns+1,ns+1 = Xns+1aρv + Xns+2(ρv − 2aρu),

B̂ns+1,ns+2 = Xns+1(aρu − 2ρv) + Xns+2ρu,

B̂ns+1,ns+4 = −Xns+1
p
T
− Xns+2a

p
T

,

B̂ns+2,j = Xns+3

(
uv − a

R
Mj

T − au2
)
,

B̂ns+2,ns+1 = Xns+3(ρv − 2aρu),

B̂ns+2,ns+2 = Xns+3ρu,

B̂ns+2,ns+3 = aρu − ρv,

B̂ns+2,ns+4 = −Xns+3a
p
T

,

B̂ns+3,j = Xns+1(au − v)
[
cv ,jT + evj +

1
2

(u2 + v2) + hoj

+
R
Mj

T
]
− Xns+4

(
a
R
Mj

T − uv + au2
)
,
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B̂ns+3,ns+1 = Xns+1[(au− v)ρu + a(ρe +p)] +Xns+4(ρv − 2aρu),

B̂ns+3,ns+2 = Xns+1[(au − v)ρv − (ρe + p)] + Xns+4ρu,

B̂ns+3,ns+4 = Xns+1(au − v)
[
ρcv +

p
T

]
− Xns+4a

p
T

,

B̂ns+3,ns+5 = (au − v)
∑ns

s=1
ρs
∂evs
∂TV

,

B̂ns+4,j = Xns+1(au − v)evj − Xns+5

(
a
R
Mj

T − uv + au2
)
,

B̂ns+4,ns+1 = Xns+1aρev + Xns+5(ρv − 2aρu),

B̂ns+4,ns+2 = −Xns+1ρev + Xns+5ρu,

B̂ns+4,ns+4 = −Xns+5a
p
T

,

B̂ns+4,ns+5 = (au − v)
∑ns

s=1
ρs
∂evs
∂TV

.
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