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Although receptivity plays a key role in the transition of hypersonic flows, most prior computational receptivity
studies have neglected to study broadband frequency disturbance spectra. This work uses perfect gas linear stability
theory (LST) and direct numerical simulation (DNS) to study the receptivity of flow over a 9.525 mm nose radius,
7 deg half-angle straight cone at Mach 10 using finite spherical and planar pulses to approximate disturbances with
broadband frequency spectra. Freestream fast acoustic, slow acoustic, temperature, and vorticity pulses of both
geometries were studied to investigate a wide range of forcing conditions. Unsteady DNS predicts second mode growth
and agrees well with LST. DNS and LST data are used to extract second mode receptivity coefficients and phase
spectra. For the finite pulses the strongest to weakest responses are for the fast acoustic, temperature, slow acoustic,
and vorticity pulses, respectively. The planar disturbances show the strongest response for the slow acoustic,
temperature, vorticity, and fast acoustic pulses in that order. Fast Fourier transform results show significant
variation in the spectral disturbance response between disturbance types and geometries, and the planar fast
acoustic pulse in particular is shown to much more readily excite modal disturbances other than the primary

second mode.

Nomenclature
Crec receptivity coefficient
¢, = nondimensional phase speed

)
|

« = disturbance velocity, m/s

f = frequency, Hz

L* = boundary-layer thickness parameter, m
M = Mach number

Pr = Prandtl number

Re = Reynolds number

5* = streamwise position, m

T = temperature, K

a = spatial wavenumber, 1/m

€ = peak freestream disturbance amplitude
o = Gaussian shape parameter

¢ = phase angle

0] = circular frequency

Subscripts

i = imaginary component

r = real component

w = wall

0 = stagnation

0 = freestream

I. Introduction

HE accurate prediction of laminar to turbulent transition in
hypersonic flows is a major concern when using computational
fluid dynamics (CFD) to aid in the design of hypersonic vehicles.
Transition to turbulence is known to dramatically increase aerody-
namic drag and heating on the vehicle’s surface and significantly
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affect the control of the vehicle [1-3]. Effectively delaying and/or
predicting transition in hypersonic vehicles will allow for greater
specificity in the design of thermal protection systems (TPSs) to
minimize their weight impact and improve payload capacities.

Transition in a hypersonic boundary layer is governed by several
mechanisms, and in the case of weak environmental forcing it can be
broken down into three distinct stages: 1) boundary-layer receptivity,
2) linear growth of small amplitude disturbances, and 3) nonlinear
breakdown at finite disturbance amplitudes [4]. Traditionally, studies
on hypersonic boundary-layer transition at zero angle of attack have
focused on the linear growth of Mack modes, for which the second
mode instability has been found to dominate [5]. However, receptiv-
ity mechanisms dictate the initial disturbance amplitudes of flow
instabilities like the second mode, and can greatly impact the general
stability behavior of the flow [6]. Studies of receptivity commonly
focus on the response to freestream noise which, for compressible
flows, can be categorized into three distinct types: acoustic, entropy,
and vorticity disturbances [7]. In hypersonic flows the interaction of
any of these freestream disturbances with the bow shock generates
disturbance waves of all three types behind the shock [8]. These can
then propagate to and perturb the boundary layer. The mechanisms of
the shock—disturbance interactions for each of these freestream dis-
turbance types can vary significantly and cause differences in the
resulting boundary-layer perturbations, in terms of both disturbance
amplitude and phase [9]. Thus, a wide-ranging consideration of all
the disturbance types is needed to fully characterize the receptivity of
a hypersonic flow.

The receptivity of hypersonic boundary layers to freestream dis-
turbances has been extensively studied in flows over flat plates
[4,10-15] and cones [16-21]. Freestream acoustic, vorticity, and
entropy disturbances modeled as discrete frequency planar waves
were found to excite continuous and discrete mode instabilities to
varying degrees in flat plates [4,10,14]. Acoustic disturbances in
particular were seen to most readily excite the unstable second mode
in flat plates [4,13], though the other disturbance types were also
shown to potentially generate weaker modal instabilities [14]. Acous-
tic disturbances were also found to excite the strongest second mode
response in cone geometries [16,18], though entropy and vorticity
disturbances were able to excite second mode instabilities much more
readily than in the flat plate cases. The additional complexity intro-
duced by the bow shock and surface curvature for cones were
observed to present different receptivity paths for freestream disturb-
ances and necessitates studying a wide variety of disturbances to fully
characterize the receptivity response of hypersonic flow over a cone.

Check for
updates
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Many of these prior receptivity studies simulated the boundary-
layer response to discrete frequency planar Fourier modes in the
freestream, which generally results in all of the energy of the dis-
turbance spectrum being assigned to the most unstable frequency.
This can lead to overestimations of the resulting boundary-layer
disturbance amplitudes [19]. A more physically correct model would
take into account a broadband distribution of excited disturbance
frequencies. Several recent computational studies have investigated
the response to more complex broadband disturbances. Balakumar
and Chou [19] approximated broadband frequency spectra by simul-
taneously imposing carefully chosen combinations of discrete Fou-
rier modes. They found that doing so allowed them to accurately
predict transition on a sharp cone using a threshold criterion, though
the accuracy decreased for their blunter cases. Huang and Zhong
[9,22] instead used freestream Gaussian pulses in order to simulate
laser spot experiments originally performed at Purdue by Wheaton
et al. [23] and Chou et al. [24,25]. These preliminary works showed
that pulses could also replicate broadband frequency freestream
disturbances, that pulses and other broadband perturbations could
excite significant modal instabilities, and that a consideration of
broadband disturbances could improve the accuracy of predictions
made using linear receptivity results. While the pulse model does not
fully represent the stochastic nature of realistic flight disturbances,
they provide more complex forcing environments than previously
studied discrete planar waves and can be decomposed spectrally
using fast Fourier transform (FFT) to generate databases of linear
receptivity coefficients for different spatial forcing configurations.
These receptivity data can be used to provide the initial disturbance
amplitudes that are required by amplitude method-based transition
estimation schemes.

The current study expands upon the work by Huang and Zhong and
presents a novel consideration of additional disturbance types.
Although the receptivity to different freestream disturbances has
been extensively studied in the past, prior works have traditionally
considered only discrete frequency disturbances or were limited in
their selection of broadband disturbances. Though these works pro-
vide insight into the complex receptivity mechanisms present in
hypersonic flows over cones, a more complete overview of the
disturbance responses is necessary to further characterize the recep-
tivity mechanisms present in hypersonic boundary layers. The recep-
tivity mechanisms for both finite, spherical, and planar pulse
geometries are investigated in this study. The different disturbance
geometries result in different forcing interactions; the finite, spherical
pulses are small relative to the nose radius of the cone and only
interact with the domain in the nose region, whereas the planar pulse
can continuously interact with the shock as it propagates in the
streamwise direction. This study aims to investigate the effects of
these two different disturbance regimes. Fast acoustic, slow acoustic,
temperature, and vorticity disturbances are modeled using both of the
pulse geometries for a total of eight unsteady cases. The mean flow
geometry is based on experiments by Marineau et al. [26] for a Mach
10 flow over a cone from the AEDC wind tunnel 9. The numerical
study in this paper consists of three primary components: 1) the
steady mean flow simulation and linear stability theory (LST) analy-
sis, 2) the unsteady direct numerical simulation (DNS) simulation
using the freestream pulse disturbances, and 3) the generation of the
spectral receptivity coefficients and phase angles using the LST and
unsteady DNS results. Assuming a linear receptivity process, the
resulting receptivity coefficients can be directly applied to the devel-
opment of more advanced transition estimation procedures such as
Mack’s amplitude method [27,28] or Crouch’s variable N-factor
method [29]. Contrary to the conventional e method, these newer
procedures are directly concerned with disturbance amplitudes them-
selves and not just the amplification ratio. Thus, they require recep-
tivity data to directly estimate the initial disturbance amplitudes.
Receptivity spectra, like the ones from this study, are necessary in
order to generate more precise receptivity correlations. These can in
turn be used to produce more precise estimates of initial disturbance
amplitudes compared with commonly used empirically fitted data,
and further improve the accuracy of these alternative transition
prediction methods.

II. Simulation Conditions

The current study focuses on the receptivity of a 9.525 mm nose
radius circular, straight cone with a half-angle of 7 deg at Mach 10 to
freestream finite spherical fast acoustic, slow acoustic, temperature,
and vorticity disturbances as well as freestream planar fast acoustic,
slow acoustic, temperature, and vorticity disturbances. The perturba-
tions were modeled as Gaussian pulses in the freestream, providing
for broadband frequency disturbances. The cone geometry is 1.9 min
length along the line of symmetry. The DNS simulations used 240
points in the wall-normal direction and roughly five points per
millimeter on the surface of the cone in the streamwise direction.
Four points are used in the periodic spanwise direction, though only
one point is directly calculated at each time step. The flow conditions
for this study are summarized in Table 1 and are based on the tunnel
conditions reported by Marineau et al. [26] for run 3752.

The DNS code used in this study uses a shock-fitting formulation
with the parameters in Table 1 defining the freestream conditions
upstream of the shock formed over the body. The viscosity used here
was calculated using Sutherland’s law, whereas Marineau et al. [26]
instead used curve fits of experimental data. This leads to approx-
imately a 15% increase in the calculated freestream unit Reynolds
number in this study compared with Marineau’s.

III. Numerical Methods and Disturbance Model

A. Direct Numerical Simulation

The DNS code uses a high-order shock-fitting method formulated
for a perfect gas that computes the flowfield between the shock and
the body. The numerical method is summarized here for clarity. The
receptivity simulations in this study assume calorically perfect gas
behavior for molecular nitrogen in the flowfield. This assumption
was made based on the low freestream stagnation enthalpy reported
in Table 1. The three-dimensional conservative Navier—Stokes sys-
tem consists of a single species mass conservation equation, three
momentum conservation equations, and the energy equation. The
governing equations in vector form are written as

ou  oF; dG; .
o Tax, Tax, 0 U=129) )
where U is the state vector of conserved quantities and F'; and G are
the inviscid and viscous flux vectors, respectively. Here, thej indices
indicate curvilinear coordinates in the streamwise, radial, and azimu-
thal directions about the cone. The conservative vector U comprises
five conservative flow variables for mass, momentum, and energy. In
the shock fitting code, both the shock itself and the surface of the cone
are treated as computational boundaries for the grid. The physical
domain is defined by curvilinear grids matching the curvature of the
cone geometry. A schematic of this is given in Fig. 1.

The equations are transformed into uniform Cartesian computa-
tional coordinates in order to apply the high-order finite difference
methods used in the shock-fitting algorithm. The transformed gov-
erning equation is

Table 1 Freestream flow
conditions for DNS simulations

Parameter Value
M., 9.79

Poo 0.0427 kg/m?
Te 51.0K
Ty/Toco 0.3
Re/m (1E6/m) 18.95
hg. oo 1.07 MJ /kg
Poo 0.65 kPa
U, 1426 m/s
Pr 0.72
Angle of attack 0°
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Fig. 1 Schematic of grids near nose region of cone. Grid density is
coarsened for clarity.
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where J is the Jacobian of the coordinate transformation and (&, 7, {)
are the transformed computational coordinates in the streamwise,
radial, and azimuthal directions of the cone. A low-dissipation, fifth-
order upwinded stencil is used for the inviscid fluxes, whereas a sixth-
order central stencil is used to discretize the viscous terms. The shock
itself is treated as a computational boundary, the location of which is
also solved for in the shock-fitting algorithm. The flow variables
behind the shock are determined through a combination of the
Rankine-Hugoniot relations across the shock and a characteristic
compatibility relation behind the shock. Isothermal and viscous
boundary conditions are imposed at the cone surface where the wall
temperature ratio is fixed as Tw /T, = 0.3. High-order extrapolation
is used at the domain outlet. Finally, the solution is advanced in time
using a low-storage first-order Runge—Kutta method from William-
son [30]. The details of this shock-fitting formulation and the numeri-
cal methods can be found in Zhong [31].

B. Linear Stability Theory

The LST implementation used in this study was originally devel-
oped and verified by Ma and Zhong [4,11,12]. The LST relations are
derived from the governing Navier—Stokes equations in Eq. (1),
where the instantaneous flow is decomposed into a mean and fluc-
tuating component ¢ = g + ¢’. This instantaneous flow is then
reintroduced into the governing equations. Because the steady mean
flow component is assumed to satisfy the governing equations, it can
be subtracted out. The mean flow is also assumed to be quasi-parallel,
and thus any remaining mean flow terms are functions of y only.
Disturbances are also assumed to be small enough that quadratic and
higher-order perturbation terms can be ignored, allowing for the
linearization of the equations. A normal mode solution in the form
of ¢’ = q(y) exp[i(ax + fz — wr)] is introduced, where w is the
circular frequency of the disturbance, and a and f are the wave-
numbers. In this study a spatial stability approach is used. Thus « is
complex and results in the dispersion relation « = Q(w, ). For the
spatial stability approach, the circular frequency of a disturbance
mode, @, must be manually set depending on the disturbance fre-
quency of interest while f is set to O for a two-dimensional disturb-
ance. The complex spatial wavenumber « is solved for and can be
written as @ = «a, + ia;. Here, —a; is the growth rate of the disturb-
ance. Substituting in the normal mode reduces the problem to a
coupled set of five ordinary differential equations:

L d .-
(Aﬁ+de+C)z/)—O 3)

where ¢ = [i, 0, P,T,%]” and A, B, and C are complex square
matrices of size five. This is now a boundary value problem where
the derivative operators can be discretized and the equations solved
numerically. The boundary conditions for Eq. (3) are given as

y=0 D= =¢3=¢s=¢s=0 (€]

y = o0} Q1,2 3. Pas ps = 0 ()

The system of equations is solved using a multidomain spectral
method similar to Malik [32]. The converged mean flow from the
steady DNS is used as the input to the LST analysis where additional
stretching for the multidomain spectral method is used to interpolate
the mean flow results to the LST grids.

Although LST can be used to identify both the unstable disturbance
frequencies and their growth rates, it does not directly specify the exact
amplitude of the disturbance. Conventionally, boundary-layer transi-
tion is estimated using LST through an amplification criterion known
as the " or the N-factor method. The N-factor is given by

NG — A;Z (fj)c ) _ = exp [ / S —a(s*. f )ds*} ©)

Here A(s*, f) is spectral disturbance density at a position s*, Ay(f)
is the initial disturbance density at the branch I neutral point s, and
a; is the spatial amplification rate (growth rate) obtained from LST.
The growth rate is integrated for a discrete frequency in the stream-
wise direction using a trapezoidal method. Transition N-factors for
sharp cones are commonly understood to be between 5 and 10. Lei
and Zhong [33], Aleksandrova et al. [34], and Balakumar and Chou
[19] found that N-factors decreased considerably at similar stream-
wise locations for blunter cones. Marineau et al. [26] also found that
blunt nose N-factors calculated at the beginning of transition were
significantly lower than those for sharp nose cases, reaching as low
as 0.5. Pure considerations of the N-factor are observed to be
insufficient to reliably determine transition throughout a wide vari-
ety of conditions.

C. Freestream Disturbance Model

The stability of the system is also studied by perturbing the mean
flow and tracking the development of the boundary-layer disturb-
ances using DNS. Here, the flow is disturbed with freestream fast
acoustic, slow acoustic, temperature, and vorticity disturbances in
the form of Gaussian pulses. Two pulse geometries, a finite spheri-
cal and a planar pulse distribution, were used in this work. Because
the shock is treated as a computational boundary in the simulations,
these pulses can be represented analytically in the freestream. A
schematic of the unsteady simulation is given for the finite pulse
case in Fig. 2a and for the planar pulse case in Fig. 2b. The finite
spherical pulse is, as its name implies, a pulse disturbance that is
limited spatially in x, y, and z. The pulse disturbance distribution is
given in Eq. (7). The planar pulse is very similar and assumes that
the dimensions of the pulse are fixed along the x axis. However, the
disturbance remains infinite in the y and z directions. The pulses
are advected by the freestream velocity along the central symmetry
line of the cone. The limited scope of the finite spherical pulses
causes them to only interact with cone near the nose region, whereas
the planar pulses continue acting upon the flowfield throughout the
entire domain as they propagate downstream. The design of the
pulses is based on previous work by Huang and Zhong [9] and Lei
and Zhong [21].
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Shock-pulse interaction generates
initial boundary layer disturbances
at nose that propagate downstream

N

Pulse is advected by freestream velocity. Shock wave

a)

Planar pulse generates leading
edge disturbances and

continues to perturb the shock
layer as it propagates downstream

Mo,

Planar pulse is advected by freestream velocity. Shock wave

b)

Fig.2 Schematic diagram of unsteady simulation setup for a) a finite, spherical pulse disturbance, and b) a planar pulse disturbance in the freestream.

R.)?
qlx,y.z,1) = Iq/lweXp(— (263 ) + 9o 7

The eM , term governs the relative peak disturbance amplitude of
the freestream pulse and was chosen to ensure that boundary-layer
disturbances remained linear. Because the receptivity response to the
planar pulses was expected to be much stronger than that for the finite
spherical pulses, the amplitude parameter eM ,, was reduced for these
cases. This eM , term is included in |¢’|, in Eq. (7), which is further
detailed in the dispersion relations in Eqs. (9—12) for the fast acoustic,
slow acoustic, temperature, and vorticity disturbances, respectively.
The term o controls the width of the pulse and also determines the
frequency content of the disturbance. This pulse width parameter was
chosen to encompass significant freestream disturbances at frequen-
cies up to 600 kHz in order to ensure the excitation of the primary
modal instabilities predicted by LST and resulted in a pulse radius of
approximately 3 mm. R, refers to the radial distance from the center
of the pulse to a point (x, y, z) in the flowfield. For a finite spherical
pulse R, is defined in Eq. (8).

Rc = \/(X - xpulse)2 + (y - ypulse)2 + (Z - Zpulse)2 (8)

Here, (Xpyises Ypuise: Zpulse) denote the location of the pulse center. For
the finite spherical pulses ypuse = Zpuise = 0 is fixed. For the planar
pulses, only the streamwise x-direction center point is taken into
account and R, reduces to R, = x — Xpye- For both geometries the
pulse is advected in the streamwise direction by x5 = Xo + Cools
where C., is the disturbance speed in the freestream. These speeds are
defined as C,, = Uy, + a, for fast acoustic disturbances, C,, =
U, — a, for slow acoustic disturbances, and C, = U, for entropy/
vorticity disturbances. Here U, is the freestream velocity and a, is
the freestream speed of sound. To ensure that the same frequency
spectrum is shared among the disturbances, the pulse width term o
must be scaled by 1 + 1/M, for a fast acoustic disturbance and by
1 —1/M, for a slow acoustic disturbance.

The coefficient g corresponds to any perturbation variable in the
freestream and ¢’ is the peak perturbation amplitude of each of these
variables normalized by the freestream value. In the case of a fast
acoustic disturbance, the freestream disturbance amplitudes follow
the dispersion relations given by [35]

1P]oo

o'l = = u|oMy = €M, 15l = [v']e =0 (9)

A slow acoustic disturbance in the freestream is governed by a very

similar dispersion relation:

o/l = Pl

_|u/|ooMoo = eMom |s/|oo = |v,|oo =0 (10)

A freestream entropy disturbance is described by

'l = =ls'loe = eMs, 'l = V'] =[Pl =0 (11)

And a freestream vorticity disturbance is described by

VoMo =€eMs, Ul =1p'lo=Is'lo =0 (12

Because of the calorically perfect gas assumed in this study’s
numerical models, the temperature disturbances can be directly
related to freestream entropy disturbances by the equation of state
for a perfect gas.

The parameters given in Table 2 for the finite spherical cases result
in the disturbance distribution shown in Fig. 3 and can be tuned
accordingly to generate different spectral amplitude distributions.
The frequency distribution of the planar disturbances follow the same
trends as the finite spherical cases, with the only difference being a
reduction in the peak freestream amplitude eM , to ensure linear
boundary-layer disturbances.

D. Boundary-Layer Receptivity

The boundary-layer disturbance content is studied by decompos-
ing the surface pressure perturbations resulting from each pulse into
their spectral frequency components using Fourier analysis. The
time-dependent perturbation variables can be expressed in terms of
their Fourier spectral components, obtained through an FFT:

N-1
h(t) = hy & Y H(f,)e >tk (13)
n=0

where H(f,) is the frequency space Fourier coefficient correspond-
ing to the nth discretized frequency f,. Additionally, N corresponds
to the total number of Fourier collocation points used to discretize the
time-dependent function A(¢) in Fourier space. The discretized time
function A, is defined as being the value of the time-dependent
function /() at a given time t = ¢,.

In this study, the variable A(#;) corresponds to local boundary-
layer perturbations in the surface pressure. The complex components
of H(f,) correspond to the phase angle of the perturbation variables
through ¢ = tan~'(Im(H(f,) /Re(H(f,)), and |H(f,)| are the per-
turbation amplitudes for the surface pressure at the frequency f,.

Because LST was used to validate the results of the unsteady DNS
analysis, local growth rates and wavenumbers need to be calculated
from the Fourier decomposed perturbation data. Following a similar

Table 2 Gaussian pulse parameters for DNS

Pulse geometry eM, c Xg
Finite spherical SE-4 1E-3 —0.02 m
Planar 1E-6 1E-3 —0.02 m
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Fig. 3 Freestream disturbance distributed over a) time and b) frequency for axisymmetric pulse.

procedure to Ma and Zhong [4] and Huang and Zhong [9], the local
growth rates for each frequency are determined by

1 dH
o, = dIH(fu)] (14)
[H(f)] ds
and the local wave numbers are determined by
d,
= 15
= (15)

where s corresponds to the local streamwise coordinates and ¢,, is the
disturbance phase angle of the n th frequency. The phase speed of a
given disturbance at a given frequency is defined as

¢, = 2l (16)

a

The response of the system to each freestream disturbance envi-
ronment can be represented through a receptivity coefficient. This
receptivity coefficient Cy..(f), defined here as the initial amplitude of
the second mode disturbance at the branch I neutral point for a
discrete frequency f to freestream forcing of the same frequency, is
determined using a combination of LST and unsteady DNS data. In
the presence of a strong second mode it is assumed that the receptivity
coefficient can be extracted by reconfiguring the N-factor relation, as
shown in Eq. (17).

A *
Crel$) = Ao(p) = 25D an

Here A(s™*, f) is the Fourier decomposed surface pressure normalized
by the freestream disturbance and ¢¥©"/) is the exponentiated N-
factor determined through LST for a given frequency f and a stream-
wise location s*. The nondimensional amplitude A(s*, f) for the
acoustic and entropy disturbances is derived by normalizing the local
surface pressure perturbation at a given frequency by the freestream
density perturbation of the same frequency in the freestream pulse
ldps (f)/ps|. For the vorticity pulses, this instead uses the free-
stream velocity disturbance |dv,(f)/as|, as no density perturba-
tions are imposed in the freestream. This normalization is based on
the relative peak amplitude eM, from the dispersion relations in
Eqgs. (9—12), and accounts for the nonuniform frequency distribution
of disturbance amplitudes in the freestream pulses. The N-factor and
perturbation data are sampled at the same streamwise position. It is
observed later that the choice of sampling location does have some

influence on the resulting receptivity coefficients due to the influence
of freestream forcing.

IV. Steady Flowfield Solution

The steady DNS pressure and temperature mean flow contours for
the cone are shown in Fig. 4a near the nose region and in Fig. 4b
throughout the entire computational domain. A total of 240 points
were used in the # direction, whereas the distribution in £ ranged from
30 points per mm at the nose to 5 points per mm at the end of the
geometry. These distributions were chosen to ensure that sufficiently
large wavenumber disturbances could be captured by the simulation
and to provide sufficient resolution in the mean flow data so as to
reduce numerical inconsistencies in the LST analysis. A total of
10,080 points were used in the £ direction to resolve the cone to
1.9 m. Marineau et al. [26] studied cones up to lengths of 1.5 m. The
domain here was lengthened to allow for the development of a more
amplified second mode that would be used to generate spectral
receptivity data for the studied pulse disturbances.

The temperature contours in Fig. 4a depict a broad temperature
gradient in the frustum region immediately after the nose. This is
indicative of a similarly extensive entropy gradient and is represen-
tative of the generation of a significant entropy layer as expected for
this relatively blunt nose. Figure 4b similarly shows a significant
surface normal temperature gradient extending far downstream from
the nose and indicates that the entropy layer is not swallowed for a
large portion of the computational domain. These entropy layers
reduce local flow velocities and density, and in turn reduce local
Reynolds numbers. Because transition locations have been correlated
with larger local Reynolds numbers, this process has been used to
explain the transition delaying mechanism for intermediate nose
bluntness [36]. However, this fails to explain transition reversal
effects observed in large bluntness flows [33]. Zhong and Ma [16]
observed the emergence of an additional generalized inflection point
in the entropy layer of their blunt cone, which may be indicative of
inviscid instability. These entropy layer instabilities can be absorbed
by the boundary layers in blunt cones and potentially lead to early
transition, though they have been observed to be relatively weak in
perfect gas flows. They also pointed out that nonmodal instabilities
may have stronger influence in blunt cones, and cause this reversal.
Balakumar and Chou [19] also observed large oscillations in the
entropy layer before second mode disturbances eventually began to
dominate further downstream on their straight blunt cone cases.
Further investigation of the effects of freestream receptivity in the
entropy layer may be of interest in resolving this problem.

The wall-normal profiles of both velocity and entropy are pre-
sented in Fig. 5. The velocity profiles in Fig. 5a demonstrate weak
variation in boundary-layer height after approximately s* = 0.7405
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Fig. 5 Wall-normal a) U velocity and b) S entropy profiles at different positions along the cone.

m. The extent of the entropy layer is defined in Fig. 5b, in which it is
shown to extend above the boundary layer across much of the cone.
The entropy layer and boundary layer are observed to merge near
approximately s* = 0.9881 m, after which both the velocity and
entropy profiles experience relatively minor variation in the stream-
wise direction. While the more extensive entropy profile variation
before s* = 1 mindicates potential nonparallel effects in the thermal
boundary layer up to this point, it was found that the modal disturb-
ance amplification profile does not vary much when taking non-
parallelism into account for this case. Thus, a locally parallel
assumption was used in the linear stability analysis for this study.

The convergence of the mean flow used in this study is discussed in
detail by He and Zhong [37], where grid independence was verified
using the current 240 pointj grid and a doubled 480 point; grid. The
difference between the original and refined grids is quantified by the
infinity norm of the relative error, which is defined as the maximum
error in the temperature or velocity profile. The infinity norm based
on the velocity was found to be 1.65 x 1075,

V. LST Results

LSTresults indicate a strong amplified second mode band between
frequencies of 118 and 238 kHz. At the reported experimental
transition location of 1.037 m for this case [26], the unstable second

mode is found between frequencies of 150 and 185 kHz and com-
pares well to Marineau’s results. The growth rate contours and the
neutral stability curve are shown in Fig. 6. The neutral stability curve
was generated by fitting the branch I and branch II neutral stability
points and is highlighted in black. In this figure positive —a; growth
rates inside the curve correspond to the unstable second mode region.

The N-factor of the discrete frequency disturbances can be calcu-
lated using Eq. (6) to integrate the growth rates in the streamwise
direction. The results of this analysis are depicted in Fig. 7. A direct
comparison between the selected discrete frequency LST N-factors
as shown in Fig. 7a, and Marineau’s Parabolized Stability Equation
(PSE) derived N-factors are shown in Fig. 7b. The lines in Fig. 7b are
made by fitting the curve profiles for each of the sampled LST
frequencies.

For this case (corresponding to Run 3752), Marineau et al. [26]
reported an experimentally determined transition location of
s = 1.037 m, along with a corresponding N factor of 1.6. The LST
results of this study report an N-factor of approximately 1.7 at the
experimental transition location and are consistent with Marineau’s
results for this case. In general, the LST results correlate reasonably
well with the PSE data reported by Marineau, with our LST over-
predicting the N-factors slightly throughout the downstream sections
of the domain. This difference can be attributed to nonparallel effects
that the LST formulation neglects compared with the PSE algorithm
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Fig. 6 LST growth rate contour and neutral stability curve.

used by Marineau. While nonparallel effects seem to have the most
effect on higher frequency disturbances upstream on the cone, the
primary amplification behavior matches remarkably well with
Marineau’s reported results and indicate that the most dominant
modal disturbances for this case are not too strongly affected by
boundary-layer variation.

The phase speed and growth rate of the 150 kHz disturbance are
presented in Fig. 8 and are used later to validate the unsteady DNS
results. This disturbance frequency was chosen because it was
observed to contain a highly amplified second mode. It is shown that
the primary second mode disturbance corresponds to the discrete
mode F emerging from the continuous fast acoustic spectrum. The
continuous spectra are indicated in the phase speed plot by the dashed
lines at 1 + 1/M, for the fast acoustic, 1 for the entropy/vorticity,
and 1 —1/M, for the slow acoustic modes. Additionally, Fig. 8
shows that this particular frequency demonstrates an extensive syn-
chronization region between mode F and mode S, lying between 1.1
and 1.7 m along the cone.

VI. Unsteady DNS Results

The receptivity of the cone was studied in response to a variety of
broadband, continuous frequency spectra freestream disturbances.

B ——130.0 kHz
- —— 150.0 KHz
sk = 180.0 kHz
6 -
ot
[*] L
]
o
° |
S
Z 4}
2 -
s(m)
a)

To do this, the pulse disturbances described in Sec. IIL.C were intro-
duced analytically in the freestream. These pulses were advected along
the central axis of symmetry in the streamwise direction over the mean
flow. The resulting boundary-layer disturbances on the cone’s surface
were decomposed with FFT into their spectral frequency components.
The specific disturbance cases and their respective labels are given in
Table 3. The disturbances are differentiated by both their freestream
perturbation type and their geometry. The fast acoustic, slow acoustic,
temperature (entropy), and vorticity disturbances are defined by the
freestream dispersion relations in Egs. (9—12), respectively. The free-
stream spectra of the pulses were fixed to be the same within the finite
spherical and planar cases, respectively.

A. Finite Spherical Pulse Unsteady DNS Results

Figure 9 depicts the instantaneous pressure and temperature dis-
turbances immediately after the finite pulse interaction at the nose for
case B1. The pressure disturbance in Fig. 9a depicts acoustic waves
propagating toward the cone surface and being reflected back toward
the bow shock. The temperature disturbance in Fig. 9b on the other
hand depicts temperature perturbations moving at the local flow
velocity and piling up, not experiencing the reflection associated
with acoustic waves. These are indicative of excited entropy modes
and are very similar to the structures that Huang and Zhong [9]
observed for their entropy spot study. Similarly, Fig. 10 for the finite
spherical fast acoustic pulse (case B1) shows the pressure and tem-
perature disturbance contours at a downstream position on the cone.
The rope-like wave structures in the temperature profile in Fig. 10b
are indicative of a perturbation growing in accordance with Mack’s
second mode [4]. These leading-edge and boundary-layer disturb-
ances were qualitatively observed in each case considered in this
study and indicate strong second mode amplification downstream on
the cone.

In addition to the conventional second mode, Mach wave-like
radiating structures can be observed near the tail end of the disturb-
ance wave packet, most prominently for the pressure disturbances in
Fig. 10a. This behavior is characteristic of a supersonic mode, in
which the phase speed of the disturbance is supersonic with respect to
the mean flow [38]. Recent studies have shown that these supersonic
modes may have disturbance amplitudes similar in strength to second
mode instabilities, and as a result may be of significant importance in
the process of transition for real gas flows [38—41]. However, similar
to Reshotko [2] the supersonic modes observed here are relatively
weak and occur downstream enough that they are unlikely to signifi-
cantly affect transition. A wider consideration of their effects on
stability and their general receptivity response may also be of interest
for future work.

LST 204
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Fig.7 a) N-factor data ranging between 120 and 220 kHz with A f = 10 kHz. b) Current LST N-factors vs Marineau’s [26] reported PSE N-factors.
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Table 3 Freestream
disturbance cases for unsteady
DNS

Disturbance type Case

Finite spherical fast acoustic B1
Finite spherical slow acoustic =~ B2
Finite spherical temperature B3

Finite spherical vorticity B4
Planar fast acoustic BS
Planar slow acoustic B6
Planar temperature B7
Planar vorticity B8

The normalized surface pressure perturbations resulting from the
finite spherical fast acoustic pulse (case B1) are presented in Fig. 11
for a selection of streamwise positions. Before the second mode
region, the wave packet is complex in shape and is dominated by
oscillations associated with nonmodal forcing. These forcing waves
are shown to decay upstream of the second mode region before
experiencing significant amplification as they propagate down-
stream. A more regular waveform appears after s* = 1.42 m and is
observed to experience exponential amplification in its magnitude as
it propagates downstream. This is indicative of a dominant second
mode instability.
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The total surface disturbances depicted in Figs. 10 and 11 may be
studied more quantitatively through the use of Fourier decomposition
(FFT). The resulting normalized spectral surface pressure contour
maps for the finite spherical fast acoustic (case B1), slow acoustic
(case B2), temperature (case B3), and vorticity (case B4) disturb-
ances are shown in Fig. 12. Again, these Fourier decomposed pres-
sure disturbances are normalized by the spectral content of the initial
freestream disturbance shown in Fig. 3b to account for the nonuni-
form frequency distribution of the initial pulse [22]. Additionally, the
LST neutral curve is also plotted in solid black lines in these figures in
order to validate the unsteady simulation. The most amplified fre-
quency was observed to be between approximately 140 and 150 kHz
and agrees well with the LST N-factors results presented previously.
The neutral curves align as expected with the instability band,
because peak unsteady amplification for the second mode disturb-
ance should be centered about the branch II neutral line [38].
Although there is a slight offset between the maximum amplitude
of the second mode amplification lobe and the branch II curve, this is
attributed to the nonparallel effects disregarded by the LST calcu-
lations. However, it is observed later in Fig. 15 for the 150 kHz
disturbance that these nonparallel effects are very miniscule, and our
DNS and LST demonstrate close agreement at the peak disturbance
frequencies. Thus, although LST does not account for freestream
forcing or nonparallel effects, the resultant downstream perturbation
spectra are shown to be dominated by the modal instability predicted

i dT
0.012 2.2E-05
i 1.76E-05
i | 1.32E-05
0.01}F 8.8E-06
- 4.4E-06
I 0
__ 0,008} -4.4E-06
£ B -8.8E-06
5 I -1.32E-05
0.006 - 1.76E-05
-2.2E-05
0.004
0.002
0 L e
-0.01 20.005 0
b) x (m)

Fig. 9 a) Pressure and b) temperature perturbations at the nose region after the finite spherical fast acoustic perturbation (case B1).
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Fig. 10 a) Pressure and b) temperature perturbations near s* = 1.5 m after the finite spherical fast acoustic perturbation (case B1).
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Fig. 11 Time history of normalized surface pressure perturbations resulting from finite spherical fast acoustic pulse disturbance (case B1).

by LST and the LST results are still relevant to the amplification
behavior of the primary flow instability.

From Fig. 9 it is seen that case B1 excites significant acoustic and
entropy/vorticity disturbances at the leading edge of the cone. The
complex interactions and acoustic reflections at the nose generate
the initial perturbations that force the boundary layer. Additionally,

the large bluntness of the cone indicates the presence of a significant
entropy layer, through which additional instabilities may be pro-
duced and propagate to force the boundary layer. This is likely
observed in Fig. 12 as the pulses induce upstream disturbances
between 100 and 200 kHz. This excitation gradually dampens in
the streamwise direction until second mode growth generates the red
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Fig. 12 Surface FFT pressure distribution for a) case B1, b) case B2, c¢) case B3, and d) case B4.

lobe seen at the end of the computational domain in all four cases. A
similar phenomenon is observed in all of the finite pulse cases,
though the general receptivity of the mean flow to freestream vor-
ticity disturbances is weak enough that this forcing cannot be seen in
the uniform contour levels in Fig. 12d for case B4. The primary band
of instabilities observed in all four cases is centered between approx-
imately 140 and 170 kHz, depending on streamwise position and
corresponds to the most highly amplified second mode disturbance
frequencies. Both the initial forcing and the second mode disturbance
amplitudes were strongest for the finite spherical fast acoustic dis-
turbance (case B1), followed by the temperature (case B3), the slow
acoustic (case B2), and finally the vorticity (case B4) disturbances,
respectively.

The spatial development of surface pressure perturbation ampli-
tudes for a selection of highly amplified second mode frequencies
is given for case B1 in Fig. 13. The results for the other finite pulse
cases are very similar and are omitted for concision. In the plot, each
of the sampled frequencies initially start with significant amplitudes
associated with the boundary-layer perturbations initially excited
upstream at or near the leading edge of the cone. Similar to what
was observed in Figs. 11 and 12 these disturbances are attenuated
until second mode amplification takes hold downstream. The oscil-
lations in these signals are indicative of modal interference effects,
which can be observed near the local minima of each frequency.
This particular point is attributed to the synchronization between
the different modal disturbances. The 160 and 170 kHz sampled
frequencies also exhibit the modal oscillation behavior near the
end of the domain, which is indicative of interactions with higher
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Fig. 13 Normalized surface pressure disturbance amplitudes for
selected second mode frequencies for case B1.

disturbance modes. The 155 kHz disturbance also demonstrates a
distinct kink near s* = 1.7 m that shows some minor localized
amplification not observed for the other disturbance frequencies.
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Similar discontinuities have been observed in growth rate curves by
Knisely and Zhong [38] for supersonic mode instabilities.

The FFT decomposed surface pressure perturbations at different
streamwise locations are also presented in Fig. 14 for cases B1-B4.
As expected, the spectral surface pressure distributions for the finite
spherical cases are very similar to each other. Again, we see that case
B1 excites the strongest overall pressure perturbations downstream in
the second mode region. Case B1 also generates stronger initial
disturbance waves upstream of the second mode amplification region
similar to the behavior observed in the normalized surface pressure
contours. Distinctive peaks in the disturbance amplitude can also be
seen here, initially centered around frequencies of approximately
170-180 kHz. As the sampling point moves further downstream,
this peak disturbance band shifts to center around lower frequencies
while also growing in overall amplitude, eventually centering around
145-155 kHz near the end of the computational domain. The ampli-
tude peaks observed here correspond to the primary second mode
instability for this flow and their behavior corresponds well to the
LST results in Fig. 6, as maximum second mode amplitudes are
expected to follow with the branch II neutral point. The broadband
disturbance dampening and amplification pattern is clearly seen
again here. While the disturbance amplitudes for cases B2, B3, and
B4 are smaller, the same general trends are observed.

Through Egs. (14-16) the FFT decomposed unsteady DNS can be
used to calculate the growth rates and phase speeds of different
discrete frequency surface perturbations. The 150 kHz frequency
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disturbance in particular was used in order to validate the results of
the unsteady DNS. The results for the 150 kHz frequency disturbance
for the finite spherical fast acoustic (case B1) are presented in Fig. 15.

The unsteady DNS results for case B1 show good agreement with
LST, demonstrating that the discrete mode F is unstable for this case.
The signal for this case, and for the other finite pulse cases, show that
the boundary-layer disturbances are dominated by mode F disturb-
ances upstream on the cone. This indicates that the initial nose
excitations primarily force discrete fast acoustic disturbances for all
the finite pulse cases, similar to what Huang and Zhong [9] observed
for an entropy pulse. The LST predicts an extensive synchronization
range for this frequency between streamwise locations of 1.1 and
1.8 m. Near the beginning of the synchronization region, significant
oscillations in both the phase speed and growth rates can be observed
in the DNS results. This oscillation is indicative of modal interference
associated with the synchronization of the discrete modes, though itis
still apparent that the newly destabilized mode F dominates. These
oscillations dampen out significantly as the disturbance propagates
through the end of the domain for case B1 in Fig. 15. Nearly identical
responses are observed as well for cases B2, B3, and B4 and as such
are relegated to Supplementary Figs. S1, S2, and S3, respectively. In
all of the finite spherical pulse cases it was shown that the pulse
disturbances generated significant discrete mode F waves in the
boundary layer upstream on the cone. After synchronization, the
boundary-layer disturbance signal remains dominated by the unsta-
ble mode F predicted by LST.
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Fig. 14 FFT decomposed surface pressure spectra at various streamwise locations for a) case B1, b) case B2, c¢) case B3, and d) case B4.
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B. Planar Pulse Unsteady DNS Results

Figure 16 presents snapshots of the disturbance pressure contours
resulting from the planar fast acoustic pulse (case B5) over a down-
stream region of the cone at two different instances. Because the planar
pulses are infinite in the y—z plane, they continuously interact with and
introduce forcing to the shock layer as they propagate in the streamwise
direction. In particular, Fig. 16a depicts the front of the downstream
shock—disturbance interaction and the wake of disturbances it excites,
whereas Fig. 16b shows the slower band of amplifying second mode
disturbances behind the pulse front. In Fig. 16a a sharp interface can be
seen at the leading edge of the disturbance front at x = 1.46 m and is
attributed to continuous fast acoustic disturbances that are generated in
the shock layer by the shock—disturbance interactions. This distinctive
edge propagates with the speed of the acoustic pulse and shows
significant forcing being generated by the disturbance that directly
interacts with the boundary layer. The result of this forcing can be
observed in the normalized surface pressure time history plots in
Fig. 17, which depicts a strong secondary disturbance spike caused
by the planar forcing that propagates throughout computational
domain. Trailing behind this leading waveform are additional pertur-
bations distributed throughout the shear layer consisting of continuous
spectrum disturbances propagating at their characteristic speeds. These
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include alternating sections of negative pressure disturbances
between x = 1.35 m and x = 1.45 m and before x = 1.28 m, sim-
ilar to what was observed by Huang and Zhong [9]. The secondary
red structure near x = 1.3 m is associated with continuous slow
acoustic modes, which also seem to be strongly amplified by the
planar fast acoustic disturbance. The forced continuous modes seem
to be very dominant for the planar fast acoustic case shown here.
Even at a relatively downstream position of s* = 1.42 m, the
magnitude of the forcing disturbance overshadows that of the
amplifying second mode disturbance wave packet. It is only near
the end of the cone where the primary second mode disturbance
begins to dominate. Furthermore, this forcing is also observed to
experience amplification as it continues downstream, although
much more weakly than the primary second mode. This amplifica-
tion can also be explained by the continuous introduction of addi-
tional forcing throughout the domain by the planar pulse.

The second mode wave packet depicted in Fig. 16b somewhat
follows the trends observed in the finite spherical disturbance cases.
Clear isolated second mode structures can be identified in the boun-
dary layer. A weak supersonic mode is again observed here for case
BS, though it is shown to extend much farther into the shock layer.
The other planar pulse cases were observed to have very similar
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Fig. 17 Time history of normalized surface pressure perturbations resulting from planar fast acoustic pulse disturbance (case B5).

pressure contour and surface time history profiles to the finite pulse
cases. These are depicted for the planar slow acoustic case B6 in the
Supplementary Figs. S4 and S5.

The FFT decomposed surface pressure contour maps for the planar
fast acoustic (case B5), slow acoustic (case B6), temperature (case
B7), and vorticity (case B8) disturbances are presented in Fig. 18. The
total surface disturbance spectra share many similarities to the finite
spherical pulse cases. In particular, Fig. 18b for case B6 and Fig. 18c
for case B7 depict strong initial forcing near the beginning of the
domain that experiences limited attenuation compared with their
finite pulse counterparts before second mode amplification. These
lower frequency forcing waves remain much more significant in the
downstream regions of the cone due to the continuous introduction of
forcing from the planar pulses. Although noise effects are noticeably
stronger for the planar cases, they are still observed to strongly excite
primary second mode disturbances downstream on the cone and
agree well with LST predictions.

The disturbance spectrum for case BS in Fig. 18a is significantly
more complex. A strong low-frequency disturbance band is still
observed near 100 kHz, whereas another additional band of unstable
frequencies between 180 and 260 kHz is also apparent. Contrary to
the other cases, these additional disturbance bands seem to experi-
ence amplification as they propagate downstream through the
domain, though the second mode is observed to have the highest
amplitudes throughout. These additional disturbance bands may be
continuous modes and other discrete modes that are excited by the
continuous forcing input, and can be observed in the secondary wave
packets in Fig. 17. Although these other instabilities are generally
much weaker than the second mode for hypersonic flows [35,42] at
the end of the cone, they may still have considerable impact on the
flow. The presence of strong forcing and multimodal disturbances in
the planar pulse cases necessitates the use of modal decomposition

techniques in order to extract useful receptivity data for instabilities
of particular interest, especially in noisy environments such as those
considered in this study.

The spatial development of surface pressure perturbation ampli-
tudes is plotted again in Fig. 19a for case BS and in Fig. 19b for case
B6. Cases B7 and B8 were very similar in structure to case B6 and are
omitted. Case B6 demonstrates very similar general profiles to the
finite pulses in cases B1-B4, though the lowest and most amplified
frequencies in this case seem to experience minimal attenuation of the
disturbances introduced upstream on the cone. Similar modal inter-
ference patterns and the distinct kink in the 156 kHz disturbance
shown here are also observed, which indicate that higher disturbance
modes and the supersonic mode may also play a further role in the
downstream development of these disturbances. The results for case
BS5 show significantly weaker second mode amplification, though the
upstream forcing levels are much higher than they are for case B6.
Furthermore, these upstream disturbances experience little to no
damping before second mode amplification, which indicates that
the flow in this case is much more receptive to the forcing modes
introduced by the planar fast acoustic pulse than the other unsteady
pulse configurations.

The normalized surface pressure spectra at different streamwise
locations for cases B5—-B8 are shown in Fig. 20. Case B5 in Fig. 20a
follows closely with the behavior observed in the finite spherical
cases. However, the second mode amplitudes for case B5 are an
order of magnitude smaller than those for case B6 in Fig. 20b and
30-50% smaller than those observed for case B7 in Fig. 20c and for
case B8 in Fig. 20d. Cases B6-B8 share very similar low-frequency
forcing structures outside of the second mode frequency band,
whereas case B5 is observed to have significantly higher relative
disturbance amplitudes outside of the second mode frequency
range. In particular, a low-frequency band near 50-100 kHz and a
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Fig. 19 Normalized surface pressure disturbance amplitudes of selected second mode frequencies for a) case BS and b) case B6.

high-frequency band between 200 and 250 kHz are up to three
orders of magnitude stronger for case B5. The higher frequency
disturbance band is also shown to experience amplification as the
disturbance propagates downstream in case BS. This indicates that
the receptivity response for case B5 seems to distribute the forcing

in a broadband manner, whereas cases B6, B7, and B8 primarily
excite second mode waves.

This can be directly observed in the unsteady DNS versus LST
phase speed and growth rate comparison in Fig. 21 for case BS. The
boundary-layer disturbances resulting from case B5 do not seem to
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become dominated by second mode instabilities until the far down-
stream regions of the cone. The growth rate shown in Fig. 21b is
highly oscillatory and centered around a neutrally stable disturbance
until approximately s* = 1.6 m, whereas the phase speed plot in
Fig. 21a shows similar oscillations centered around the continuous
fast acoustic spectrum until the same point. These results indicate the
dominance of neutrally stable forcing waves in the boundary layer.
The observed amplification of the LST-predicted stable frequencies
observed for case B5 in Fig. 20a can be attributed to the continuous
introduction of weakly unstable/neutrally stable continuous mode
forcing from the planar fast acoustic pulse.

Case B6 in Fig. 22 is shown to correlate much better with the
150 kHz LST results in terms of both phase speed and growth rate,
though significant modal oscillations from the increased freestream
forcing level are observed in the growth rate before approximately
s* = 1.2 m. From this it can be seen that case B6 behaves similarly to
the finite spherical disturbances and primarily excites the second
mode instability at this frequency. The results for case B7 and case B8
are strongly similar and are included in the Supplementary Figs. S6
and S7, respectively.

VII. Receptivity Results

The spectral receptivity coefficient for each of the disturbances
was calculated using the methodology described in Sec. IIL.D. Using
Huang and Zhong’s method [9,22], the second mode receptivity
coefficient is extracted through a combination of LST N-factors
and unsteady DNS data. Isolating the contributions of individual
modal disturbances allows for greater specificity when tracking the
development of primary instabilities across a flow domain. More
rigorous methods for decoupling the modal boundary-layer disturb-
ances like the bi-orthogonal decomposition method developed by
Tumin [43] and used by Miselis et al. [44] may be necessary to
decompose more complex boundary-layer disturbance profiles and
to characterize disturbance modes other than the second mode.
However, this more rigorous decomposition model requires addi-
tional development before it can be applied to the results here.

A. Receptivity Coefficient Spectra

Because these receptivity calculations may be sensitive to sam-
pling location [22], a comparison of the receptivity spectra for differ-
ent sampling locations was made for the finite and planar pulse
disturbances. The receptivity spectra for case B1 and case B2 at
several sampling locations are presented in Fig. 23, whereas results
for cases B3 and B4 are given in Supplementary Figs. S8 and S9,
respectively. The chosen sampling locations were the LST branch 1
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neutral stability point x,, the branch II neutral stability point xy .,
and an intermediate location defined at xgmpe = 1.3 * Xy, all of
which are frequency dependent as seen in the neutral curve in Fig. 6.
These points were chosen to ensure the sampling location remained
within the unstable second mode region. After a sampling point is
chosen for a given disturbance frequency, the normalized FFT
decomposed surface pressure at that point is used as an input for
Eq. (17). The branch I sampling point compares directly to conven-
tional receptivity results like those reported by Balakumar and Chou
[19], Kara et al. [20], Zhong and Ma [16], and Huang [22] as the
normalization factor in this case is simply 1. Huang and Zhong stated
that the boundary layer at the branch I neutral point is likely to be
contaminated by the multimodal content of the disturbance, which
may obscure the initial amplitudes of the primary instability modes of
interest. In this study, cases B1-B4 in Fig. 23 demonstrate strong
second mode dominance at all three sampling points. Although the
branch I sampling case does show significantly more oscillations
indicative of multimodal disturbances [22], the general shape and
magnitude of the receptivity spectrum is in line with the other
sampling locations.

It can be concluded that, for the finite spherical disturbances
studied here so far, sampling location does not have a significant
impact on the resulting receptivity coefficients, and that the second
mode disturbance dominates the boundary-layer disturbances. This is
likely because any extraneous forcing waves are primarily isolated to
and damped out in the upstream regions of the cone and have little
influence on the development of boundary-layer disturbances further
downstream.

Figure 24 presents the same data for the planar fast and slow
acoustic freestream pulses in case B5 and case B6, whereas the results
for case B7 are given in the Supplementary Fig. S10 and the results of
case B8 are given in Supplementary Fig. S11. The receptivity coef-
ficient spectra for case BS in Fig. 24a differ significantly from the
finite spherical pulse cases, whereas the results in Fig. 24b for case B6
are similar to those in Fig. 23 for cases B1 and B2. The magnitudes of
the receptivity coefficients for the planar cases are also much higher.
This is because the additional forcing generated by the planar pulse as
it propagates through the domain prevents the low-frequency dis-
turbances from dampening significantly, as seen in Fig. 18. This
results in significantly higher initial amplitudes for the second mode
disturbances. The Fourier decomposition results presented in this
study also do not account for the differences in wavenumber distri-
butions between the finite spherical pulses and the infinite planar
pulses.

Case B6 seems to very readily excite both second mode
and additional low-frequency disturbances attributed to noise. The
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Fig. 22 Case B6 unsteady DNS results vs LST predicted results for 150 kHz disturbances: a) phase speed and b) growth rate.
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Fig. 24 Receptivity coefficients at different sampling locations for a) case B5 and b) case B6.

low-frequency disturbances in particular are observed to be excited
much more strongly than in the finite pulse cases. This can also be
seen in the FFT contours shown in Fig. 18, where again the low-
frequency forcing generated by the planar pulse is observably much
more present throughout the domain. The branch I sampling location
results overpredicts the low-frequency response compared with the
other sampling locations, indicating that modal decomposition is
necessary to capture the behaviors of the second mode. On the other
hand, the intermediate and branch II sampling locations show very
similar results, peaking at frequencies between 125 and 145 kHz. A
significant spike is seen in the intermediate sampling location near
138 kHz, whereas a similar spike is seen in the branch II sampling
position near 145 kHz for case B6. These are attributed to nonparallel
effects. Because of the relatively large nose bluntness of the cone, the
boundary-layer variation upstream of s* = 1.0 m may cause slight
discrepancies between the LST and unsteady DNS results. This can
be observed in the slight offset of the second mode amplification
lobes and the branch II curves in Figs. 12 and 18. This is reflected in
the difference in peak disturbance frequencies between the sampling
points. Furthermore, the peak values vary somewhat between the two
cases as well, with the intermediate sampling point having a peak
coefficient approximately 9% higher than the branch II sampling
case. Numerical resolution issues with the LST decomposition are
assumed to play a role in this. However, these differences are rela-
tively small and the overall disturbance development is still captured

by the methodology here. A similar result is observed to a lesser
degree in the finite pulse cases, butin general these nonparallel effects
are weak and LST decomposition has been observed to effectively
capture modal disturbance development here.

The receptivity spectra for case BS in Fig. 24a differ significantly
from cases B1, B2, and B6. The branch I sampling location pro-
duces a continuous broadband receptivity coefficient distribution,
similar to the initial pulse. This indicates that the broadband forcing
excited by the planar fast acoustic pulse is strong enough to mask
the initial second mode instability at the branch I neutral point, and
that the planar fast acoustic pulse excites a very broad range of
frequencies in comparison to all the other cases. The combined
disturbances at this location result in perturbation amplitudes far
larger than those expected of the pure second mode. The other
sampling locations also show that the receptivity coefficients are
highest near 200 kHz, contrary to the finite spherical cases and LST
results. Looking again at Fig. 18a it can be seen that an additional
band of amplified disturbances can be found at these frequencies
that is attributed to the strong surface forcing generated by the
shock—disturbance interaction seen in Fig. 17. Although significant
second mode amplification is observed in all of the cases, case BS
demonstrates that sufficiently noisy environments of fast acoustic
disturbances can excite significant boundary-layer disturbances not
associated with the second mode for this geometry. This can poten-
tially account for the somewhat weak association between the
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second mode and transition for this case that Marineau et al.
observed [26].

The total receptivity spectra for the finite spherical cases (B1-B4)
are shown in Fig. 25a and for the planar cases (B5-B8) in Fig. 25b at
the intermediate sampling location. For the finite spherical pulses, it
was found that the receptivity response was strongest for the fast
acoustic, temperature, slow acoustic, and vorticity disturbances in
that order. For the planar pulses the strongest second mode receptivity
response was observed for the slow acoustic disturbance, followed by
the temperature, vorticity, and fast acoustic pulses, though the planar
fast acoustic pulse excited significant broadband waves in the boun-
dary layer that were not associated with the second mode as well.
These results can potentially be applied to improved transition pre-
diction methods by providing the initial second mode receptivity
response for a given freestream disturbance spectra. However, addi-
tional freestream disturbance configurations will be necessary before
these results can be generalized sufficiently for broad application.
These results can alternatively also be used in numerical studies
investigating nonlinear breakdown phenomena, particularly in the
reconstruction of controlled disturbance environments [21,45]. The
spectral receptivity data can be used to isolate the response of a
desired disturbance frequency and regenerate the dominant disturb-
ance amplitude and phase as presented in the next section. This can be
used as an inlet condition for nonlinear breakdown simulations, and

greatly reduces the computational cost required to otherwise con-
verge upstream mean flows and propagate desired disturbances
downstream [21].

B. Disturbance Phase Angle Spectra

The phase angle spectra for the disturbance cases were also
extracted from the unsteady DNS. With the data from the receptivity
coefficient spectra and the phase angle spectra, the total initial
receptivity response to an arbitrary axisymmetric freestream disturb-
ance can be reconstructed [9,21]. These initial disturbances can then
be used as inputs for more advanced transition predicted methods like
Mack’s amplitude method [27], Crouch’s variable N-factor method
[29], Marineau’s iterative method [28], and Ustinov’s implementa-
tion of the amplitude methods [46]. These data can also be used to
reproduce arbitrary inlet conditions for downstream simulations
studying phenomena such as nonlinear breakdown [21,45]. The
receptivity phase angle spectra for the unsteady simulations are given
in Fig. 26a for the finite spherical cases B1-B4, whereas Fig. 26b
presents the same results for the planar disturbance cases B5-BS.
These figures depict the FFT decomposed receptivity phase angles at
the branch I neutral stability point for each disturbance frequency.

The profiles of the finite pulse cases in Fig. 26a and the planar cases
in Fig. 26b are very similar, though the range of phase angles is
smaller for the finite pulse cases. Because the disturbance pulse
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interacts with the mean flow only in the nose region of the cone, the
finite pulse cases introduce much less forcing to the flow. This results in
a much less noisy boundary-layer disturbance profile and a narrower
band of phase angles for the finite pulse cases. On the other hand, the
planar pulses continue to force the flow as they propagate downstream.
Furthermore, as the different disturbance types propagate at different
characteristic speeds in the freestream, an intrinsic phase difference is
introduced between them. In both the finite and planar pulse cases, the
phase angle spectra of the vorticity disturbances (cases B4 and B8) are
observed to differ dramatically from the other disturbances at low
frequencies near 120-140 kHz but begin to match better at higher
frequencies near 200 kHz. This is likely to be due to the comparatively
weak modal disturbance response that was observed for the vorticity
disturbances, allowing for the flow to become more strongly influ-
enced by low-frequency noise in the simulation.

VIII. Conclusions

The receptivity of a blunt cone at Mach 10 to a variety of freestream
disturbances with broadband frequency spectra was investigated in
this study. Spectral receptivity coefficient amplitudes and phase
angles were extracted for finite spherical and planar geometry pulses
consisting of fast acoustic, slow acoustic, temperature, and vorticity
disturbances. The base flow geometry and freestream conditions
were based on Marineau et al.’s experiments [26] and the numerical
simulations were performed using a high-order shock fitting method
(DNS). The stability of the mean flow was investigated using LST
analysis and unsteady DNS. The pulses for unsteady DNS were
modeled analytically in the freestream using Gaussian distributions
to provide broadband frequency disturbances. The LST analysis
showed that discrete mode F disturbances in a band of frequencies
extending from approximately 118 to 238 kHz experienced second
mode growth. An entropy layer was observed beginning near the nose
and the frustum, which eventually merged into the boundary layer at
s* = 0.9881 m. Similar to Balakumar and Chou [19], LST and DNS
did not predict peak second mode instability until after the entropy
layer was swallowed. Good agreement was observed between the
LST N-factor and Marineau et al.’s [26] PSE N-factor at the exper-
imental transition location.

The unsteady DNS simulations were decomposed into their fre-
quency components using FFT, which showed that all eight of the
freestream pulse disturbances significantly excited the second mode
on the cone. The finite spherical pulse cases (B1-B4) were observed
to excite very similar boundary-layer disturbance profiles, with sec-
ond mode disturbances beginning to dominate after s* = 1.2 m.
Because of their limited size, the finite pulses only interacted with
the shock near the nose region of the cone. These isolated shock
interactions allowed most of the initial broadband forcing to be
damped out before second mode amplification began. The planar
cases, which continued to perturb the flow as they propagated down-
stream, also demonstrated strong second mode amplification. The
unsteady DNS results were validated against LST and showed good
agreement for both the finite and planar pulse cases, though the planar
fast acoustic pulse (case B5) demonstrated significantly stronger
freestream forcing influences than the other unsteady cases. The
strongest to weakest second mode response amplitudes for the finite
pulses were observed for the fast acoustic (case B1), temperature
(case B3), slow acoustic (case B2), and vorticity (case B4) pulses in
that order. For the planar cases the slow acoustic pulse (case B6)
generated the strongest second mode response followed by the
temperature (case B7), vorticity (case BS), and finally fast acoustic
(case BS) disturbances. Case B5 demonstrated weak second mode
dominance relative to the other pulse cases, and instead indicated that
the disturbance energy from the pulse is distributed to multiple
instability modes in the boundary layer. This was not observed in
the other cases and necessitates the use of more advanced modal
decomposition methods, such as bi-orthogonal decomposition.
Phase angle spectra were also extracted from the unsteady data and
demonstrated strong agreement between the acoustic and entropy
disturbances, though the vorticity pulses had significantly different
phase spectra. This is attributed to the much weaker disturbance

response to the vorticity pulses, potentially allowing for noise to
pollute the phase spectra.

Using the receptivity and phase spectra found in this study, it is
possible to reconstruct the receptivity response of the mean flow to
arbitrary axisymmetric disturbances [9,21]. This can be directly used
in the development and application of more advanced transition
estimation procedures such as Crouch’s [29] variable N-factor
method or Mack’s amplitude method [27] in order to improve the
accuracy of transition predictions. However, additional steps need to
be taken before the data provided here can be generalized to wide-
spread application in the aforementioned amplitude methods. For
one, non-axisymmetric disturbances must also be considered in order
to further characterize the receptivity response of the studied mean
flow to a wider range of potential experimental and flight conditions.
This requires the simulation and study of three-dimensional broad-
band disturbances and the more complex disturbance environments
that they may excite. Furthermore, additional comparisons to con-
tinuous freestream forcing similar to the study by Balakumar and
Chou [19] as well as to experimental freestream response data would
be necessary before more generalized receptivity correlations can be
derived for direct use in the amplitude method. The application of
more advanced multimode decomposition techniques may also be
necessary to isolate disturbance modes of interest, as the methodol-
ogy used here may not be able to isolate the second mode response in
significantly noisy boundary layers.
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