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While receptivity plays a key role in the transition of hypersonic flows, most prior computa-
tional receptivity studies have neglected to replicate broadband frequency disturbances. This
work uses perfect gas Linear Stability Theory (LST) and Direct Numerical Simulation (DNS) to
study the receptivity of flow over a 5.080 mm nose radius straight cone at Mach 10 using finite
spherical pulses to approximate disturbances with broadband frequency spectra. Freestream
fast acoustic, slow acoustic, temperature, and vorticity pulses were studied to investigate a
wide range of forcing conditions. Unsteady DNS predicts second mode growth and agrees
well with LST. DNS and LST data are used to extract second mode receptivity coefficients
and phase spectra. Preliminary results for the 5.080 mm case show that the strongest second
mode receptivity response was seen for the finite spherical temperature pulse, followed by the
finite fast acoustic, slow acoustic, and vorticity pulses in that order. Spectral phase coefficients
corresponding to the receptivity magnitude coefficients were also found and showed excellent
agreement between the finite pulse cases at higher second mode frequencies. Lower distur-
bance frequencies demonstrate potential differences in the receptivity mechanisms between
the temperature pulse and the acoustic and vorticity pulses.

I. Introduction
The accurate prediction of laminar to turbulent transition in hypersonic flows is a major concern when using

computational fluid dynamics (CFD) to aid in the design of high-speed vehicles. Transition to turbulence is known to
dramatically increase aerodynamic drag and heating on the vehicle’s surface and significantly affect the control of the
vehicle [1–3]. Delaying transition and accurately predicting its behavior in hypersonic vehicles will allow for greater
specificity in the design of thermal protection systems (TPS) to minimize their weight impact. Doing so would have a
substantial payoff, enabling better flight performance and expanded payload capacities for potential hypersonic vehicles.
Transition in a hypersonic boundary layer is governed by several mechanisms, and in the case of weak environmental

forcing can be broken down into three distinct stages: (i) boundary layer receptivity, (ii) linear growth of small amplitude
disturbances, and (iii) nonlinear breakdown at finite disturbance amplitudes [4]. Traditionally, studies on hypersonic
boundary layer transition at zero angle of attack have focused on the linear growth of Mack modes, for which the second
mode instability has been found to dominate [5]. Receptivity mechanisms dictate the initial disturbance amplitudes of
flow instabilities, such as the second mode, in response to external forcing. This external forcing can come in the form
of surface or freestream disturbances, as depicted in the schematic diagram shown in Fig. 1. These initial amplitudes
can greatly impact the general stability behavior of the flow[6]. Studies of receptivity commonly focus on the response
to freestream noise which, for compressible flows, can be categorized into three distinct types: acoustic, entropy, and
vorticity disturbances[7]. In hypersonic flows, the interaction of freestream disturbances of any of these categories
with the bow shock generates disturbance waves of all three types that can perturb the boundary layer[8]. However,
the mechanisms of the shock-disturbance interactions for each of these freestream disturbances can vary and cause
differences in the resulting disturbance content, both in terms of wave amplitude and phase[9]. Thus, a wide-ranging
consideration of all the disturbance types with realistic continuous frequency spectra is needed to fully characterize the
receptivity of a hypersonic flow.
The receptivity of hypersonic boundary layers to freestream disturbances has been extensively studied in flows

over flat plates[4, 10–15]. In their computational studies Ma and Zhong [4, 11, 12] found that freestream acoustic
disturbances generate initially stable modes near the leading edge of their flat plate, which then become unstable
after synchronization. Synchronization occurs when the discrete modes (described by Mack as the multiple-viscous
solutions[16]) originating from the continuous freestream fast and slow acoustic spectra interact and exchange energy.
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Fig. 1 Schematic diagram depicting general receptivity pathways, adapted from Zhong and Wang[3].

This exchange can eventually destabilize one of the discrete modes and cause an amplifying Mack mode instability.
In their studies, Ma and Zhong[4] found that freestream acoustic, vorticity, and entropy waves modelled as discrete
frequency Fourier modes could all excite discrete mode disturbances in flat plate boundary layers, though the receptivity
mechanisms differed greatly between the disturbance types. They showed that a freestream entropy disturbance excited
strong stable mode I (F1) disturbances upstream on the plate that would then be converted into mode II (F2) mode
instabilities after synchronization. The freestream fast acoustic disturbance similarly excited mode I (F1) and mode II
(F2) disturbances. However, stronger oscillations which were indicative of much more substantial multimodal coupling
were observed for the fast acoustic case. The slow acoustic disturbance was instead shown to successfully excite an
unstable second mode, which was found to be what is now known as the discrete mode S, downstream of synchronization.
Malik and Balakumar[13] similarly found that planar, discrete frequency slow acoustic waves impinging on a flat plate
generated much stronger receptivity responses compared to other disturbances and that leading-edge bluntness seemed
to stabilize the boundary layer. The mode F and mode S terminology discussed here were recently coined by Fedorov
and Tumin to more directly reflect the asymptotic behavior of the discrete modes, and is discussed in detail in[17]. The
results of these studies indicate diffierent receptivity paths for different disturbance types, and necessitate a wide-ranging
consideration of disturbances in order to fully characterize the receptivity response of a flow.
Numerous studies have also been made on the receptivity of cone geometries to freestream disturbances[18–23].

Zhong and Ma[18] investigated the receptivity of a blunt cone with discrete frequency freestream fast acoustic waves at
Mach 7.99. They found through LST that the unstable second mode for this case was mode S, similar to their previous
flat plate case [4]. Contrary to their previous flat plate result, the fast acoustic disturbance was also found to excite
the second mode instability in the boundary layer for the cone. This indicated that the receptivity process differed
significantly between these two geometries, which can be attributed to flow features such as bow shock interactions,
nose bluntness, and potential entropy layer instabilities. Similarly, Balakumar and Kegerise [19, 20] found that both
discrete frequency vorticity and acoustic disturbances could similarly excite second mode instabilities in cone flows,
and that the receptivity response was stronger for acoustic disturbance waves. They also reported that wave incidence
had some effect on the receptivity response, indicating a need to account for more complex disturbance conditions to
fully approximate the envelope of conditions found in flight. Kara et al.[22] used receptivity simulations for discrete
frequency acoustic waves to predict transition on sharp and blunt cones. They found that while freestream acoustic
waves readily generated second mode instabilities downstream on the cone, second mode amplification was unable to
accurately predict the transition behavior observed in large nose bluntness cones. Possible explanations for this include
non-modal disturbance growth from sources like transient growth[24], or a failure to accurately capture the effects of
freestream environmental noise in the disturbance model[25].
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Many past receptivity studies utilized planar freestream disturbances modelled as discrete frequency Fourier
modes[4, 20]. However, this overly simplified model ignores the complex forcing environments generated by broadband
disturbances and inaccurately attributes the energy of the forcing to only the most amplified frequency[21]. Balakumar
and Chou[21] approximated these broadband frequency disturbances through carefully chosen combinations of discrete
frequency, two-dimensional planar slow acoustic waves which were imposed simultaneously on the flow. The amplitude
of each disturbance wave in the packet was determined by equating the energy of each discrete wave with a chosen
frequency bin in the experimentally measured freestream noise spectrum. Through this method they were able to
calculate second mode receptivity coefficients, defined as the normalized surface pressure disturbance at the neutral
point, for a variety of sharp and blunt cone cases. They found that receptivity coefficients decreased with nose bluntness
and that the new receptivity data allowed for fairly accurate transition prediction for their sharp nose cases using a
surface pressure threshold criterion. However, the accuracy of the threshold criterion they used decreased significantly
for blunter cones.
Huang and Zhong [9, 26] instead modeled a broadband disturbance through the use of a finite axisymmetric

freestream hotspot, which was equivalent to an entropy disturbance, over a compression cone. They showed that this
hotspot was effective in exciting second mode instabilities in the boundary layer. They also found that the resulting
disturbance growth rate and phase speed compared well to LST, and corroborated the results from the experimental
studies at Purdue by Wheaton et al.[27] and Chou et al.[28, 29] that the simulations were based on. The receptivity
mechanism for the entropy spot over a compression cone was found to be very similar to that of discrete acoustic waves
over a blunt cone, but different from entropy spot disturbances for flat plates. This further reinforces the significance
of geometry for receptivity mechanisms. They were then able to use a combination of the unsteady DNS and the
LST disturbance data to extract both spectral receptivity coefficients for the second mode, and the phase angle spectra
of the boundary layer disturbance. With these results, the full response to this particular temperature disturbance
as well as other arbitrary axisymmetric temperature disturbances can be reconstructed[9, 23]. While these studies
showed that Gaussian pulses could successfully approximate continuous frequency spectrum disturbances and excite
significant modal instabilities in hypersonic flows over cones, they were very limited in terms of the disturbance types
they considered. Additional acoustic and vorticity disturbances must also be investigated to account for the differences
in receptivity mechanisms between disturbance types.
The most direct application of receptivity data is in the development of improved transition estimation methods.

LST has historically been used to track the spatial and temporal development of discrete instability modes, though
parabolized stability equations (PSE) have also risen in prominence recently to account for nonparallel and nonlinear
effects[30]. Current transition prediction procedures, such as the 𝑒𝑁 method, rely on using modal instability growth
rates derived from LST or PSE to determine the relative amplification of boundary layer disturbances. Empirically
determined threshold values are then used to predict the onset of turbulent transition[21, 31, 32]. This prediction
approach assumes that relative amplification is the most critical factor in determining transition and often ignores the
initial disturbance amplitudes generated by receptivity. While this assumption can provide good internal consistency
in a given experimental environment, transition thresholds based on this methodology can vary significantly between
different experiments. Schneider[6] described similar experiments with threshold N-factors of 5 and 8, demonstrating
the potential impact of environmental noise on transition. Variability of this degree prevents the widespread application
of uncorrected prediction results between experiments.
A number of improved transition prediction methodologies have been proposed to overcome the limitations of the

traditional 𝑒𝑁 method. Crouch[31] proposed a variable N-factor method that fits a variation of the N-factor with a
simplified model of the freestream response. This has the advantage of requiring no additional computations after
the disturbance response and linear growth (N-factor) data are first obtained. Another improved transition model is
based on the amplitude method proposed by Mack[33], which also uses experimental receptivity data to correlate
initial disturbance amplitudes to freestream noise environments. Marineau[34] used this amplitude method, empirical
receptivity correlations, and simulation results in an iterative process to estimate transition on a selection of sharp
and blunt nosed cones. He showed that this method could predict transition for blunt cones and cones at angles of
attack much more accurately than more traditional 𝑒𝑁 methods. Ustinov[35] also extended this amplitude method
to investigate laminar-turbulent transition on a swept wing using a combined amplitude criterion for steady state and
time dependent perturbations in the flow and found that this method successfully reproduced experimentally observed
dependencies on Reynolds number, local surface roughness, and freestream turbulence. The receptivity results applied
in Crouch’s and Marineau’s studies used highly empirical receptivity correlations. Utilizing receptivity spectra derived
from DNS simulations would provide significantly improved precision and potentially help further improve the accuracy
of these alternative transition prediction methods.
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The current study presents a consideration of multiple disturbance types in order to generate a more complete view
of the receptivity response of a blunt cone to broadband frequency freestream pulse disturbances and continues in the
same vein as previous work by the group[36]. The receptivity mechanisms for a finite, spherical pulse geometry are
investigated in particular here to compare against previous results for a blunter cone case. Broadband freestream fast
acoustic, slow acoustic, temperature, and vorticity disturbances are modelled using gaussian pulses. The meanflow
geometry is based on experiments by Marineau et al.[37] for Mach 10 flow over a 5.080 mm nose radius cone from the
AEDC windtunnel 9. The numerical study in this paper consists of three primary components: (1) the steady meanflow
simulation and LST analysis, (2) the unsteady DNS simulation using the freestream pulse disturbances, and (3) the
generation of the spectral receptivity coefficients and phase angles using the LST and unsteady DNS results.

II. Simulation Conditions
This investigation focuses on a cone geometry and freestream conditions derived from Marineau et al.’s[37]

experiments. The steady meanflow in this study is referred to as Case I and is a 5.080 mm nose radius straight cone
based on run 3746 in Marineau et al.’s study. The steady and unsteady cases were studied at 0 angle of attack. The case
was chosen due to the detailed transition data provided by Marineau and for direct comparison to results for similar
cases studied previously [36].
The cone geometry for Case I is 1.5 m in length along the central line of symmetry. The DNS simulations used 240

points in the wall-normal direction and roughly five points per millimeter on the surface of the cone in the streamwise
direction. Four points are used in the periodic spanwise direction, though only one point is directly calculated at each
timestep utilizing a spectral collocation method. The flow conditions for this study are summarized in Table 1

Table 1 Freestream flow conditions for DNS simulations.

𝑅𝑛 (𝑚𝑚) 𝑀∞ ℎ0,∞ (𝑀𝐽/𝑘𝑔) 𝜌∞ (𝑘𝑔/𝑚3) 𝑝∞ (𝑘𝑃𝑎) 𝑇∞ (𝐾 ) 𝑈∞ (𝑚/𝑠) 𝑇𝑤/𝑇0,∞ 𝑃𝑟 𝑅𝑒/𝑚 (1𝐸6/𝑚)
5.080 9.81 1.06 0.0422 0.64 50.8 1425 0.3 0.72 19.11

The unsteady cases here are differentiated by their freestream disturbance type. These cases are listed and labelled
for more concise reference in Table 2 below for Case I. The details of the pulse geometries and freestream disturbance
formulations are given in section VI.A.
The DNS code used in this study utilizes a shock-fitting formulation with the parameters in Table 1 defining the

freestream conditions upstream of the shock formed over the body. Marineau et al.[37] used curve fits of experimental
data to generate the viscosity used for the Reynolds number calculations instead of Sutherland’s Law. This lead to
approximately a 15% increase in the calculated freestream unit Reynolds numbers between this study and Marineau’s.

III. Governing Equations
The solution methods for the DNS and LST codes were originally developed and implemented by Zhong and Ma

[4, 38] and are formulated for a perfect gas. This assumption was made based on the low freestream stagnation enthalpy
reported in Table 1. Their formulation is highlighted here for clarity. The three-dimensional Navier-Stokes equations in
conservative form consist of a single species mass conservation equation, three momentum conservation equations, and

Table 2 Freestream disturbance cases for unsteady DNS.

Disturbance Type Case I
Finite Spherical Fast Acoustic I1
Finite Spherical Slow Acoustic I2
Finite Spherical Temperature I3

Finite Spherical Vorticity I4
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the energy equation. The governing equations in vector form are written as

𝜕𝑈

𝜕𝑡
+
𝜕𝐹𝑗

𝜕𝑥 𝑗
+
𝜕𝐺 𝑗

𝜕𝑥 𝑗
= 0, ( 𝑗 = 1, 2, 3) (1)

where𝑈 is the state vector of conserved quantities and 𝐹𝑗 and 𝐺 𝑗 are the inviscid and viscous flux vectors, respectively.
Here, the j indices indicate Cartesian coordinates in the streamwise, radial, and azimuthal directions about the cone.
The conservative vector𝑈 is comprised of five conservative flow variables for mass, momentum, and energy:

𝑈 =

[
𝜌 𝜌𝑢1 𝜌𝑢2 𝜌𝑢3 𝑒

]𝑇
(2)

Additionally, the inviscid 𝐹𝑗 and viscous 𝐺 𝑗 flux vectors are written as:

𝐹𝑗 =



𝜌𝑢 𝑗

𝜌𝑢1𝑢 𝑗 + 𝑝𝛿1 𝑗

𝜌𝑢2𝑢 𝑗 + 𝑝𝛿2 𝑗

𝜌𝑢3𝑢 𝑗 + 𝑝𝛿3 𝑗

(𝑒 + 𝑝)𝑢 𝑗


(3)

𝐺 𝑗 =



0
𝜏1 𝑗

𝜏2 𝑗

𝜏3 𝑗

𝜏𝑗𝑘𝑢𝑘 − 𝑞 𝑗


(4)

Since this study assumes a perfect gas flow, the equation of state and the transport equations are

𝑝 = 𝜌𝑅𝑇 (5)

𝑒 = 𝜌(𝐶𝑣𝑇 + 1
2
𝑢𝑘𝑢𝑘 ) (6)

𝜏𝑖 𝑗 = 𝜇( 𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖
) − 𝜆

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗 (7)

𝑞 𝑗 = −𝜅 𝜕𝑇

𝜕𝑥 𝑗
(8)

Furthermore, the viscosity coefficent 𝜇 is calculated through Sutherland’s law for nitrogen gas

𝜇 = 𝜇𝑟

(
𝑇

𝑇0

) 3
2 𝑇𝑟 + 𝑇𝑠

𝑇 + 𝑇𝑠
(9)

In these equations 𝑅 is the gas constant while 𝑐𝑝 and 𝑐𝑣 are the specific heats, which are assumed to be constant for
a given ratio of specific heats 𝛾. Here, the environment is assumed to be composed entirely of diatomic nitrogen which
results in 𝛾 = 1.4. The coefficient 𝜆 is assumed to be −2𝜇/3 and the heat conductivity coefficient 𝜅 is computed through
a fixed Prandtl number of 0.72.

IV. DNS
The DNS code utilizes a high-order shock-fitting method for a perfect gas flow that was developed to compute the

flow field surrounding a blunt cone moving in a hypersonic freestream. The numerical method is summarized here for
clarity. First, the Navier-Stokes equations are transformed into computational space

1
𝐽

𝜕𝑈

𝜕𝜏
+ 𝜕𝐸 ′

𝜕𝜉
+ 𝜕𝐹 ′

𝜕𝜂
+ 𝜕𝐺 ′

𝜕𝜁
+
𝜕𝐸 ′

𝑣

𝜕𝜉
+
𝜕𝐹 ′

𝑣

𝜕𝜂
+
𝜕𝐺 ′

𝑣

𝜕𝜁
+𝑈

𝜕 (1/𝐽)
𝜕𝜏

= 0 (10)
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where 𝐽 is the Jacobian of the coordinate transformation and (𝜉, 𝜂, 𝜁) are the transformed computational coordinates
in the streamwise, radial, and azimuthal directions of the cone. The original curvilinear coordinates of the grid are
converted using a coordinate transformation in order to better facilitate the application of high-order finite difference
stencils. This transformation is given in Eq. 11.

𝜉 = 𝜉 (𝑥, 𝑦, 𝑧)
𝜂 = 𝜂(𝑥, 𝑦, 𝑧, 𝑡)
𝜁 = 𝜁 (𝑥, 𝑦, 𝑧)
𝜏 = 𝑡

⇐⇒


𝑥 = 𝑥(𝜉, 𝜂, 𝜁 , 𝜏)
𝑦 = 𝑦(𝜉, 𝜂, 𝜁 , 𝜏)
𝑧 = 𝑧(𝜉, 𝜂, 𝜁 , 𝜏)
𝑡 = 𝜏

(11)

The transformed fluxes in the computational coordinates are then given by

𝐸 ′ =
𝐹1𝜉𝑥 + 𝐹2𝜉𝑦 + 𝐹3𝜉𝑧

𝐽
(12)

𝐹 ′ =
𝐹1𝜂𝑥 + 𝐹2𝜂𝑦 + 𝐹3𝜂𝑧

𝐽
(13)

𝐺 ′ =
𝐹1𝜁𝑥 + 𝐹2𝜁𝑦 + 𝐹3𝜁𝑧

𝐽
(14)

𝐸 ′
𝑣 =

𝐺1𝜉𝑥 + 𝐺2𝜉𝑦 + 𝐺3𝜉𝑧

𝐽
(15)

𝐹 ′
𝑣 =

𝐺1𝜂𝑥 + 𝐺2𝜂𝑦 + 𝐺3𝜂𝑧

𝐽
(16)

𝐺 ′
𝑣 =

𝐺1𝜁𝑥 + 𝐺2𝜁𝑦 + 𝐺3𝜁𝑧

𝐽
. (17)

A low-dissipation, fifth-order upwinded stencil is used for the inviscid fluxes while a sixth-order central stencil is
used to discretize the viscous terms as shown in Eq. 18.

𝜕 𝑓𝑖

𝜕𝑥
=
1
ℎ𝑏𝑖

3∑︁
𝑘=−3

𝛼𝑖+𝑘 𝑓𝑖+𝑘 −
𝛼

6!𝑏𝑖
ℎ5

(
𝜕 𝑓 6

𝜕6𝑥

)
(18)

where the coefficients 𝛼 and 𝑏 are defined as

𝛼𝑖±3 = ±1 + 1
12

𝛼, 𝛼𝑖±2 = ∓9 − 1
2
𝛼

𝛼𝑖±1 = ±45 + 5
4
𝛼, 𝛼𝑖 = −5

3
𝛼

𝑏𝑖 = 60

Here, ℎ is the step size, 𝛼 < 0 generates an upwind explicit scheme, and 𝛼 = 0 leads to a central scheme. In this
study the inviscid terms use 𝛼 = −6 for a low dissipation fifth order upwinded difference, and the viscous terms are
discretized with a sixth order central scheme using 𝛼 = 0. The derivatives in the azimuthal direction are treated with
Fourier collocation due to axisymmetry. To compute second derivatives, the first order derivative operator is applied
twice. Flux splitting is applied with a local Lax-Friedrichs formulation, resulting in

𝐹 = 𝐹+ + 𝐹− (19)

where the matrices 𝐹± are defined as
𝐹± =

1
2
(𝐹 ± Λ𝑈) (20)

and Λ is a diagonal matrix that ensure that 𝐹+ contains only positive eigenvalues and 𝐹− contains only negative
eigenvalues.
In the shock-fitting formulation the shock itself is treated as a computational boundary at

𝜂(𝑥, 𝑦, 𝑧, 𝑡) = 𝜂𝑚𝑎𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (21)
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The flow variables behind the shock are determined through a combination of the Rankine-Hugoniot relations across the
shock and a characteristic compatibility relation behind the shock. Additionally, the position 𝐻 (𝜉, 𝜁 , 𝜏) and velocity
𝐻𝜏 (𝜉, 𝜁 , 𝜏) of the bow shock in computational coordinates are also concurrently solved at each timestep with the other
flow variables. Finally, the solution is advanced in time using a low-storage first-order Runge-Kutta method from
Williamson[39]. The details of this shock-fitting formulation and the numerical methods can be found in Zhong[38].

V. LST
The linear stability analysis (LST) implementation used in this study was originally developed and verified by Ma

and Zhong [4, 11, 12, 18] and then extended to study perfect gas flow over cone geometries by Lei and Zhong[25]
and Huang and Zhong[9]. The LST relations are derived from the governing Navier-Stokes equations in Eq. 1 by
substituting the instantaneous flow, which can be decomposed into a mean and fluctuating component:

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝑥, 𝑦, 𝑧) + 𝑞′(𝑥, 𝑦, 𝑧, 𝑡) (22)

Here 𝑞(𝑥, 𝑦, 𝑧, 𝑡) is the instantaneous flow for a given dsturbance variable, 𝑞(𝑥, 𝑦, 𝑧) is the mean component, and
𝑞′(𝑥, 𝑦, 𝑧, 𝑡) is the fluctuating component. Since the steady mean flow component is assumed to satisfy the governing
equations, it can be subtracted out. The mean flow is then assumed to be both axisymmetric/2-D and quasi-parallel to
reduce any remaining meanflow terms to functions of only the wall-normal coordinate 𝑦.

𝑞(𝑥, 𝑦, 𝑧) = 𝑞(𝑦) (23)

The disturbances are assumed to be small enough that they remain in the linear regime, thus quadratic and higher
order perturbation terms (𝑞′) are cancelled out. The linearized governing equations can then be written in the form

Γ̃
𝜕𝑞′

𝜕𝑡
+ �̃�

𝜕𝑞′

𝜕𝑥
+ �̃�

𝜕𝑞′

𝜕𝑦
+ �̃�

𝜕𝑞′

𝜕𝑧
+ �̃�𝑞′ + �̃�𝑥𝑥

𝜕2𝑞′

𝜕𝑥2
+ �̃�𝑦𝑦

𝜕2𝑞′

𝜕𝑦2

+ �̃�𝑧𝑧
𝜕2𝑞′

𝜕𝑧2
+ �̃�𝑥𝑦

𝜕2𝑞′

𝜕𝑥𝜕𝑦
+ �̃�𝑥𝑧

𝜕2𝑞′

𝜕𝑥𝜕𝑧
+ �̃�𝑦𝑧

𝜕2𝑞′

𝜕𝑦𝜕𝑧
= 0 (24)

The system is further simplified by the introduction of a normal mode solution 𝑞′ = 𝑞(𝑦) exp [𝑖 (𝛼𝑥 + 𝛽𝑧 − 𝜔𝑡)],
where 𝜔 is the circular frequency of the disturbance and 𝛼 and 𝛽 are the spatial wavenumbers of the 𝑥 streamwise and
𝑧 spanwise coordinates respectively. In this study a 2-D spatial stability approach is used. For the spatial stability
approach the circular frequency of a disturbance mode, 𝜔∗ defined as 𝜔 = 2𝜋 𝑓 , must be manually set to be a real number
while 𝛽 is set to 0 for a two dimensional disturbance. This 𝜔 is based on the disturbance frequency being studied. In
this case 𝛼 is complex which results in the dispersion relation 𝛼 = Ω(𝜔, 𝛽). The complex spatial wavenumber 𝛼 can be
written as 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖 . Here, −𝛼𝑖 is the growth rate of the disturbance. The problem is now reduced to a coupled set of
5 ordinary differential equations (

A
𝑑2

𝑑𝑦2
+ B

𝑑

𝑑𝑦
+ C

)
®𝜙 = ®0. (25)

where ®𝜙 =
[
�̂�, �̂�, �̂�, 𝑇, �̂�

]𝑇 comprises the eigenfunctions of the system and A, B and C are complex square matrices of
size 5. This is now a boundary value problem where the derivative operators can be discretized and the equations solved
numerically. The system of equations is solved using using a multi-domain spectral method and boundary conditions
similar to Malik[40] which allows for clustering of points near domains of interest.
The wavenumber results from spatial LST can be used to derive the characteristic phase speed of a disturbance. The

nondimensional phase speed of a disturbance is defined from LST as

𝑐𝑟 =
(𝜔∗/𝑈∗

∞)√︁
𝛽2 + 𝛼2𝑟

(26)

which, for a two-dimensional disturbance, can be reduced to

𝑐𝑟 =
(𝜔∗/𝑈∗

∞)
𝛼𝑟

(27)
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This phase speed is non-dimensionalized by the characteristic freestream velocity. The results of spatial LST can
be further nondimensionalized using the local Reynolds number 𝑅 for streamwise position and a non-dimensional
frequency 𝐹. These are quantities are defined as:

𝑅 = 𝑅𝑒
1/2
𝑥 =

√︄
𝜌∗∞𝑈

∗
∞𝑠

𝜇∗∞
=

𝜌∗∞𝑈
∗
∞𝐿∗

𝜇∗∞
(28)

𝐹 =
𝜔∗𝜇∗∞
𝜌∗∞𝑈

∗2
∞

(29)

where additional spatial nondimensionalization is performed using the local boundary layer height parameter 𝐿∗,
which is based on the local streamwise position and freestream parameters.

𝐿∗ =

√︄
𝜇∗∞𝑠∗

𝜌∗∞𝑈
∗
∞

(30)

While LST can be used to identify both the unstable disturbance frequencies and their growth rates, it does not
directly specify the exact amplitude of the disturbance. Conventionally, boundary-layer transition is estimated using
LST through an amplification criterion known as the 𝑒𝑁 or the N-factor method. The N-factor is given by:

𝑒𝑁 (𝑠, 𝑓 ) =
𝐴(𝑠, 𝑓 )
𝐴0 ( 𝑓 )

= exp
[∫ 𝑠

𝑠0

−𝛼𝑖 (𝑠, 𝑓 )𝑑𝑠
]

(31)

Here 𝐴(𝑠, 𝑓 ) is the integrated disturbance amplitude, 𝐴0 ( 𝑓 ) is the initial disturbance amplitude, 𝑠0 is the location
where the disturbance first becomes unstable at the branch I neutral point, and −𝛼𝑖 is the spatial amplificatifon rate
obtained from LST. The integration is performed for a constant frequency 𝑓 , and is done numerically using trapezoidal
integration. Note that −𝛼𝑖 > 0 results in disturbance growth while −𝛼𝑖 < 0 results in disturbance decay. The N-factor
is specifically the exponent of 𝑒𝑁 . In-flight transition N-factors are commonly understood to be between 5 and 10.
However, this transition N-factor seems to hold only for sharp cones. Lei and Zhong[25], Aleksandrova et al.[41], and
Balakumar and Chou[21] found that N-factors decreased considerably at similar streamwise locations for blunter cones.
Marineau et al. [37] also found that blunt nose N-factors calculated at the beginning of transition were significantly
lower than those for sharp nose cases, reaching as low as 0.5. Pure considerations of the N-factor are observed to be
insufficient to reliably determine transition throughout a wide variety of conditions.

VI. Freestream Disturbance Model

A. Freestream Disturbance Model
The stability of the system is also studied by perturbing the meanflow and tracking the development of the boundary

layer disturbances using DNS. Here, the flow is disturbed with freestream fast acoustic, slow acoustic, temperature,
and vorticity disturbances in the form of Gaussian pulses. Two pulse geometries, a finite spherical and a planar pulse
distribution, were utilized in this work. Since the shock is treated as a computational boundary in the simulations, these
pulses can be represented analytically in the freestream. A schematic of the unsteady simulation is given for the finite
pulse case in Fig. 2. The finite spherical pulse is, as its name implies, a pulse disturbance that is limited spatially in x,y,
and z. The pulse disturbance distribution is given in Eq. 32. The pulse is advected by the freestream velocity along the
central symmetry line of the cone. The limited scope of the finite spherical pulses causes them to only interact with
cone near the nose region. The design of the pulses are based on previous work by Huang and Zhong[9] and Lei and
Zhong[23].

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = |𝑞′ |∞𝑒𝑥𝑝
(
− (𝑅𝑐)2
2𝜎2

)
+ 𝑞∞ (32)

The 𝜖𝑀∞ term governs the relative peak disturbance amplitude of the freestream pulse and was chosen to ensure
that boundary layer disturbances remained linear. Since the receptivity response to the planar pulses was expected to be
much stronger than that for the finite spherical pulses, the amplitude parameter 𝜖𝑀∞ was reduced for these cases. This
𝜖𝑀∞ term is included in |𝑞′ |∞ in Eq. 32 which is further detailed in the dispersion relations in Eq. 34, Eq. 35, Eq. 36,
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Pulse is advected by freestream velocity.

Shock-pulse interaction generates

initial boundary layer disturbances 

at nose that propagate downstream

M U

Shock Wave

x

U
�

Fig. 2 Schematic diagram of unsteady simulation setup for a finite, spherical pulse disturbance in the
freestream.

Table 3 Gaussian pulse parameters for DNS.

Pulse Geometry 𝜖𝑀∞ 𝜎 𝑥0

Finite Spherical 1𝐸 − 6 1𝐸 − 3 −0.02𝑚

and Eq. 37 for the fast acoustic, slow acoustic, temperature, and vorticity disturbances respectively. The term 𝜎 controls
the width of the pulse and also determines the frequency content of the disturbance. This pulse width parameter was
chosen to encompass significant freestream disturbances at frequencies up to 600 kHz in order to ensure the excitation
of the primary modal instabilities predicted by LST and resulted in a pulse radius of approximately 3 mm. 𝑅𝑐 refers to
the radial distance from the center of the pulse to a point (𝑥, 𝑦, 𝑧) in the flow field. For a finite spherical pulse 𝑅𝑐 is
defined in Eq. 33.

𝑅𝑐 =

√︃
(𝑥 − 𝑥𝑝𝑢𝑙𝑠𝑒)2 + (𝑦 − 𝑦𝑝𝑢𝑙𝑠𝑒)2 + (𝑧 − 𝑧𝑝𝑢𝑙𝑠𝑒)2 (33)

Here, (𝑥𝑝𝑢𝑙𝑠𝑒, 𝑦𝑝𝑢𝑙𝑠𝑒, 𝑧𝑝𝑢𝑙𝑠𝑒) denote the location of the pulse center. For the finite spherical pulses 𝑦𝑝𝑢𝑙𝑠𝑒 = 𝑧𝑝𝑢𝑙𝑠𝑒 = 0
is fixed. The pulse is advected in the streamwise direction by 𝑥𝑝𝑢𝑙𝑠𝑒 = 𝑥0 + 𝐶∞𝑡 where 𝐶∞ is the disturbance speed
in the freestream. These speeds are defined as 𝐶∞ = 𝑈∞ + 𝑎∞ for fast acoustic disturbances, 𝐶∞ = 𝑈∞ − 𝑎∞ for slow
acoustic disturbances, and 𝐶∞ = 𝑈∞ for entropy/vorticity disturbances. Here𝑈∞ is the freestream velocity and 𝑎∞ is
the freestream speed of sound. In order to ensure that the same frequency spectra is shared among the disturbances, the
pulse width term 𝜎 must be scaled by 1 + 1/𝑀∞ for a fast acoustic disturbance and by 1 − 1/𝑀∞ for a slow acoustic
disturbance.
The coefficient 𝑞 corresponds to any perturbation variable in the freestream and 𝑞′ is the peak perturbation amplitude

of each of these variables normalized by the freestream value. In the case of a fast acoustic disturbance, the freestream
disturbance amplitudes follow the dispersion relations given by[42]:

|𝜌′ |∞ =
|𝑃′ |∞
𝛾

= |𝑢′ |∞𝑀∞ = 𝜖𝑀∞, |𝑠′ |∞ = |𝑣′ |∞ = 0 (34)

A slow acoustic disturbance in the freestream is governed by a very similar dispersion relation:

|𝜌′ |∞ =
|𝑃′ |∞
𝛾

= −|𝑢′ |∞𝑀∞ = 𝜖𝑀∞, |𝑠′ |∞ = |𝑣′ |∞ = 0 (35)

A freestream entropy disturbance is described by:

|𝜌′ |∞ = −|𝑠′ |∞ = 𝜖𝑀∞, |𝑢′ |∞ = |𝑣′ |∞ = |𝑝′ |∞ = 0 (36)

And a freestream vorticity disturbance is described by:

|𝑣′ |∞𝑀∞ = 𝜖𝑀∞, |𝑢′ |∞ = |𝑝′ |∞ = |𝑠′ |∞ = 0 (37)
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Due to the calorically perfect gas assumed in this study’s numerical models, the temperature disturbances can be directly
related to freestream entropy disturbances by the equation of state for a perfect gas.
The parameters given in Table 3 for the finite spherical cases result in the disturbance distribution shown in Fig. 3

and can be tuned accordingly to generate different spectral amplitude distributions.

(a) (b)

Fig. 3 Freestream disturbance distributed over (a) time and (b) frequency for axisymmetric pulse.

VII. Boundary Layer Receptivity
The pulse disturbances imposed onto the cone in the unsteady simulations were chosen to induce broadband

frequency perturbations in the boundary layer of the cone. In order to study the evolution of discrete frequency
disturbances and correlate the unsteady DNS results with LST, the unsteady DNS is decomposed into its constituent
frequency components. This was done using Fourier spectral analysis.
The time-dependent perturbation variables can be expressed in terms of their Fourier spectral components, obtained

through a Fast Fourier Transform (FFT):

ℎ(𝑡𝑘 ) ≡ ℎ𝑘 ≈
𝑁−1∑︁
𝑛=0

𝐻 ( 𝑓𝑛)𝑒−2𝜋𝑖 𝑓𝑛𝑡𝑘 (38)

where 𝐻 ( 𝑓𝑛) is the Fourier coefficient corresponding to the 𝑛th discretized frequency 𝑓𝑛 . Additionally, N corresponds
to the total number of Fourier collocation points used to discretize the time-dependent function ℎ(𝑡) in Fourier space.
The discretized time function ℎ𝑘 is defined as being the value of the time dependent function ℎ(𝑡) at a given time 𝑡 = 𝑡𝑘 .
In this study, the variable ℎ(𝑡) corresponds to local boundary-layer perturbations in the surface pressure, though

other flow variables such as temperature and density may also be considered. Surface pressure was chosen since the
primary instability modes in the boundary layer are expected to be acoustic in nature. The complex Fourier coefficients
𝐻 ( 𝑓𝑛) represents the spectral value of the boundary layer perturbations in the frequency domain. The purely complex
portion of 𝐻 ( 𝑓𝑛) corresponds to the phase of the perturbation, and |𝐻 ( 𝑓𝑛) | are the perturbation amplitudes for these
variables at each spectral frequency.
Since LST was used to validate the results of the unsteady DNS analysis, local growth rates and wavenumbers need

to be calculated from the Fourier decomposed perturbation data. Following a similar procedure to Ma and Zhong[4]
and Huang and Zhong[9], the local growth rates for each frequency are determined by

− 𝛼𝑖 =
1

|𝐻 ( 𝑓𝑛) |
𝑑 |𝐻 ( 𝑓𝑛) |

𝑑𝑠
(39)
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and the local wave numbers are determined by

𝛼𝑟 =
𝑑𝜙𝑛

𝑑𝑠
(40)

where 𝑠 corresponds to the local streamwise coordinates, 𝑓𝑛 is the 𝑛th disturbance frequency of interest, and 𝜙𝑛 is
the disturbance phase angle of the 𝑛th frequency. The nondimensional phase speed of a given disturbance at a given
frequency is defined as

𝑐𝑟 =
2𝜋 𝑓𝑛
𝑈∞𝛼𝑟

(41)

The response of the system to each freestream disturbance environment can be represented through a receptivity
coefficient. This receptivity coefficient, defined here as the initial amplitude of the second mode disturbance
𝐶𝑟𝑒𝑐 ( 𝑓 ) = 𝐴0 ( 𝑓 ), is determined using a combination of LST and unsteady DNS data. In the presence of a strong second
mode it is assumed that the primary initial second mode amplitude can be extracted by inverting the amplification factor
(N-factor), as shown in Eq. 42.

𝐶𝑟𝑒𝑐 ( 𝑓 ) = 𝐴0 ( 𝑓 ) =
𝐴(𝑠, 𝑓 )
𝑒𝑁 (𝑠, 𝑓 ) (42)

Here 𝐴( 𝑓 ) is the Fourier decomposed surface pressure at a given frequency normalized by the freestream disturbance
and 𝑒𝑁 ( 𝑓 ) is the exponentiated amplification factor determined through LST analysis for a given frequency f. The
N-factor and perturbation data are sampled at the same streamwise position. Similarly, we derive corresponding spectral
phase angles for the magnitude coefficients calculated from Eq. 42. From Eq. 40 it is known that the real wave number
of a disturbance is calculated by the spatial gradient of its phase. Thus, by integrating the real wave number between
two fixed spatial locations it is possible to find the expected phase change of a discrete frequency LST disturbance. In
this study, these locations are the branch I neutral stability point and the sampling locations we investigated for the
receptivity magnitude coefficients. This integrated LST phase change was used to attempt to extract the specific second
mode phase coefficients corresponding to the magnitude coefficients discussed previously at the branch I neutral point. It
is observed later that the choice of sampling location does have some influence on the resulting receptivity coefficients.

VIII. Steady Flow Field Solution

A. Case I
The steady DNS pressure and temperature meanflow contours for Case I are shown in Fig. 4a at the nose and near

the beginning of the cone frustum. Fig. 4b presents the grids used at this location. Similarly to the 9.525 mm nose
radius cone in our previous work [36], a total of 240 points were used in the 𝜂 direction and approximately 5 points
per mm were used in the 𝜉 direction. These distributions were chosen to resolve high frequency and wavenumber
disturbances and to provide sufficient resolution in the meanflow data so as to reduce numerical inconsistencies in the
LST analysis. A total of 7,290 points were used in the 𝜉 direction to resolve the cone to 1.5 m.
The meanflow pressure and temperature contours for the full cone are shown in Fig. 5.An entropy layer is seen to

emerge in the nose region in Fig. 4a. The boundary and entropy layers can be visualized more clearly using wall-normal
profiles of velocity and entropy. These are presented Fig. 6 at a selection of different streamwise positions. The
boundary layer velocity profile in Fig. 6a demonstrates very little change in general shape or thickness throughout the
downstream regions of the cone and shows that the locally parallel assumption holds for the purposes of LST. The
entropy profiles in Fig. 6b show a significant entropy layer that does not merge with the boundary layer until a point that
is approximately 100 nose radii downstream on the cone, and matches the results for a similar case from Balakumar and
Chou[21].
The convergence of the meanflow simulation for Case I is validated by comparing the current 240 point grid in the

wall normal direction with a further refined 480 point result. The results of this convergence study are shown in Fig. 7
for wall normal velocity and temperature profiles at a streamwise location 246 nose radii downstream on the cone.
The nearly identical profiles in both the velocity and the temperature qualitatively indicate grid convergence. The

infinity norm of the relative error was used to quantify the difference between the original and the refined result. The
infinity norm based on the velocity for this case is 2.61 × 10−6.
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(a) (b)

Fig. 4 Partial view of (a) pressure (top) and temperature (bot) contours and (b) grids for zones 1 and 2 near
nose region.

Fig. 5 Meanflow pressure (top) and temperature (bot) over the entire cone for Case I.

12



(a) (b)

Fig. 6 Wall normal (a) U velocity and (b) S entropy profiles at a selection of streamwise positions for Case I.

(a) (b)

Fig. 7 Grid convergence comparison of wall normal (a) U velocity and (b) T temperature profiles at s∗ = 1.25
m for Case I, approximately 240 nose radii downstream.
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IX. LST Results
LST results for Case I, the 5.080 mm nose radius cone, indicate an amplified second mode between 135 and 310

kHz. At the reported experimental transition location of 0.683 m (134 nose radii downstream on the cone), the unstable
second mode is found between frequencies of 190 and 250 kHz and compares well to Marineau et al’s. [37] results. The
growth rate contours and the neutral stability curve are shown in Fig. 8 where −𝛼𝑖 > 0 growth rates inside the curve
correspond to the unstable second mode region. The neutral stability curve shown here was fitted from the branch I and
branch II neutral stability points and is highlighted in black.

Fig. 8 LST growth rate contour and neutral stability curve up to 1.5 m or approximately 300 nose radii
downstream for Case I.

The growth rates are integrated across the available data in the streamwise direction from the branch I neutral point
in order to generate the N-factor curves. Fig. 9 presents N-factor curves for a subset of disturbance frequencies ranging
from 150 to 260 kHz as well as a comparison of the total N-factor profile against Marineau et al.’s[37] computed results.
For this case (which corresponds to Run 3746), Marineau et al.[37] reported an experimentally determined transition

location of 𝑠 = 0.683 m approximately 134 nose radii downstream on the cone, along with a corresponding N factor of
3.7. This is over two times larger than the transition N-factor for the blunter cone studied in Case B in [36]. In general,
Marineau et al.[37] found that the transition N factors of his cases scaled inversely with nose radius, as also seen in
previous computational work[25, 43]. The LST results here are shown to compare well with Marineau et al.’s reported
value and predict an N-factor of approximately 3.9 at this point. A direct comparison between the LST N-factors in
Fig. 9a and Marineau’s PSE derived N-factors are shown in Fig. 9b, in which the total profile is fitted for all of the
discrete frequencies. The LST results are shown to slightly overpredict the N-factor compared to the PSE results from
Marineau et al. This is again attributed to the differences in formulation between the LST used in this work and the PSE
utilized by Marineau et al., namely in the nonparallel effects present upstream on the cone geometry. However, it can
be seen here that these effects are relatively minor and do not significantly affect the general downstream disturbance
development significantly, as can be seen in the very similar N-factor slopes between the two computational methods.
The phase speed and growth rates of the 200 kHz disturbance are presented in Fig. 10. These will again be used to
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(a) (b)

Fig. 9 (a) N-factor data ranging between 150 kHz to 260 kHz with Δ 𝑓 = 10 kHz. (b) Current LST N-factors vs.
Marineau’s[37] reported PSE N-factors.

(a) (b)

Fig. 10 Streamwise LST results at f = 200 kHz for (a) Phase Speed (b) Growth Rate for Case I.

validate the results of the unsteady DNS and to help investigate the mechanisms of receptivity in for each pulse. The
200 kHz disturbance was chosen in particular because it is expected to be highly excited, as shown in [37]. From Fig.
10b it can be seen that unlike Case B, the dimensional growth rate −𝛼𝑖 becomes positive for mode S, indicating that this
discrete mode destabilizes after synchronization to become the second mode. The mode F disturbance is shown to
remain strongly stable at this frequency as well, though the code was unable to capture the mode F disturbance between
the initial synchronization point near 𝑠/𝑅𝑛 = 100 and the branch point of the mode F and mode S disturbances near
𝑠/𝑅𝑛 = 200 in both Fig. 10a and Fig. 10b. Between these points, the LST is dominated by the unstable mode S. Similar
discontinuities have been observed in previous numerical studies from the group[44] and can be difficult to resolve
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numerically.

X. Unsteady DNS Results
The receptivity of the cone was studied in response to a variety of broadband freestream disturbances with analytically

continuous frequency spectra. The pulse disturbances described in section VI.A were introduced in the freestream
and then allowed to advect along the central axis of symmetry in the streamwise direction over the meanflow. The
resulting boundary layer disturbances on the cone’s surface were studied using FFT to decompose the surface pressure
perturbations into their spectral frequency components. The specific disturbance cases and their respective labels are
given in Table 2. The disturbances are differentiated by both their freestream perturbation type and their geometry. The
fast acoustic, slow acoustic, entropy, and vorticity disturbances are defined by the freestream dispersion relations in Eq.
34,35, 36, and 37 respectively.

A. Case I Finite Spherical Pulse Unsteady DNS Results
The results of the unsteady finite pulse perturbations for Case I, the 5.080 mm nose radius cone, are presented here.

Fig. 11 shows pressure perturbation snapshots near the end of the cone for Case I1. Similar to the finite pulses in Case
B, the general disturbance profiles for the finite pulses for Case I were very similar. Fig.11c depicts isolated boundary
layer structures which are are indicative of a perturbation growing in accordance with Mack’s second mode[4]. Fig. 11a
and Fig. 11b depict shock-layer perturbations that originate from pulse-disturbance interactions upstream. These are
very similar to the shock-layer disturbances observed previously for the finite pulses in Case B from our previous work
[36] and contain both continuous mode disturbances excited upstream by the pulse, as well as first mode boundary layer
disturbances[9]. These are much smaller in amplitude than the second mode disturbances depicted for Case I1 in Fig.
11c. The general structure of the shock layer disturbance fronts are qualitatively very similar between each of the cases,
though the amplitudes of the disturbances vary between them.
Focusing on the second mode band shown in Fig. 11c we see the emergence of additional weak disturbances

that seem to radiate from the boundary layer into the rest of the shock layer. This again indicates the existence of
potential supersonic mode instabilities and further corroborates previous findings for Case B that show that these
supersonic modes can exist in a wide variety of conditions, including low enthalpy flows. However, the acoustic radiation
characteristic of these waves is extremely weak in comparison to the second mode and seem to be even weaker here than
what was observed for Case B in [36].
The other three finite pulse cases show very similar general second mode structures, as well as as extensive weak

supersonic modes. Furthermore, all of these cases experienced a sudden decrease in perturbation amplitude between
𝑋/𝑅𝑛 = 1.35 and 𝑋/𝑅𝑛 = 268 . This is attributed to interference between the primary unstable mode S and the satellite
waves of a stable supersonic mode F. This is highly similar to a result observed by Haley and Zhong[45] for low enthalpy
hypersonic flow over a slender cone. The extent of this effect is unknown in terms of its impact on boundary layer
transition, but it is indicative of a much more complex system of disturbance mechanisms in boundary layer flows than
initially expected.
A time history of total surface pressure perturbations at different streamwise positions along the cone is also presented

in Fig. 12 up to 140 nose radii downstream on the cone. The upstream wavepacket at 𝑠/𝑅𝑛 = 59.1 is highly irregular
and contains a multitude of forcing modes. This forcing is observed to continue decaying as the packet propagates
downstream until second mode amplification is begins and exponentially amplifies the perturbation magnitudes. This
second mode amplification is marked by the appearance of a more regular wavepacket at 𝑠/𝑅𝑛 = 117.9 .
Fig. 13 presents the same surface perturbation time history at additional downstream locations. Again, these

are non-dimensionalized by the nose radius of the cone. The y-axis scales for the figure at 𝑠/𝑅𝑛 = 217.1 and at
𝑠/𝑅𝑛 = 294.3 are not uniform with the upstream results due to the order of magnitude difference in the disturbance
amplitudes. It can be seen from these results that the second mode experiences significant amplification downstream of
𝑠/𝑅𝑛 = 117.8. This surface perturbation data can be decomposed using FFT to further analyze the spectral content of
the excited surface perturbations. These are presented for all of the finite pulse cases (Cases I1-I4) in Fig. 14. The
preliminary LST neutral curve is also plotted in these figures as a solid black line.
Again, the finite pulse cases for all four disturbance types exhibit very similar normalized surface pressure spectra.

A primary band of instabilities is observed between approximately 150-220 kHz in all four cases. This amplification
occurs earliest for Case I1 (fast acoustic) and Case I3 (temperature) indicating stronger second mode responses for
these cases. Furthermore, the acoustic and temperature cases (I1-I3) excite a broader band of unstable frequencies than
the finite vorticity pulse (Case I4), indicating that the vorticity pulse induces a relatively weak receptivity response
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(a) (b)

(c)

Fig. 11 Pressure snapshots in the shocklayer downstream on the cone for Case I1 for (a) Forward disturbance
front, (b) Rear disturbance front, and (c) second mode disturbance.

compared to the other cases. This follows the results for the 9.525 mm case we studied previously in [36]. Significant
amplification of modal instabilities was not directly observed by the unsteady DNS until approximately 150 nose radii
downstream, and occurs after the swallowing distance presented by Balakumar anc Chou [21]. The preliminary LST
results agree roughly with the FFT decomposed spectra, though the LST seems to predict a higher peak disturbance
frequency than the DNS. This difference is attributed to nonparallel effects resulting from the nose bluntness of the
geometry.
The FFT decomposed surface pressure perturbations at different streamwise locations are also presented in Fig. 15

for Cases I1 through I4 for a selection of different streamwise positions nondimensionalized by the nose radius. Again,
the familiar trends are seen with an initial decay in boundary layer forcing followed by exponential modal amplification
as the sampling position moves further downstream. The second mode disturbance is clearly identifiable between the
frequencies of approximately 150 and 200 kHz. Very similar disturbance spectra are observed across all of the finite
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Fig. 12 Time history of normalized surface pressure perturbations resulting from Case I1 up to 𝑠/𝑅𝑛 = 140.

pulse cases. The general receptivity response of the flow to the different disturbance types can be directly observed in
these surface pressure spectra. The finite temperature pulse (Case I3) was found to generate the strongest second mode
and higher mode disturbances, followed by the finite fast acoustic pulse (Case I1), the finite slow acoustic pulse (Case
I2), and finally the finite vorticity pulse (Case I4).
The LST phase speed and growth rate results for the 200 kHz disturbance discussed previously are used here to

further verify the results of the unsteady simulations. The comparisons for Case I1, Case I2, Case I3, and Case I4 are
presented in Fig. 16, 17, 18, and 19 respectively. The unsteady DNS results demonstrate good agreement with LST, and
show that the finite pulses primarily generate mode F disturbances upstream on the cone in the initial shock-disturbance
interaction. Furthermore, the results confirm that mode S becomes unstable after synchronization. This agrees with
the general upstream receptivity mechanism observed previously in [36] and other receptivity simulations for blunt
cones[9, 18] in which discrete fast acoustic disturbances are generated near the leading edge by freestream forcing.
However, unlike our previous results for the 9.525 mm case in [36] the unstable second mode here is confirmed to be the
discrete mode S. The unsteady signal immediately jumps to mode S after synchronization approximately 110 nose radii
downstream in Fig 16, with additional modulations in the unsteady signal occurring at synchronization. While the
unsteady discrete mode S destabilizes and dominates the flow beginning at this initial synchronization point, the process
involves strong multimodal interactions that muddle the unsteady signal. This results in the modulated signal seen in the
cases presented here.
While the primary dominant disturbances of the flow are the same for each of the unsteady pulse cases, the modal

interactions resulting from different forcing can also vary somewhat. This can be directly observed in the synchronization
oscillations between the cases. Similar to Case B1, Case I1 demonstrates significantly stronger modulations at the initial
synchronization location, indicating stronger intermodal exchanges at this point as a result of fast acoustic forcing. This
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Fig. 13 Time history of normalized surface pressure perturbations resulting from Case I1.

is also reflected in the growth rate in Fig. 16b. Case I2 in Fig. 17 and Case I3 in Fig. 18 have nearly identical disturbance
profiles as Case I1, though they have less pronounced modulations resulting from synchronization. This again reflects
strong commonalities between the receptivity response of the temperature and slow acoustic pulses with the fast acoustic
disturbance. On the other hand, Case I4 in Fig. 19 also demonstrates a different modal oscillation structure upstream of
and near synchronization. The modulations for this case are much less regular and may be indicative of stronger noise
components in the signal due to the relative weakness of the second mode response for freestream vorticity disturbances.
This can be seen in the growth rate for Case I4 in Fig. 19b in which the signal is observed to oscillate roughly about a
neutrally disturbance signal instead of solely on the mode F disturbance.
The unsteady DNS results show good agreement with the LST data, and indicate that the reduced LST analysis is able

to track the primary instability development of the flow. Thus, while the LST does not take into account complicating
factors such as nonparallel effects, it can still be combined with the unsteady DNS results to generate spectral receptivity
coefficients for this meanflow case.
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(a) (b)

(c) (d)

Fig. 14 Normalized FFT surface pressure contour for (a) Case I1, (b) Case I2, (c) Case I3 and (d) Case I4.
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(a) (b)

(c) (d)

Fig. 15 FFT decomposed surface pressure spectra at various streamwise locations for (a) Case I1, (b) Case I2,
(c) Case I3, and (d) Case I4.
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(a) (b)

Fig. 16 Case I1 unsteady DNS vs. LST predicted results for 200 kHz disturbances (a) Phase Speed (b) Growth
Rate.

(a) (b)

Fig. 17 Case I2 unsteady DNS vs. LST predicted results for 200 kHz disturbances (a) Phase Speed (b) Growth
Rate.
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(a) (b)

Fig. 18 Case I3 DNS vs. LST predicted results for 200 kHz disturbances (a) Phase Speed (b) Growth Rate.

(a) (b)

Fig. 19 Case I4 DNS vs. LST predicted results for 200 kHz disturbances (a) Phase Speed (b) Growth Rate.
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XI. Receptivity Results
The spectral receptivity magnitude coefficient for each of the disturbances is calculated from Eq. 42 using surface

pressure perturbation data which is normalized by the freestream pulse amplitude spectra. The methodology here is the
same as in our previous work [36] and is based on a method that was originally proposed by Huang and Zhong[9, 26].
The receptivity coefficients are calculated using LST-derived N-factors to extract the initial second mode amplitudes
from the unsteady DNS data. Isolating the contributions of different modal disturbances to the total initial disturbance
allows for greater specificity when tracking the development of instabilities across a flow domain, especially in cases
with significant multimodal content.

A. Receptivity Coefficient Spectra

(a) (b)

(c) (d)

Fig. 20 Receptivity coefficients at different sampling locations for (a) Case I1, (b) Case I2, (c) Case I3, (d) Case
I4.

Using Huang and Zhong’s[26] method, the receptivity coefficients were calculated for each of the disturbance cases.
Since these receptivity calculations may be sensitive to sampling location, a comparison of the receptivity spectra for
different sampling locations was made for each of the finite spherical pulse cases. The receptivity spectra for I1-I4 at
several sampling locations are presented in Fig. 20. Similar to our previous work [36], the sampling locations were
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chosen to be the branch I neutral stability point 𝑥𝑏𝑟 𝐼 , the branch II neutral stability point 𝑥𝑏𝑟 𝐼 𝐼 , and an intermediate
location defined at 𝑥𝑠𝑎𝑚𝑝𝑙𝑒 = 1.3 ∗ 𝑥𝑏𝑟 𝐼 for a given input disturbance frequency. These points were chosen to ensure the
sampling location remained within the unstable second mode region. The branch I sampling point compares directly to
conventional receptivity results reported by Balakumar and Chou[21], Kara et al.[22], Zhong and Ma[18], and Huang
and Zhong[26] as the decomposition method outlined previously is not applied and the surface pressure signal is simply
sampled directly. Previous work by our group showed that the complex disturbance environment generated by broadband
freestream pulses resulted in larger receptivity coefficient magnitudes when the decomposition isn’t applied. This was
observed for both the finite and the planar pulse cases, though it was less pronounced for the finite pulses. In order to
extract the initial second mode amplitudes in particular, modal decomposition was previously found to be necessary.
The current comparison serves to determine if its necessity in this case as well. Fig. 20 shows the sampling point results
for Cases I1-I4 and demosntrates significant second mode dominance near frequencies of 220-230 kHz. Furthermore,
while the general patterns are very similar for each of the sampling locations, the branch I sampling result is shown to
overpredict the receptivity coefficient by up to 80% compared to the other sampling locations. This indicates that modal
decomposition is necessary to isolate the second mode in particular.
The spectral receptivity coefficients shown here are highly oscillatory, contrary to previous results seen by Huang

and Zhong [26] and He and Zhong [36]. While this behavior is observed for each of the sampling locations, the degree
of oscillation is reduced for the intermediate and branch II sampling cases. This is indicative of a reduction in the
multimodal influence present in the results due to the decomposition method utilized here. More complex modal
decomposition methods like the bi-orthogonal decomposition [46] may be able to better account for these effects.

Fig. 21 Comparison of receptivity coefficient spectra for finite pulses (Cases I1-I4) using intermediate sampling
location.

The total receptivity spectra for the finite spherical cases (I1-I4) are shown in Fig. 21 at the intermediate sampling
location. For the finite spherical pulses studied here, it was found that the receptivity response was strongest for the
temperature, fast acoustic„ slow acoustic, and vorticity disturbances in that order. Furthermore, while the receptivity
coefficients here are up to two times stronger when compared to the results for the 9.525 mm nose radius Case B in
[36], the vorticity coefficients are almost 8 times larger, indicating a much stronger receptivity response to vorticity
disturbances for this sharper nose case.

B. Disturbance Phase Angle Spectra
The phase angle spectra for the unsteady pulse disturbance cases was also extracted from the unsteady DNS. With

the data from the receptivity coefficient spectra and the phase angle spectra, the total initial receptivity response to an
arbitrary axisymmetric freestream disturbance can be reconstructed[9, 23]. These initial disturbances can then be used
as inputs for more advanced transition predicted methods like Mack’s amplitude method[33], or to reproduce arbitrary
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inlet conditions for downstream simulations studying phenomena such as nonlinear breakdown [23, 47]. The phase
spectra corresponding to the magnitude coefficients presented in in the previous section are shown below in Fig. 22.

Fig. 22 Comparison of branch I phase spectra corresponding to the receptivity coefficients for cases I1-I4.

(a) (b)

Fig. 23 Phase contour and LST neutral curve for (a) Case I1 and (b) Case I3. The phase data is shifted such
that it is continuous both spectrally and spatially.

The high frequency results are seen to agree very well between all four cases. Furthermore, the results for the finite
fast acoustic, slow acoustic, and vorticity pulse disturbances are also very similar with each other at lower frequencies.
The finite temperature pulse, on the other hand, demonstrates a different spectral phase distribution. This difference can
be attributed to the differences in the disturbance phase distribution of the unsteady DNS in Fig. 23 in which the phase
results are presented as a spectral contour. Similar contours for the finite slow acoustic and finite vorticity pulses (Cases
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I2 and I4) were omitted for their similarity to Case I1. The presented phase results are shifted by factors of 2𝜋 such
that they remain continuous both spectrally and spatially. The higher frequency disturbance phases are again observed
to be very similar for the two cases. However, at lower second mode frequencies near 150 kHz we see a much more
irregular gradient for Case I1. The results for Case I3, however, have a much more regular gradient throughout this low
frequency region. This strong variation from the acoustic and vorticity pulses causes the dramatic variation in the lower
frequency phase results observed in Fig. 22. The effects of this can be also be observed in the wavenumber for the
160 kHz disturbance shown in Fig. 24 for Cases I1 and I3 again. While the downstream and upstream behavior of the
unsteady signal in both cases is very similar, near the synchronization and initial neutral stability point (at approximately
𝑠/𝑅𝑛 = 200) the signals experience significant differences in oscillation. In particular, while Case I3 experiences some
multimodal oscillations at this point, the signal for Case I1 is dominated by much stronger and more densely packed
oscillations. This is evidence of much stronger multimodal interference in Case I1, which is also reflected in Case I2
and I4. These phase irregularities may be caused by additional instability modes that are more readily excited by the
acoustic and vorticity pulses, and may muddle the phase signal. This may include the first mode instability or supersonic
mode effects, though this requires additional investigation.

(a) (b)

Fig. 24 Unsteady DNS vs. LST wavenumber comparison for a 160 kHz disturbance for (a) Case I1 and (b)
Case I3.

XII. Conclusion
The receptivity of a 7-degree half-angle, 5.08 mm nose radius cone at mach 10 to a variety of freestream disturbances

with broadband frequency spectra was investigated in this study. Spectral receptivity coefficient amplitudes and phase
angles were extracted for finite spherical pulses consisting of fast acoustic, slow acoustic, temperature, and vorticity
disturbances. The base flow geometry and freestream conditions were based on Marineau, et al.’s experiments[37] and
the meanflow was converged using a high-order shock fitting method to solve the perfect gas Navier-Stokes equations
(DNS). The stability of the meanflow was investigated using linear stability theory (LST) analysis and unsteady DNS.
The pulses for unsteady DNS were modelled analytically in the freestream using Gaussian distributions to provide
broadband frequency disturbances, and the shock interactions were simulated using the same high-order shock-fitting
scheme as the steady DNS.
The LST analysis showed that boundary layer disturbances in a band of frequencies extending from approximately

135 kHz to 310 kHz experienced second mode growth. Furthermore, the discrete mode S emerging from the continuous
slow acoustic spectrum was found to become the unstable second mode after synchronization. An entropy layer was
observed beginning near the nose and the frustum, which eventually merged into the boundary layer approximately 100
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nose radii downstream on the cone. Similar to Balakumar and Chou[21], LST and DNS did not predict peak second
mode instability until after the entropy layer was swallowed. The N-factor in this study agrees well with Marineau et
al.’s[37] PSE N-factor at the experimental transition location, with the results of this study predicting an N-factor of
3.9 vs Marineau et al.’s 3.7. The minor differences between these results is attributed to non-parallel effects that were
ignored by the LST analysis utilized here, and are not believed to contribute significantly to the instability development
of the flow.
The unsteady DNS simulations were decomposed into their frequency components using FFT which showed that all

four of the tested freestream finite pulse disturbances generated significant second mode amplification on the cone. The
finite spherical pulse cases (I1-I4) were observed to excite very similar boundary layer disturbance profiles. Due to their
limited size, the finite pulses only interacted with the shock near the nose region of the cone. These isolated shock
interactions allowed most of the initial broadband forcing to be damped out before second mode amplification began.
The unsteady DNS results were validated against LST and showed good agreement for all of the finite pulse cases.
The receptivity coefficients for the second mode disturbances were calculated by rescaling unsteady DNS pressure
perturbation data with the LST N-factors. Furthermore, different sampling locations were also tested to investigate
their effects on the resulting receptivity magnitude coefficients. It was again found that directly sampling the unsteady
perturbation signal at the branch I neutral point overpredicts initial second mode amplitudes, as this does not account for
the multimodal content of the disturbance. While the difference was not particular significant for the finite pulse cases
investigated here in terms of spectral shape, the branch I sampling resulted in receptivity coefficients that were up to 80%
larger than the results from other sampling locations for specific second mode disturbance frequencies. This necessitates
the use of modal decomposition in order to isolate the receptivity response of the second mode in more complex flow
environments. The strongest response amplitudes were observed in response to the finite temperature (Case I3), fast
acoustic (Case I1), slow acoustic (Case I2), and vorticity (Case I4) pulses in that order. The spectral phase coefficients
corresponding to the receptivity coefficients were also extracted for all four finite disturbance types. While the results
for all four pulses agree very well at higher frequencies, the Case I3 was shown to diverge significantly from the o thers
below 170 kHz. This is attributed to differences in excited disturbance content at these lower second mode frequencies
between the Case I3 and the other cases, though additional investigation is still necessary to characterize this.
Additional unsteady pulse configurations remain to be studied in order to further characterize the wide envelope of

potential forcing configurations. This includes more complex planar pulse disturbances, similar to what was presented in
[36]. The consideration of even more complex three dimensional disturbances, such as pulses with oblique incidence, are
also under consideration. Fully understanding the receptivity response of both two-dimensional and three-dimensional
freestream disturbances is necessary to characterizing the general development of disturbances in hypersonic flows and
improving on current transition prediciton criterion.
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