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ABSTRACT
Supersonic modes, previously thought to be insignificant due to their smaller amplitude than Mack’s traditional second mode,
occur in hypersonic boundary layers when a disturbance travels supersonically with respect to the mean flow outside the bound-
ary layer, causing outward-radiating acoustic waves. Very few previous studies perform Direct Numerical Simulation (DNS) of
supersonic modes and instead rely on Linear Stability Theory (LST). This combined LST and DNS study investigates supersonic
modes in Mach 5 flow over a blunt cold-wall cone. An LST analysis was performed in Paper I [C. P. Knisely and X. Zhong, “Sound
radiation by supersonic unstable modes in hypersonic blunt cone boundary layers. I. Linear stability theory,” Phys. Fluids 31,
024103 (2019)], whereas DNS is the focus of Paper II. The overall goal is to determine the mechanism of supersonic modes and the
conditions under which they exist. Compared to previous pure LST studies, DNS provides the advantage of making fewer limiting
assumptions and can resolve interactions between modes. The results here indicate the excitation of supersonic modes via modal
interactions not resolved with LST, suggesting the inadequacy of pure LST analyses concerning supersonic modes. Unsteady DNS
results verified supersonic modes in the flow with wall-to-free-stream temperature ratio T4/T∞ = 0.2, lending credence to the
modes’ physical existence. However in the case of T4/T∞ = 0.667, sound radiation was also found in DNS while LST predicted a
stable supersonic mode. The mechanism for supersonic modes is attributed to a modal interaction between mode F1, mode S,
and the slow acoustic spectrum. Therefore, it is necessary to perform combined LST and DNS studies of supersonic modes to
reliably predict their presence and impact on transition to turbulence.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5077007

I. INTRODUCTION
Hypersonic boundary layer transition is a critical area of

study in the development of hypersonic vehicles. There is a
drastic increase in drag and heating in the turbulent regime;
therefore, accurately predicting the transition location can
provide a better estimate in heat transfer to the vehicle. With
this knowledge, the thickness and material of thermal protec-
tion systems (TPSs) can be more accurately specified, reducing
the factor of safety in the TPS design, reducing the overall
weight of the vehicle, and enabling a greater payload or vehicle
range.

The major mechanism of transition to turbulence in
hypersonic flows at zero angle of attack is receptivity to

freestream disturbances leading to eigenmode growth. The
dominant eigenmodes are known as Mack’s first and sec-
ond modes1 although it should be noted that these instabil-
ities are not distinctive modes in the mathematical defini-
tion.2 To understand the behavior of these modes in direct
numerical simulation (DNS), it is first necessary to under-
stand their behavior under the linear disturbance amplitude
assumption. In linear stability theory (LST), the perturbation
in a flow variable q is described by a normal mode q′ =
q̂(y) exp[i(αx + βz −ωt)], where q̂(y) is the eigenfunction, ω is
the circular frequency of the disturbance, and α and β are the
wavenumbers. For a 2D disturbance, β = 0. For comparison to
a spatially developing disturbance wave in DNS, ω and β are
assumed to be real, and the wavenumber α is assumed to be
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complex which means the disturbances grow in space rather
than time.

Mack’s first mode is a viscous instability and can be com-
pletely stabilized by increasing the Mach number into the
hypersonic regime. The second mode, however, is inviscid
and is destabilized by increasing Mach number.1 Therefore,
in the hypersonic regime, Mack’s second mode is the domi-
nant instability wave. The second mode has been visualized
as acoustic rays physically trapped between the wall and rela-
tive sonic line.3–6 Mack4 also notes that the second mode (and
higher acoustic modes) is present whenever there is a region
of local supersonic flow relative to the phase speed of the
instability wave between the wall and the relative sonic point.
Such a description of the second mode makes the assumption
of a large wavenumber for a neutral mode and is not exact
in reality.4,7 However, this visualization has been invaluable to
experimentalists and those performing DNS in understanding
the structure of the second mode.

An illustration of the second mode inspired by previous
authors3–6 is shown in Fig. 1. This diagram also makes the
same assumptions of large wavenumber for a neutral mode,
although one would expect a qualitatively similar physical
illustration for weakly non-neutral waves despite being quan-
titatively different. Including the imaginary component of the
wavenumber can be thought of as a damping effect. The devel-
opment of such a visualization of the second mode requires
the understanding of the role of the sonic line described by
the relative Mach number.

The complex local relative Mach number is given by

M(y) =
u(y) − c
a(y)

, (1)

where u(y) is the local mean flow velocity tangential to the
wall, c = ω/α is the complex disturbance propagation speed
with ω being the circular frequency, α is the streamwise
wavenumber, and a(y) is the local mean flow speed of sound.
The real component of the phase speed is denoted as cr. It
can be shown1 that M plays a significant role in the governing
stability equations. Specifically, there is a turning point as |M |
increases past unity. The solution of the second order ordinary

differential equation (ODE) changes its behavior at the turning
point, resulting in a different nature of the solution depending
on the value of M.

The relative sonic line, ys, is then given by M(ys) = −1 in
Fig. 1. The relative sonic line has also been denoted by pre-
vious authors3–6 equivalently as c = u(ys) + a(ys). More gen-
erally, the relative sonic line can be defined as any location
where the magnitude of the real component of the relative
Mach number is equal to unity, i.e., |Real(M) | = 1. Near the
wall, the disturbance is propagating downstream supersoni-
cally (M < −1) with respect to the local mean flow velocity. In
this region where M < −1, the stability equations are hyper-
bolic, resulting in the acoustic disturbance waves trapped by
the wall with the relative sonic line acting as a wave guide
in the large wavenumber limit. Outside of the M = −1 turn-
ing point at y = ys, the disturbance travels subsonically with
respect to the free stream and creates a “rope-like” wave
pattern observed by many researchers both experimentally8,9

and numerically.10–12 These structures are centered about
M(yc) = 0, or equivalently c = u(yc), with yc denoting the critical
layer. Because the phase speed of the mode is subsonic in the
freestream, i.e., M < 1, such a mode is referred to as a subsonic
mode. The new illustration of the second mode in Fig. 1 is pre-
sented rather than the classical schematics3–6 in preparation
of a new illustration of the supersonic mode based on the same
principles.

The nomenclature of Mack’s first and second modes
is not particularly descriptive, and as mentioned previ-
ously, the first and second modes are not actually dis-
tinctive modes.2 In reality, there are multiple coexisting
modes in the flow. The contemporary notation of Fedorov
and Tumin2 is used here instead with the following dis-
cussion relating Mack’s description of the modes to the
contemporary notation. Mack’s first and second modes are
known as discrete modes, which have a highly oscillatory
eigenfunction within the boundary layer whose magnitude
decays to zero sharply outside the boundary layer. Simul-
taneously existing in the flow are the continuous modes,
whose eigenfunctions do not decay outside of the boundary
layer. The four types of continuous modes are fast and slow

FIG. 1. Visualization of neutral second
mode similar to Morkovin’s,3 Mack’s,4

Reshotko’s,5 and Fedorov’s6 assuming
large wavenumber. The sonic line is
denoted by M(ys) = −1 and the crit-
ical layer by M(yc) = 0. The reflec-
tion at the sonic line changes waves
from compression to expansion and vice
versa.

Phys. Fluids 31, 024104 (2019); doi: 10.1063/1.5077007 31, 024104-2

Published under license by AIP Publishing

 10 O
ctober 2024 21:08:16

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

acoustic, entropy, and vorticity disturbances, although the
entropy and vorticity spectra often overlap indistinguishably.
Fedorov and Tumin’s2 notation for discrete modes includes a
slow mode (mode S) and an infinite sequence of fast modes
(mode F1, mode F2, etc.), also known to exist, as proposed by
Mack.1

Mode S and mode F1 originate in the slow and fast acous-
tic spectra at the leading edge of the body. That is, mode S
begins with a phase speed cr = 1 − 1/M∞ and mode F1 begins
with a phase speed of cr = 1 + 1/M∞. In typical supersonic
flows, the proximity of mode S to the slow acoustic spec-
trum can cause mode S to become unstable. This first unstable
mode is referred to as Mack’s first mode and is the com-
pressible analog of Tollmien-Schlichting waves. In hypersonic
flows, however, due to the increased Mach number, the vis-
cous first mode instability is insignificant and can be com-
pletely stabilized. Further downstream from the leading edge,
mode S increases in phase speed, while mode F1 decreases
in phase speed. Eventually mode S and mode F1 synchro-
nize, defined here as both modes having equal phase speeds,
regardless of the growth rate. During synchronization, one
mode can become unstable, while the other is stabilized.2 Typ-
ically, mode S is the unstable mode, although in certain flow
conditions mode F1 can become unstable instead.13 Regard-
less of which mode is unstable, Mack’s second mode refers to
the unstable mode occurring after synchronization between
mode F1 and mode S. Farther downstream, mode S can also
synchronize with mode F2, mode F3, and higher modes to
create Mack’s third, fourth, and higher modes. However, the
third and higher modes are decreasing in amplitude from
the second mode;1 therefore, the focus of the majority of
hypersonic boundary layer transition studies is on the second
mode.

The traditional second mode occurs when mode S is
unstable after synchronization with mode F1, resulting in a
subsonic phase speed, i.e., 1 − 1/M∞ < cr < 1 + 1/M∞. In
the cases when mode F1 becomes unstable after synchroniza-
tion, its phase speed can become supersonic, i.e., cr < 1 −
1/M∞ while unstable.4,14 This situation results in a synchro-
nization of mode F1 with the slow acoustic spectrum, causing
a peculiarity in the eigenvalue spectrum due to the proxim-
ity of a discrete mode to a continuous mode. Downstream
of this synchronization, the unstable mode F1 is referred
to as the supersonic mode and is associated with unique
features distinguishing it from the traditional second mode.
Specifically, the supersonic mode is characterized by a sec-
ond region of relative supersonic flow outside of the critical
layer, resulting in the radiation of sound from the boundary
layer.

The supersonic mode is not a new finding and has been
studied since the 1980s. Numerical investigations by Mack in
198514 and 19904 and Reshotko in 19915 came to the con-
sensus that the supersonic mode was insignificant due to its
smaller disturbance amplification rate than the second mode.
However, there has been a renewed interest in studying the
supersonic mode in hypersonic boundary layers due to their

presence in the flow conditions typical of the T5 shock tun-
nel at Caltech, largely sparked by the work of Bitter and
Shepherd15 in 2015. In such high-enthalpy shock tube exper-
iments, the wall temperature remains ambient during the
short test duration, resulting in a cold wall with respect
to the free stream. Cold wall conditions in high-enthalpy
flows are also found in some real flight cases.16,17 It has
long been known that wall cooling stabilizes the first mode
but destabilizes the second mode.14,18,19 Bitter and Shep-
herd’s15 work, however, took these cold-wall studies a few
steps further and has shown through a chemical equilib-
rium, thermal nonequilibrium LST analysis that high levels
of wall cooling on a flat plate lead to the supersonic mode.
Their findings indicate that the supersonic modes are asso-
ciated with instabilities over a wider range of frequencies
than subsonic modes during which acoustic waves radiate
from the wall into the free stream. This phenomenon has also
been referred to as the spontaneous radiation of sound by
Fedorov.20,21

Because of its perceived lack of impact on transition to
turbulence, few studies have been performed, directly ana-
lyzing the supersonic mode. However, it has been encoun-
tered unexpectedly in many other studies.22–28 Although
DNS has rarely been used to study the supersonic mode,
there is no lack of computational tools accounting for real
gas effects that would be capable of resolving it. Can-
dler29 developed a thermochemical nonequilibrium DNS code
for ionized hypersonic flow based on a shock-capturing
approach. Similar well-known thermochemical nonequilib-
rium shock-capturing codes include US3D,30 LAURA (Lan-
gley Aerothermodynamic Upwind Relaxation Algorithm),31,32

and DPLR (Data-Parallel Line Relaxation).33 In addition, Stem-
mer34,35 used shock-capturing schemes with thermochemi-
cal nonequilibrium. Linn and Kloker36 used a calorically per-
fect gas with thermal nonequilibrium in their DNS study. Ma
and Zhong37 used a two-temperature model with two species
to simulate Mach 10 O2 flow over a flat plate to reduce
computational memory and cost. They incorporated chem-
ical nonequilibrium, but assumed thermal equilibrium (i.e.,
the vibrational and translation-rotation temperatures were
equal). In order to reduce the spurious oscillations behind the
shock inherent to shock-capturing schemes, Prakash et al.38

developed a high-order shock fitting method for thermo-
chemical nonequilibrium flows and studied the receptiv-
ity of freestream disturbances. Parsons et al.11 used the
shock-fitting formulation with a 5-species thermochemi-
cal nonequilibrium air model to study the receptivity of
freestream acoustic disturbances. Mortensen39 expanded
the study of thermochemical nonequilibrium effects to
an 11-species air model incorporating surface chemistry.
Overall, it was shown that chemical nonequilibrium has
a significant destabilizing effect on second mode transi-
tion, while thermal nonequilibrium has a slight stabilizing
effect.

A comprehensive examination of the supersonic mode’s
impact on transition to turbulence is yet to be performed
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despite significant progress by a number of authors. In 1997
Chang, Vinh, and Malik40 reported supersonic modes in Mach
20 chemical nonequilibrium, thermal equilibrium flow over a
6◦ wedge with wall temperature ratio T4/Tad = 0.1 and noted
the stability boundary conditions in the free stream are
critical to resolving the supersonic mode due to its oscil-
latory nature in the free stream. Additionally, they note
that peak species perturbation coincides with the loca-
tion of maximum chemical production in the boundary
layer, and therefore the species eigenfunctions do not
oscillate in the free stream, whereas pressure, temper-
ature, and velocity perturbations exhibit the oscillatory
behavior outside of the boundary layer. Bitter and Shep-
herd15 in 2015 provided clear evidence through LST of
the supersonic mode’s existence on a cold-wall flat plate,
although they neglected chemical nonequilibrium effects. Bit-
ter and Shepherd also demonstrated that the cold wall was
destabilizing to the supersonic mode. Over the course of
2014-2016, Salemi et al. also modeled the 5◦ half-angle sharp
cone configurations typical of the T5 tunnel at Caltech and
investigated second mode synchronization with the slow
acoustic spectrum. They investigated the effect of nonlin-
ear disturbances,41,42 a flared cone geometry,43 and high-
temperature effects,44 although the Prandtl number and
the ratio of specific heats were fixed in their real gas
model. Overall, Salemi45 concluded that the synchroniza-
tion of mode F1 with the slow acoustic spectrum caused
the emission of acoustic waves from the boundary layer
into the free stream. In 2016 Chuvakhov and Fedorov20,21

largely confirmed Bitter and Shepherd’s15 findings through
perfect gas LST analysis as well as unsteady DNS analy-
sis on a flat plate, although they used different free stream
conditions.

Edwards and Tumin46 in 2017 found the supersonic mode
on a hot wall with chemical effects, upending the notion
that the supersonic mode occurs only on highly cooled
walls. Edwards and Tumin incorporated additional source
terms in their mean flow equations accounting for kinetic
fluctuations in the flow, but used a perfect gas stability solver.

Edwards and Tumin suggested that these kinetic fluctuations
may generate a discrete mode in the vicinity of the neu-
tral point. Depending on the flow parameters, the excited
mode can become supersonic far downstream in the vicinity
of the upper neutral branch curve. Therefore, the effect of wall
temperature on the supersonic mode in thermochemical
nonequilibrium flow must be re-evaluated. In 2018, Knisely
and Zhong47 performed thermochemical nonequilibrium LST
and DNS studies using similar hot wall flow conditions on
a 5◦ half-angle blunt cone and confirmed the existence of
the supersonic mode, although it was quite weak. Knisely
and Zhong48 later in 2018 showed with unsteady DNS that
the cold wall is destabilizing to the supersonic mode so
much so that it is possible for the supersonic mode to
have a greater magnitude than the traditional second mode.
Furthermore, Mortensen49 in 2018 discovered the super-
sonic mode in Mach 20 thermochemical nonequilibrium flow
over very blunt cones and determined the supersonic mode
to have a significantly higher amplitude than the second
mode for nose radii greater than approximately 36 mm.
Knisely and Zhong’s48 and Mortensen’s49 findings are novel
and raise concerns of a dominant supersonic mode exist-
ing in other seldomly studied (but still practically relevant)
flows. Therefore, a comprehensive examination of the super-
sonic mode’s impact on transition to turbulence must be
performed.

A schematic of a neutral supersonic mode (similar to
the one developed by Knisely and Zhong50) is presented in
Fig. 2 for further elaboration based on the same argument
as the neutral subsonic second mode in Fig. 1, except a sec-
ond relative sonic line is included. Specifically, it must again
be noted that the visualization presented here is developed
for the limiting case of a large wavenumber neutral mode,
although there are qualitative similarities for finite wavenum-
ber non-neutral modes. Nevertheless, it is indicative of the
results one might expect to obtain from LST, DNS, or exper-
iments in future studies. Near the wall, the same structures
exist as in the traditional subsonic second mode. The dis-
turbance is traveling supersonically downstream relative to

FIG. 2. Visualization of neutral super-
sonic mode in large wavenumber limit.
The first sonic line is denoted by
M(ys1) = −1, the critical layer by
M(yc) = 0, and the second sonic line
by M(ys2) = 1. The reflection at the first
sonic line changes waves from compres-
sion to expansion and vice versa.
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the mean flow, indicated below a relative Mach number of
M < −1, or equivalently c > u(y) + a(y). The first sonic
line M(ys1) = −1 again acts as a wave guide for the acous-
tic rays. Similar to the traditional subsonic second mode,
outside of M(ys1) = −1, the disturbance is traveling subsonically
with respect to the free stream and creates the “rope-like”
wave pattern centered about the critical layer M(yc) = 0. When
the phase speed of the disturbance is slow enough under very
particular flow conditions, a second supersonic region can be
present. There can exist a second relative sonic line M(ys2) = 1,
or equivalently c < u(ys2) − a(ys2), outside of which the distur-
bance is traveling upstream supersonically with respect to the
free stream. Again, because |M | > 1, the solution to the sta-
bility equations are wave-like. This creates the “slanted” wave
pattern outside of the boundary layer shown in the schematic
in Fig. 2. As y→∞, the disturbance will reduce back to a pure
acoustic wave. The angle created by this decaying wave pat-
tern is analogous to a Mach wave angle from traditional com-
pressible flow theory and is approximated by µ ≈ arcsin(1/M).
For a neutral supersonic wave, this relation is exact. However
because a non-neutral wave will have an imaginary compo-
nent of the wavenumber, the Mach wave angle for a non-
neutral instability will have a slightly different angle. Again,
the schematic in Fig. 2 is simply an extension of the well-
established visualization by previous authors for the tradi-
tional subsonic second mode in the large wavenumber limit3–6

to include a second relative sonic line.

The results of Edwards and Tumin46 and Knisely and
Zhong47 indicating that the spontaneous radiation of sound
in hot-wall flows necessitates the re-evaluation of the role
of wall temperature on the supersonic mode in nonequilib-
rium conditions. Furthermore, Knisely and Zhong47,48 only
observed the supersonic mode in DNS and not LST in their
high-enthalpy flow, which raises questions regarding the
mechanism of the creation of the supersonic mode. This two-
part LST and DNS study performs a more in-depth analysis of
the supersonic mode incorporating real gas effects on a blunt
cone in conditions similar to Bitter and Shepherd.15 The LST
method and new shock boundary conditions have been veri-
fied in Paper I,72 and the results indicate that the supersonic
mode exists in the highly cooled conical flow with the wall-
to-free-stream temperature ratio T4/T∞ = 0.2 and creates an
abnormal growth pattern that is not observed in flows with
traditional second-mode transition. However, the supersonic
mode was not shown to exist using LST in the conical flow with
T4/T∞ = 0.667.

Because Knisely and Zhong47,48 suggest that the super-
sonic mode can be excited via a modal interaction, LST
solvers will not resolve this excitation. Therefore, the use of
DNS is necessary in combination with LST to fully determine
the presence of the supersonic mode. The goals are to use
thermochemical nonequilibrium DNS and LST analyses to (1)
determine the characteristics of the supersonic mode and
under what conditions it exists and (2) examine the impact
of the supersonic mode on transition to turbulence under
realistic flight or experimental conditions.

TABLE I. Freestream flow conditions for DNS simulations.

Parameter Value Parameter Value

M∞ 5 H0,∞ 9.17 MJ/kg
ρ∞ 2.322 × 10−2 kg/m3 p∞ 10 kPa
T∞ 1500 U∞ 3882.42 m/s
cN2 0.78 cO2 0.22

II. SIMULATION CONDITIONS
The flow conditions for both simulations considered in

this study are intended to be similar to those used by Bit-
ter and Shepherd15 and are summarized in Table I. The goal
is to confirm that the DNS and LST methods are capable
of producing the same physical artifacts on a blunt cone
observed by Bitter and Shepherd15 on a flat plate and expand
on the results of Knisely and Zhong.50 An in-depth LST study
was performed in Paper I,72 whereas the focus of Paper II
is DNS. Two different mean flow cases are considered in
this study; the only difference between the two cases is the
isothermal wall temperature. All free stream conditions are
identical. Case 1 had a wall temperature of T4 = 300 K,
resulting in a wall-temperature ratio of T4/T∞ = 0.2. Case 2
had a wall temperature of T4 = 1000 K, resulting in a wall-
temperature ratio of T4/T∞ = 0.667. The geometry is a 5◦

half-angle axisymmetric blunt cone which is 1 m in length with
a nose radius of 1 mm. The DNS simulation used 256 points
in the wall-normal direction and roughly 10 points/mm on
the surface of the cone in the streamwise direction. In the
azimuthal direction, four points are used. As will be explained
in Secs. III and IV, the DNS code used in this study utilizes a
shock-fitting method. Thus, the parameters in Table I are the
free stream conditions upstream of the shock formed over the
body.

III. GOVERNING EQUATIONS AND GAS MODEL
The governing equations for the DNS and LST codes

are those developed by Mortensen and Zhong,39,51–55 which
are formulated for thermochemical nonequilibrium assum-
ing a two-temperature model. Their formulation is presented
here for clarity. The rotational mode is assumed to be fully
excited with five non-ionizing species with finite-rate chem-
istry. Two-temperatures are used to represent translation-
rotation energy and vibration energy. The five species model
for air consists of N2, O2, NO, N, and O. Therefore, the Navier-
Stokes equations in conservative form consist of five species
mass conservation equations, three momentum conserva-
tion equations, and two energy equations: the total energy
equation and the vibration energy equation. The governing
equations in vector form are written as

∂U
∂t

+
∂Fj
∂xj

+
∂Gj

∂xj
=W, (2)

where U is the state vector of conserved quantities and W is
the source terms defined by
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U =



ρ1
...

ρns

ρu1

ρu2

ρu3

ρe

ρev



, W =



ω1

...

ωns

0

0

0

0
nms∑
s=1

(QT−V,s +ωsev ,s)



.

The inviscid and viscous flux vectors, Fj and Gj, respectively,
are defined by

Fj =



ρ1uj

...

ρnsuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(p + ρe)uj

ρevuj



,

Gj =



ρ1v1j

...

ρnsvnsj

τ1j

τ2j

τ3j

−uiτij − kT ∂T
∂xj
− kV

∂TV
∂xj

+
∑nms

s=1 ρshsvsj

−kV
∂TV
∂xj

+
∑nms

s=1 ρsev ,svsj



,

where 3sj is the species diffusion velocity and the viscous stress
is defined as

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
−

2
3
µ
∂uk

∂xk
δij. (3)

The total energy per unit volume, ρe, is defined as

ρe =
ns∑
s=1

ρscv ,sT + ρev +
1
2
ρ
(
u2

1 + u2
2 + u2

3

)
+

ns∑
s=1

ρshos , (4)

where the vibration energy per unit volume, ρe3 , is defined as

ρev =
nms∑
s=1

ρsev ,s =

nms∑
s=1

ρs
R
Ms

θv ,s

exp(θv ,s/TV) − 1
, (5)

where hos is the species heat of formation, R is the univer-
sal gas constant, Ms is the species molecular weight, e3,s is
the species specific vibration energy, and c3,s is the species

translation-rotation specific heat at constant volume, defined
as

cv ,s =




5
2
R
Ms

s = 1, 2, . . . ,nms,

3
2
R
Ms

s = nms + 1, . . . ,ns.
(6)

Additionally, θ3,s is the characteristic vibrational temperature
of each vibrational mode taken from Park.56

Chemical nonequilibrium is modeled by three dissociation
reactions and three exchange reactions with each reaction
governed by a forward and backward reaction rate determined
from

kf = CfT
η
a exp(−θd/Ta), (7)

kb = kf/Keq. (8)

The forward reaction rates, kf , are obtained from Park.56 The
equilibrium coefficient, Keq, is determined using a curve fit to
experimental data from Park56

Keq = A0 exp
(
A1

Z
+ A2 + A3 ln(Z) + A4Z + A5Z

2
)
,

Z =
10 000

T
.

(9)

The exchange between translation-rotation and vibration
energies is governed by the Landau-Teller formulation

QT−V,s = ρs
ev ,s(T) − ev ,s(TV)
〈τs〉 + τcs

, (10)

where 〈τs〉 is the Landau-Teller relaxation time from Lee.57

The term τcs more accurately models the relaxation time in
areas of high temperatures,56 such as those occurring just
downstream of the bow shock.

The Blottner58 curve fit [Eq. (11)] is used to compute the
viscosity of each species. Wilke’s59 mixing rule [Eq. (12)] is then
used to compute the mixture viscosity, with the total heat
conductivities for each energy mode computed in a similar
fashion. A constant Schmidt number of 0.5 is used to com-
pute the diffusion coefficient, which through Fick’s law results
in the diffusion velocity of each species

µs = 0.1 exp
[
(Aµs ln(T) + Bµs ) ln(T) + Cµs

]
, (11)

µ =

ns∑
s=1

Xsµs
φs

, (12)

Xs =
cs
Ms

, (13)

φs =

∑ns
r=1 Xr

[
1 +

(
Ms
Mr

) 1/4
]2

[
8
(
1 + Ms

Mr

)] 1/2
. (14)

IV. NUMERICAL METHODS
A. DNS

The thermochemical nonequilibrium code developed by
Mortensen and Zhong39,51–55 utilizes a high-order
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shock-fitting method extended from a perfect gas flow ver-
sion by Zhong60 to compute the flow field between the shock
and the body. The numerical method is repeated here for clar-
ity. For shock-fitting computations, the shock location is not
known a priori, so its position is solved along with the flow
field. Since the shock position is not stationary, the grid used
to compute the flow field is a function of time, leading to a
coordinate transformation from physical (x, y, z, t) to compu-
tational (ξ , η, ζ , τ) coordinates. The governing equation can
then be transformed into computational space as

1
J
∂U
∂τ

+
∂E′

∂ξ
+
∂F′

∂η
+
∂G′

∂ζ
+
∂E′v
∂ξ

+
∂F′v
∂η

+
∂G′v
∂ζ

+ U
∂(1/J)
∂τ

=
W
J

, (15)

where J is the Jacobian of the coordinate transformation and

E′ =
F1ξx + F2ξy + F3ξz

J
, (16)

F′ =
F1ηx + F2ηy + F3ηz

J
, (17)

G′ =
F1ζx + F2ζy + F3ζz

J
, (18)

E′v =
G1ξx + G2ξy + G3ξz

J
, (19)

F′v =
G1ηx + G2ηy + G3ηz

J
, (20)

G′v =
G1ζx + G2ζy + G3ζz

J
. (21)

A seven point stencil is used to discretize the spatial deriva-
tives

∂fi
∂x
=

1
hbi

3∑
k=−3

αi+k fi+k −
α

6!bi
h5*

,

∂f6

∂6x
+
-
, (22)

where

αi±3 = ±1 +
1

12
α, αi±2 = ∓9 −

1
2
α,

αi±1 = ±45 +
5
4
α, αi = −

5
3
α,

bi = 60,

and where h is the step size, α < 0 is a fifth order upwind
explicit scheme, and α = 0 reduces to a sixth order central
scheme. Here the inviscid terms use α = −6 which yields a low
dissipation fifth order upwinded difference ,and the viscous
terms are discretized using α = 0. The derivatives in the trans-
verse direction, if required, are treated with Fourier colloca-
tion. To compute second derivatives, the first order derivative
operator is applied twice.

Flux splitting is used for the inviscid flux terms resulting
in

F′ = F′+ + F′−, (23)

where
F′± =

1
2

(F′ ± ΛU), (24)

and Λ is a diagonal matrix that ensures F′+ and F′− contain
only pure positive and negative eigenvalues, respectively. For
thermochemical nonequilibrium, the eigenvalues of Λ were
derived by Liu and Vinokur.61

Conditions behind the shock are calculated from
Rankine-Hugoniot relations. The free stream flow is assumed
to be chemically frozen and in thermal equilibrium. The shock
is assumed to be infinitely thin, meaning all relation occurs
downstream of the shock as relaxation rates are finite. This
leads to the chemical composition remaining constant across
the shock, as well as the vibration temperature. A complete
derivation of thermochemical nonequilibrium shock fitting
can be found in Prakash et al.38 A low storage 3rd-order
Runge-Kutta method from Williamson62 is used to advance
the solution in time.

B. LST
The linear stability analysis used here has been described

in detail in Paper I.72 It is largely based on the LST code
developed by Mortensen;39 however, here the assumption of
zero wall-normal velocity is relaxed (i.e., v , 0), and new
free stream boundary conditions incorporating a shock at the
computational boundary are used. Curvature in the stream-
wise and transverse directions is included similar to Malik and
Spall.63 The LST equations are derived from the governing
equations [Eq. (2)] where the instantaneous flow is comprised
of a mean and fluctuating components, where the mean flow is
assumed to satisfy the governing equations and is subtracted
out. The mean flow is assumed to be a function of y only, and
the flow disturbances are assumed to be small, i.e., linear. The
perturbations are then assumed to be in the form of a nor-
mal mode described by q′ = q̂(y) exp[i(αx + βz −ωt)], where ω
is the circular frequency of the disturbance and α and β are
the wavenumbers. For comparison to DNS, the spatial stability
approach is used, i.e., α is complex which results in the dis-
persion relation α = Ω(ω, β). Substituting in the normal mode
form for the perturbation reduces the problem to a coupled
set of ns + 5 ordinary differential equations(

A
d2

dy2
+ B

d
dy

+ C
)
~φ = ~0, (25)

where ~φ =
[
ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂, T̂V

]T
and A, B, and C

are complex square matrices of size ns + 5. This is now a
boundary value problem where the derivative operators can
be discretized using Lagrange polynomials in physical space,
resulting in a 4th order method similar to the one used by
Malik.64

Boundary conditions to solve the LST problem are
required at the wall and in the free stream. At the wall, a
high-order pressure extrapolation condition assuming zero
mass flux from the wall and zero temperature perturbation
are used, although more complex ablation boundary condi-
tions can be used.39 In the free stream, in flows in which the
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supersonic modes are not a concern, all perturbations except
v̂ at the outer edge can simply be set to zero, and the v̂ bound-
ary condition is obtained from the continuity equation. How-
ever, in flows with supersonic modes, there is highly oscilla-
tory eigenfunction behavior in the free stream. Using these
zero-boundary conditions may not be physically relevant in
this situation, especially when the boundary coincides with
a shock. Therefore, free stream boundary conditions based
on the Rankine-Hugoniot relations with a free shock approx-
imation were derived, following similar methods as Chang et
al.40,65 Complete details of the derivation are presented in
Paper I72 and in Knisely and Zhong.50

V. STEADY FLOW FIELD SOLUTION
A. Case 1 steady flow field solution

Steady DNS translation-rotation temperature, vibration
temperature, and mass fraction contours for the nose region
of the cone are shown in Fig. 3. The upper half of Fig. 3(a) is the
translation-rotation temperature, T, and the lower half is the

vibration temperature, TV . Figure 3(a) indicates that the flow
is in thermal nonequilibrium in the nose region. Similarly, the
mass fraction of N2 and O2 are shown in the upper and lower
halves of Fig. 3(b), respectively. Figure 3(b) indicates that the
flow is in chemical nonequilibrium. Specifically, O2 dissocia-
tion is the predominant reaction in this flow field, whereas N2
does not dissociate as severely.

Farther downstream, however, the chemical nonequilib-
rium effects weaken. Figure 4 shows the boundary layer pro-
files for temperature, vibration temperature, tangential veloc-
ity, and species density of N2 and O2 at a streamwise distance
from the stagnation point of s = 0.4 m. Hereafter, y denotes
the wall-normal distance. Due to the cold wall, the bound-
ary layer is thin in relation to the flow domain. The mean
flow does not reach thermal equilibrium in the free stream,
thus demonstrating the necessity of accounting for nonequi-
librium effects in these types of flows. The mass fractions of
N2 and O2 follow the same trend in the boundary layer, but
do not vary greatly in magnitude from their free stream val-
ues in these flow conditions. Although the effect of chemical

FIG. 3. Case 1 Steady flow field contours
in nose region. (a) Upper half: T. Lower
half: TV . (b) Mass fraction of N2 (upper
half) and O2 (lower half).

FIG. 4. Case 1 mean flow boundary layer
profiles at s = 0.4 m. (a) u, T, and TV .
(b) Species density ρs of N2 and O2
species. u denotes the component of the
velocity tangential to the surface of the
cone. y is the wall normal distance.
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nonequilibrium in the mean flow may be small, it may still have
an effect in LST calculations.

B. Case 2 steady flow field solution
Similar to Case 1, the steady DNS translation-rotation

temperature, vibration temperature, and mass fraction

contours for the nose region of the cone are shown in Fig. 5.
Because the only difference between Case 1 and Case 2 is
the wall temperature, similar nonequilibrium effects occur in
Case 2. Figure 5(a) indicates that the flow is in thermal
nonequilibrium in the nose region, and Fig. 5(b) indicates that
the flow is in chemical nonequilibrium. Again, O2 dissociation

FIG. 5. Case 2 Steady flow field contours
in nose region. (a) Upper half: T. Lower
half: TV . (b) Mass fraction of N2 (upper
half) and O2 (lower half).

FIG. 6. Case 2 mean flow boundary layer
profiles at s = 0.4 m. (a) u, T, and TV .
(b) Species density ρs of N2 and O2
species. u denotes the component of the
velocity tangential to the surface of the
cone. y is the wall normal distance.

FIG. 7. Wall-normal grid point compari-
son of Case 1 mean flow boundary layer
profiles at s = 0.4 m. (a) u, T, and TV .
(b) Species density ρs of N2 and O2
species.
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TABLE II. Gaussian pulse parameters for DNS.

εb µb σb xb lb

1 × 10−4 3 × 10−6 4 × 10−7 0.1 m 0.002 m

is the predominant reaction in this flow field, whereas N2 does
not dissociate as severely.

Farther downstream, the boundary layer profiles (Fig. 6)
indicate that Case 2 is in thermal nonequilibrium in the free
stream, similar to Case 1. However, the species density of
N2 appears to deviate more than in Case 1, suggesting that
chemical effects play a larger role in the free stream in
Case 2.

C. Steady flow field solution grid independence
The steady flow field grid points in the wall-normal direc-

tion for Case 1 were doubled to 512 points from 256 to
determine the number of grid points required for a grid-
independent solution. The wall-normal grid density is known
to be much more critical than the wall-tangent grid density.
Mean flow boundary layer profiles at s = 0.4 m (Fig. 7) indicate
very little difference in the mean flow profiles when the grid is
doubled. Furthermore, doubling the grid for the steady
flow field solution significantly increased the computational
expense to obtain a converged solution. Therefore, 256 grid
points in the wall-normal direction was sufficient to provide
an accurate solution.

VI. UNSTEADY DNS RESULTS

To study stability using DNS, it is required that the
mean flow be perturbed in order to study the growth, or
decay, of the perturbation. Here, the flow is perturbed with a
suction/blowing slot at the cone surface. The equation for the
mass flux of the slot is

ρv(x, t)′w = εb(ρu)∞ exp


−

(t − µb)2

2σ2
b




sin
{

2π(x − xb)
lb

}
, (26)

where lb is the length of the slot, xb is the center of the slot
measured from the leading edge of the cone, εb scales the
function, µb shifts the Gaussian component to avoid nega-
tive times, and σb adjusts the spectral content of the function.
Notice the time dependent Gaussian portion of the function.
When transformed to frequency space, this yields a contin-
uous range of frequencies with non-zero amplitudes mak-
ing this particular approach for perturbing the mean flow an
effective strategy when studying a wide range of frequen-
cies. Alternatively, a sinusoid in time can be used to similar
effect.20,21

The pulse parameters for both cases are summarized in
Table II. The frequency spectrum of the pulse is presented
in Fig. 8. The Fourier transform indicates that the majority of
the frequency content of the pulse is below 1 MHz. From the
LST analysis, it was predicted that the unstable modes leading
to transition will be present below this frequency. The ampli-
tude of the perturbation is small enough that the disturbance
is approximately linear.

A. Case 1 unsteady DNS results
The evolution of the Gaussian pulse for Case 1 is visu-

alized in Fig. 9 using snapshots in time of contours of the
pressure perturbation normalized by the local meanflow pres-
sure ( ∆pp ). The same value at the surface of the cone is included
to more clearly visualize the growth of disturbances. The tra-
ditional second mode growth can be seen in Fig. 9(a), in par-
ticular, between x = 0.3 m and x = 0.45 m. The start of the
spontaneous radiation of sound appears in Fig. 9(b) between
x = 0.35 m and x = 0.4 m. When the pulse travels to approxi-
mately x = 0.5 m, the spontaneous radiation of sound becomes
much more apparent, shown in Fig. 9(c). As the pulse contin-
ues downstream, the supersonic mode elongates farther into
the free steam before decaying in amplitude far away from the
wall. Simultaneously, the amplitude of the disturbance outside
of the boundary layer increases as the pulse travels down-
stream [Fig. 9(d)]. The perturbations near the upper boundary
in Figs. 9(a) and 9(b) are a result of the Mach wave from the
pulse traveling downstream and eventually interacting with

FIG. 8. Gaussian pulse for unsteady
DNS. (a) Nondimensional mass flux
amplitude. (b) Frequency content of
pulse.

Phys. Fluids 31, 024104 (2019); doi: 10.1063/1.5077007 31, 024104-10

Published under license by AIP Publishing

 10 O
ctober 2024 21:08:16

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 9. Case 1 snapshots in time of pressure perturbation ∆p/p contours and surface pressure perturbation from Gaussian pulse. ∆t = 3.997 × 10−5 s.

the shock. These interactions are weak, however, and disperse
before the spontaneous radiation of sound occurs.

An FFT was performed for the surface pressure per-
turbation at all streamwise locations, resulting in the con-
tour map in Fig. 10(a). This contour shows the most unstable
excited frequencies due to the Gaussian pulse. The neutral
stability curve predicted by LST is overlayed in Fig. 10(a) for
comparison. The most amplified frequency is approximately
f = 500 kHz and appears most prominently for s >

0.9 m. This frequency agrees with the largest N-factor
(see Paper I72), and the location of the maximum ampli-
fication agrees reasonably well with the LST predic-
tions, i.e., the upper branch of the neutral curve coin-
cides with the location of largest amplification for each
frequency.

It is useful to compare the FFT results to those obtained
by Chuvakhov and Fedorov,20,21 although their unsteady DNS

perturbs the flow with a sinusoidal pulse in time, rather than
the Gaussian pulse that is used here. Nevertheless, this dif-
ference is unlikely to be significant because the band of fre-
quencies excited by the sinusoid is large. Chuvakhov and
Fedorov20,21 take a Fourier transform of the unsteady data
and present the FFT of the pressure perturbation vs the fre-
quency for fixed streamwise locations. An example of such
a figure for the current investigation is shown in Fig. 10(b),
where the curve shape is similar to a bell curve. Chuvakhov
and Fedorov20,21 noted that rather than the typical bell-
shaped curves, multiple peaks are formed. Chuvakhov and
Fedorov20,21 observed three peaks at most in their FFT, which
may have been due to the significantly differing geome-
try and flow conditions from the current study. The same
authors have suggested that the mechanism of sound radi-
ation acts as an energy sink, which may explain the abnor-
mal behavior of the pulse dispersion. Furthermore, Chuvakhov
and Fedorov20,21 suggest that the spontaneous radiation of
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FIG. 10. Case 1 Fourier transform of unsteady surface pressure perturbation time history of Gaussian pulse. (a) FFT stability map with LST neutral curve.
(b) FFT amplitude as a function of frequency for various streamwise locations s.

sound is a mechanism that transfers the disturbance energy
from the high-frequency to the low-frequency band. Further
detailed investigation into this phenomenon is required to
ascertain the mechanism by which the spontaneous radiation
of sound modulates the surface pressure perturbation and
whether or not the frequency content of the disturbance plays
a significant role in the spontaneous radiation of sound.

It is possible to determine the growth rate and phase
speed of an unsteady disturbance in DNS. The Fourier decom-
posed perturbation variables can be used to reconstruct the
original flow field disturbances via

φ′(x, y, t) = ∆φ(x, y) exp[i(ψ(x, y) − 2πft)], (27)

where φ′ is the perturbation of some variable, ∆φ is the ampli-
tude of that variable, ψ is the corresponding phase angle, and
f represents a single dimensional frequency. An instantaneous
snapshot of the flow field can be obtained from the real part
of φ′ when t is specified, provided FFT data is available for all
data points in the flow field.

Multiple boundary layer modes are present simultane-
ously in DNS; however, as one mode becomes dominant,
it is possible to derive the growth rate, wavenumber, and
phase speed equations for a given frequency f from [Eq. (27)],
resulting in

− αi =
1

∆φ( f)
d
ds
∆φ( f), (28)

αr =
d
ds
ψ( f), (29)

cr =
2πf
αr

, (30)

where s is the streamwise coordinate, ∆φ( f) represents a
variable amplitude frequency f, and ψ( f) represents the cor-
responding phase angle at frequency f. Similar to previous
researchers,13 the surface pressure perturbations from DNS
are used to compute −αi and cr.

The frequency f = 500 kHz was chosen to compare the
phase speed and growth rate obtained from DNS to those
predicted by LST (Fig. 11). The phase speed calculated from
DNS matches the LST predictions quite well, with the excep-
tion of oscillations near s = 0.5 m. These oscillations are
the result of the synchronization of mode F1 with mode S
and with the entropy/vorticity spectra. The DNS growth rate
exhibits much more oscillatory behavior, although it still fol-
lows the LST prediction reasonably well. The DNS growth
rate oscillations can be attributed to multiple modes exist-
ing in the flow; however, the overall amplitude of the DNS
growth rate can be impacted by nonparallel flow effects
neglected in LST. Interestingly, the DNS growth rate also
displays the “kink” which indicates synchronization of the
mode F1+ with the slow acoustic spectrum, leading to the
spontaneous radiation of sound. However, this kink appears
slightly farther downstream for DNS than for LST and may
be due to nonparallel flow effects. The LST growth rate kink
occurs near s = 0.75 m, whereas the DNS kink occurs near
s = 0.79 m.

In the region in which mode F1+ is dominant in the
flow, the DNS most closely follows the LST predictions.
Areas where the DNS growth rate is oscillatory suggest the
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FIG. 11. Case 1 comparison of DNS
to LST phase speed and growth rate
at f = 500 kHz. (a) Phase speed, cr .
(b) Growth rate, −αi . M∞ = 4.44 is the
mean flow Mach number immediately
downstream of the shock.

presence of multiple modes in the flow in addition to the
amplitude discrepancy caused by nonparallel flow effects. The
pressure eigenfunctions from DNS at a frequency of f = 500
kHz are compared to those from LST at three locations. The

first is at s = 0.7 m where mode F1+ is unstable and subsonic, as
shown in Fig. 12(a). The second is at s = 0.8 m where mode
F1+ is unstable and supersonic and mode F1− is stable and
supersonic, as shown in Fig. 12(b). The third is at s = 0.9 m

FIG. 12. Case 1 comparison of DNS to
LST pressure eigenfunctions at f = 500
kHz. (a) Subsonic mode F1+ at s = 0.7
m. (b) Supersonic mode F1+ at s = 0.8
m. (c) Supersonic mode F1+ at s = 0.9
m.
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FIG. 13. Case 1 Fourier transform of
unsteady pressure perturbation field for
f = 500 kHz.

where mode F1+ is unstable and supersonic and mode F1− is
stable and supersonic, as shown in Fig. 12(c). The DNS eigen-
function at s = 0.7 m [Fig. 12(a)] matches the LST mode F1+

eigenfunction nearly identically, indicating the dominance of
the unstable subsonic mode F1+ in this location. At s = 0.8 m
[Fig. 12(b)], the DNS eigenfunction matches the LST mode
F1+ predictions near the wall for y < 0.004 m, although the
DNS eigenfunction decays to zero more sharply than the LST
eigenfunction, indicating that the supersonic mode F1+ from
LST may not be the only factor in the supersonic mode found
in DNS. It is possible that the slow acoustic spectrum is still
interacting with mode F1+ which is not accounted for in LST.
It should be noted that the eigenfunction of mode F1− is
similar to mode F1+ and the DNS eigenfunctions; however, the
mode F1− eigenfunction does not decay as rapidly and mode
F1+ still appears to have the greatest similarity to the DNS
perturbation. Furthermore, because the DNS growth rate is
predicted to be unstable (Fig. 11), it suggests better agreement
with LST mode F1+. Additionally, it appears that mode S does
not make up a large component of the DNS perturbation at
this location. Farther downstream at s = 0.9 m [Fig. 12(c)], the
DNS, LST mode F1+, and LST mode F1− eigenfunctions match
closely for y < 0.014 m, outside of which the DNS eigen-
function decays more sharply than the LST eigenfunctions.
The LST mode F1+ and F1− eigenfunctions are nearly identi-
cal; however, due to the LST mode F1+ and DNS growth rates
being unstable, it is likely that mode F1+ is still the dominant
mode as opposed to mode F1−. Additionally, because this loca-
tion is farther removed from the synchronization of mode F1+

with the slow acoustic spectrum, its influence is smaller than
at s = 0.8 m. Again, mode S does not appear to constitute a
significant portion of the DNS perturbation at this location.
Nevertheless, the deviation of the DNS eigenfunction from the
LST prediction suggests that the slow acoustic spectrum may
still be modulating the disturbance.

The FFT of the pressure perturbation for the entire flow
field was calculated via Eq. (27) and is shown in Fig. 13 for
500 kHz, which clearly shows the extension of the distur-
bance outside of the boundary layer, indicative of the super-
sonic mode. The onset of the radiation into the free stream for
f = 500 kHz is near x = 0.8 m, as indicated by the arrow
in Fig. 13. The onset of the supersonic mode in this 2D FFT

contour agrees with the LST and FFT results for the surface
pressure perturbation in Fig. 11. However, the magnitude of the
surface pressure perturbation is significantly higher than the

FIG. 14. Case 2 snapshots in time of pressure perturbation ∆p/p contours and
surface pressure perturbation from Gaussian pulse. ∆t = 9.83 × 10−5 s.
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FIG. 15. Case 2 Fourier transform of unsteady surface pressure perturbation time
history of Gaussian pulse. The black line is the neutral curve predicted by LST.

amplitude of the supersonic mode. Therefore, it is unlikely that
the supersonic mode will directly lead to transition in this flow
configuration. That being said, however, because the super-
sonic mode radiates energy away from the boundary layer,
its impact on the boundary layer disturbance is unclear. It
may be possible that the boundary layer disturbance can be
weakened by the radiation of sound by dispersing some of
its energy into the free stream, effectively stabilizing mode
F1+. Alternatively, it is also possible for the elongation of the
unstable region due to the supersonic mode to lead to a
larger overall N-factor, thereby causing transition earlier on
the body. Significant theoretical work must be performed to
fully understand the mechanism of the supersonic mode and
its impact on transition to turbulence in hypersonic boundary
layers.

B. Case 2 unsteady results
The unsteady pressure perturbation due to the Gaussian

pulse for Case 2 was not expected to produce a significant
supersonic mode. However, there is a very clear “tail” that
develops downstream, which is indicative of the supersonic
mode. Snapshots of the unsteady pressure perturbation are
shown in Fig. 14 which shows the weaker first mode distur-
bance leading stronger second mode disturbance in Fig. 14(a).
Additionally, in Fig. 14(b), the second mode disturbance can be
seen ahead of the supersonic mode “tail” extending into the
free stream. This extension into the free stream is significantly
weaker than in Case 1, but may not be negligible. Further FFT
analysis is performed to determine the cause of the supersonic
mode encountered in Fig. 14.

A FFT was performed for the surface pressure perturba-
tion at all streamwise locations, resulting in the contour map
in Fig. 15 with the neutral stability curve predicted by LST
overlayed for comparison. The most amplified frequency is
approximately f = 550 kHz and appears most prominently for
s > 0.95 m. This frequency agrees with the largest N-factor
(see Paper I72), and the location of the maximum amplifica-
tion agrees reasonably well with the LST predictions, i.e., the
upper branch of the neutral curve coincides with the location
of largest amplification for each frequency.

The FFT contour in Fig. 15 provides good agreement
between LST and DNS but does not explain the “tail” of the
supersonic mode in Fig. 14. The phase speed and growth rate
obtained from DNS, computed via Eqs. (28)–(30), is compared
to the LST results for a frequency of f = 700 kHz in Fig. 16. The
DNS phase speed most closely follows LST mode F1 upstream
of s = 0.75 m; however, there are very significant oscilla-
tions near the synchronization with the entropy/vorticity
spectra and the slow acoustic spectrum. The oscillations in
the DNS results are the influence of multiple modes in the
flow, whereas LST only assumes a single mode at a time
and neglects the interactions between modes. The growth
rate upstream of s = 0.75 m also largely follows mode F1
with some oscillations. After synchronization with the slow

FIG. 16. Case 2 comparison of DNS to
LST phase speed and growth rate at f =
700 kHz. (a) Phase speed, cr . (b) Growth
rate, −αi . M∞ = 4.44 is the mean flow
Mach number immediately downstream
of the shock.
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acoustic spectrum near s = 0.75 m, however, very large oscil-
lations in both the phase speed and growth rate occur. These
oscillations signify a strong resonant interaction between the
unstable mode F1 and the slow acoustic spectrum that is not
resolved with LST. After this synchronization, the DNS phase
speed appears to be following mode F2 more closely.

The eigenfunction of the pressure disturbance from DNS
is compared to LST in two locations for the same fixed fre-
quency of f = 700 kHz. The first is in the region where the
DNS phase speed and growth rates most closely follow the
LST predictions, indicating the dominance of mode F1. This
occurs at s = 0.617 m and is shown in Fig. 17(a). The second
is in the region where the mode F1 phase speed is supersonic
and the mode is stable according to LST, occuring at s = 0.8
m [Fig. 17(b)]. Where mode F1 is dominant [Fig. 17(a)], the DNS
pressure eigenfunction is nearly exact to the LST mode F1 pre-
dictions, indicating a good agreement between the methods in
describing the boundary layer instabilities despite the differ-
ence in techniques. However, in the region where mode F1 is
predicted to be supersonic and stable by LST [Fig. 17(b)], the
agreement is not as strong, suggesting the presence of mul-
tiple competing modes. Very near the wall, the pressure
eigenfunctions align between DNS and all of the LST eigen-
functions; however, for y > 0.001 m, the eigenfunctions
are significantly different. The local maximum in the LST
mode F1 eigenfunction occurs near y ≈ 0.0015 m and has a
magnitude of |p′/p| ≈ 0.1, whereas the DNS eigenfunction’s
local maximum occurs much farther away from the wall at
y ≈ 0.0075 m and shows a significantly larger amplitude of
|p′/p| ≈ 0.3. Additionally, the LST mode S and F2 eigen-
functions do not provide any better agreement. The local
maximum in the eigenfunction moving outwards is indica-
tive of an unstable supersonic mode, whereas LST pre-
dicts the supersonic mode F1 and all other subsonic modes
to be stable in this location. Therefore, at this location of
s = 0.8 m, the LST predictions no longer accurately describe
the dominant instability in the flow field. Rather, the DNS
eigenfunction in conjunction with the phase speed and growth
rate results in Fig. 16 suggest the excitation of the supersonic

mode via a modal interaction that cannot be resolved with
LST.

The supersonic mode is known to exist downstream to
the synchronization of mode F1 with the slow acoustic spec-
trum. Figure 16 shows that this synchronization occurred near
s = 0.75 m and produced significant amplification of the growth
rate of the surface pressure perturbation that was not pre-
dicted by LST. This notion was also supported by the eigen-
function comparison in Fig. 17. To determine if this resonant
interaction produced the supersonic mode “tail” in Fig. 14,
an FFT of the entire unsteady flow field was performed for
a frequency of f = 700 kHz (Fig. 18). The Mach waves from
the original perturbation are visible in the free stream and
the dominant second mode growth is clear in Fig. 18 for x <
0.75 m. Downstream of x = 0.75 m, however, there is a clear
extension of the disturbance into the free stream, indicative
of the supersonic mode. The onset of this extension coin-
cides precisely with the synchronization of the stable mode
F1 with the slow acoustic continuous spectrum. Although all
LST modes are predicted to be stable at this location, it is
the interaction between modes in DNS that causes this very
brief supersonic instability, and therefore it is not resolved
with LST. Ma and Zhong13,66,67 note an interaction between
the discrete mode F1 and the continuous slow acoustic spec-
trum can act as a source term in the stability equations, which
briefly causes mode F1 to become unstable when its phase
speed is supersonic (cr < 1 − 1/M∞). Most importantly, how-
ever, the amplitude of the supersonic mode is two orders of
magnitude lower than the second mode and is very unlikely to
have any significant impact on transition to turbulence.

Modal interactions have been examined in a number of
circumstances. In addition to Ma and Zhong13,66,67 comment-
ing on the interaction of mode F1 with the fast acoustic
spectrum, studies by Fedorov and Khokhlov,68,69 Fedorov,70

Gushchin and Fedorov,71 and later by Fedorov and Tumin2

examine the synchronization of discrete modes with contin-
uous modes. In general, theoretical studies have shown that
the synchronization of a discrete mode with a continuous

FIG. 17. Case 2 comparison of DNS
to LST pressure eigenfunctions at f =
700 kHz. (a) Dominant subsonic unsta-
ble mode F1 region at s = 0.617 m. (b)
Supersonic, stable mode F1 region at s
= 0.8 m.
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FIG. 18. Case 2 Fourier transform of
unsteady pressure perturbation field for
f = 700 kHz. Contour levels adjusted to
show weak supersonic mode.

mode can cause oscillatory behavior in the free stream, similar
to the supersonic mode. However, a theoretical investigation
of the supersonic mode mechanism specifically is yet to be
performed.

VII. DISCUSSION OF RESULTS AND CONCLUSION
Thermochemical nonequilibrium LST and DNS were used

to study the supersonic mode and its impact on hypersonic
boundary layer transition in Mach 5 cold-wall conical flow.
Additionally, the effect of wall temperature on stability was
examined; Case 1 used a wall-temperature-ratio of T4/T∞ =
0.2 and Case 2 used T4/T∞ = 0.667. The steady flow fields
for both Case 1 and Case 2 showed strong thermochemi-
cal nonequilibrium effects in the nose region; however, the
chemical nonequilibrium effects became less significant far-
ther downstream. A surface blow/suction actuator on the
cone upstream of the region of eigenmode growth was used
to perturb the mean flow and examine the growth and decay
of the disturbance. LST was used to estimate the region of
eigenmode growth and identify the expected modes leading
to transition to turbulence; however, LST makes the limiting
assumption of each mode acting independently. LST predic-
tions indicated the unstable supersonic mode in Case 1, but
no unstable supersonic mode was expected in Case 2 accord-
ing to LST. However, in addition to confirming the Case 1
LST predictions validating the existence of the supersonic
mode, the DNS results actually suggested a weakly unsta-
ble supersonic mode in Case 2 that could not be resolved in
LST due to modal interactions, demonstrating the need for a
combined LST and DNS approach to studying the supersonic
mode.

The unstable supersonic mode was shown to exist on an
axisymmetric cone through both LST and unsteady DNS anal-
ysis for Case 1 (T4/T∞ = 0.2). However, only DNS was able
to resolve a very weak unstable supersonic mode for Case 2
(T4/T∞ = 0.667) due to the interaction of the stable super-
sonic mode F1 with the slow acoustic spectrum. The relative
modal composition of the DNS perturbation was estimated
via comparison to the LST phase speed, growth rate, and
eigenfunctions. When a single mode is dominant, the agree-
ment between LST and DNS was excellent. However when no

single mode was dominant, the agreement was not as strong
and oscillations in the growth rate indicated multiple compet-
ing modes in the DNS. Furthermore, nonparallel flow effects
could have led to a difference in the amplitude of the growth
rate in DNS compared to LST. The resonant interaction lead-
ing to the supersonic mode in Case 2 was due to the syn-
chronization of mode F1 and the slow acoustic spectrum and
acted as a source term in the LST equations,13,66,67 which were
neglected in the current LST formulation.

These findings on an axisymmetric blunt cone with
thermochemical nonequilibrium effects reinforce the results
obtained for the flat plate geometry by Bitter and Shepherd15

and Chuvakhov and Fedorov,20,21 indicating that the cold wall
is destabilizing to the supersonic mode. The formation of the
unstable supersonic modes is only predicted by LST for an
individual frequency as a peculiarity of the spectrum in the
vicinity of synchronization of the unstable discrete bound-
ary layer mode F1 and the continuous slow acoustic spectrum.
Such was the mechanism of the supersonic mode in Case 1. If
mode F1 is stable upon synchronization with the slow acous-
tic spectrum, however, a resonant interaction between modes
can cause mode F1 to become unstable briefly. Such was the
mechanism of the supersonic mode determined in Case 2;
however, it did not have a significant impact on the boundary
layer stability. As Knisely and Zhong47,48 have shown, this res-
onant interaction can become significant in higher-enthalpy
flow, however.

The unsteady DNS results confirmed that the supersonic
mode existed at the same location as predicted by LST results
for Case 1. Both the wall pressure perturbation FFT and the full
2D FFT contour reinforced the LST predictions of the onset
and magnitude of the supersonic mode. The unstable frequen-
cies predicted by the LST analysis corresponded to the most
amplified frequencies in the unsteady DNS results. The major
finding from the FFT results of the unsteady DNS pressure
pulse contradicts the multiple peak frequencies observed by
Chuvakhov and Fedorov.20,21 Rather than certain frequencies
being more amplified than their neighboring frequencies, the
typical bell-shaped curves were obtained for the pressure per-
turbation as a function of frequency for a fixed location. The
mechanism by which the acoustic radiation modulates the
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pressure disturbance is not yet well understood, and further
studies are required to fully describe this abnormal behavior
and determine the influence of the frequency content of the
disturbance on the supersonic mode.

Overall, the present results show that the radiation of
sound by the supersonic mode is the result of the complex
interaction of a number of physical modes. The interaction
of the acoustic waves with the boundary layer disturbance is
of significance because it could play a role in energy transfer
to the vehicle surface and could have an impact on boundary
layer stability, as suggested by Chuvakhov and Fedorov.20,21

Specifically, the relatively weak supersonic mode may act as
an energy sink for the second mode by radiating energy away
from the boundary layer and may have a stabilizing effect on
the boundary layer mode. However, the supersonic mode is
also associated with a longer region of instability, which may
have the opposite effect of causing transition earlier on the
cone. The work performed here is not conclusive in regards
to the stabilizing/destabilizing effect of the supersonic mode.
Additionally, it is unclear under which conditions the super-
sonic mode could become the dominant transition mechanism
over the second mode. Thus far, only Knisely and Zhong48 and
Mortensen49 have encountered such a situation on a Mach
10 cold-wall blunt cone and on a Mach 20 very blunt cone,
respectively. Further research is required to determine
the envelope of conditions for such a strong supersonic
mode.

The work performed here has confirmed the existence
of the supersonic mode using a combined LST and DNS
approach and shows some of its overarching characteris-
tics. Thus far, only the present work, that of Knisely and
Zhong,47,48,50 Mortensen,49 and Chuvakhov and Fedorov,20,21

have studied the supersonic mode using a combined LST and
DNS approach. The supersonic mode has been shown to be
destabilized by a cold wall, as suggested by Bitter and Shep-
herd15 and Chuvakhov and Fedorov.20,21 The mechanism of
the supersonic mode, however, may have been limited in pre-
vious pure LST studies and not fully described by Mortensen49

and Chuvakhov and Fedorov.20,21 Both LST and DNS can agree
that the supersonic mode is encountered downstream of the
synchronization of mode F1 with the slow acoustic spectrum.
However, LST is not able to resolve the supersonic mode in
certain cases due to the assumption of independent modes.
Only when mode F1 is unstable during synchronization with
the slow acoustic spectrum will LST accurately predict the
supersonic mode. When mode F1 is stable during synchroniza-
tion, a resonant-like interaction between mode F1, mode S,
and the slow acoustic spectrum can cause a brief excitation of
the supersonic mode, which is not resolved in LST. Therefore,
a combined LST and DNS study is required to reliably resolve
the supersonic mode and study its impact on transition to
turbulence.
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