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The receptivity of a hypersonic straight-cone boundary layer to freestream vorticity waves
was investigated using direct numerical simulation (DNS) and linear stability theory (LST).
The setup was a Mach 15 flow over a 0.5-mm-nose-radius straight cone at an altitude of 26
km. The freestream disturbances were oblique planar vorticity waves at various frequencies
(400 kHz, 800 kHz, and 1200 kHz) and incident angles. The incident angles ranged from 0◦ to
29.4◦ for the 400 kHz case, 0◦ to 15.7◦ for the 800 kHz case, and 0◦ to 10.6◦ for the 1200 kHz
case. In the DNS, the oblique vorticity waves led to a boundary-layer disturbance containing a
spectrum of azimuthal wavenumber components. The receptivity coefficients for mode S (the
unstable mode) were computed for the 400 kHz case only. For the oblique waves, the receptivity
coefficients were found to generally decrease with increasing azimuthal wavenumber. Increasing
the incident angle had mixed effects on the receptivity coefficients, depending on the azimuthal
wavenumber. While low wavenumber components could be amplified or attenuated, higher
wavenumbers beyond a certain value were consistently amplified. For all of the frequencies
considered, increasing the incident angle amplified the boundary-layer disturbance at the
leeward ray (relative to the freestream wave) and attenuated it at the windward ray in most of
the second-mode unstable region, except for a small region near the branch I neutral point.

I. Introduction
Predicting laminar-to-turbulent transition in the boundary layer is critical to the design of hypersonic vehicles, as

surface heating and drag can be amplified in a turbulent flow compared to a laminar flow. Transition to turbulence is
ultimately caused by external disturbances, such as freestream disturbances or surface roughness. There are several
paths by which an external disturbance causes transition, and the specific path taken by a disturbance depends on its
initial amplitude. The current study is primarily concerned with transition in a weak external disturbance environment,
where transition is not directly caused by external disturbances. Rather, transition occurs through the linear eigenmode
growth of boundary-layer modes which are excited by the external disturbance through the so-called receptivity process.
This linear eigenmode growth occurs through some instability mechanism. In two-dimensional (2-D) and axisymmetric
hypersonic boundary layers, the predominant instability mechanism is Mack’s [1] second mode, which is an inviscid
instability associated with trapped acoustic waves within the boundary layer. Through this instability, the boundary-layer
modes can eventually become large enough to induce nonlinear interactions, after which transition to turbulence begins.

In free-flight scenarios, the presence of turbulence in the atmosphere means that freestream turbulence (FST) must
be considered when predicting transition locations. Many researchers (e.g. Ricco and Wu [2], Schrader et al.[3], and
Ustinov [4]) have used vorticity waves to study receptivity to FST. In fact, vorticity waves can be used to generate
complex "synthetic" turbulence fields, using methods like the random Fourier method of Kraichnan [5]. A simple
way to study the three-dimensional (3-D) receptivity processes associated with FST would be to consider freestream
vorticity waves at nonzero incident angles (oblique waves). For sharp flat plates, the studies of Ma and Zhong [6, 7],
Egorov et al.[8] and Balakumar et al.[9] have shown that incident angle can have play a substantial role in determining
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boundary-layer disturbance amplitudes for a variety of freestream waves. For 2-D, "double-sided" geometries, such as
wedges and blunted flat plates, the effect of incident angle on receptivity to freestream acoustic waves has been studied
by Malik and Balakumar [10] and Balakumar and Kegerise [11]. They found that increasing the incident angle causes
boundary-layer disturbance amplitudes to decrease on the windward side (relative to the freestream wave). On the
leeward side, variations were less consistent and weaker. For a straight cone geometry, the effect of incident angle on
receptivity to slow acoustic waves has been studied by Wan et al.[12]. In contrast to the other geometries, here the
flowfield was fully 3-D. They found that increasing the incident angle causes boundary-layer disturbance amplitudes to
decrease along the windward ray and increase along the leeward ray, with a continuous variation in amplitudes between
those rays. In their study, however, the instability mechanism was the first mode, not the second mode. Hence, it is
unclear whether the existing results can be extended to vorticity waves and second-mode dominated flows over straight
cones.

The objective of the present study is to understand how incident angle affects boundary-layer receptivity to freestream
vorticity waves. To that end, we perform an unsteady DNS of boundary-layer receptivity to oblique freestream vorticity
waves at various frequencies and incident angles. The paper is organized is follows. We begin with a description of the
simulation conditions and the governing equations, after which we describe the numerical methods (DNS and LST)
and freestream disturbance model. We present the steady DNS solution and then use LST analysis to characterize the
relevant boundary-layer instabilities. Lastly, we present the results of the unsteady DNS, where we impose the vorticity
waves onto the freestream, and analyze the resulting boundary-layer disturbance.

II. Simulation Conditions
The flow configuration is a Mach 15 flow over a straight cone with a nose radius of 0.5 mm and half-angle of 5

degrees, at zero angle-of-attack. The freestream conditions correspond to atmospheric conditions at an altitude of 26 km
(85 kft) and are shown in Table 1. To better approximate wall temperature distributions found in real flight conditions,
we use the approach of Mortensen [13]. In the nose region, wall temperatures are computed by assuming radiative
equilibrium at the surface, with a surface emissivity of 0.8. On the cone frustum, the temperature is then exponentially
lowered to 1000 K. The resulting wall temperature distribution is shown in Fig. 1. The symbol 𝑠 denotes the streamwise
distance along the surface of the cone, measured from the stagnation point. In addition, we assume a noncatalytic wall
in thermal equilibrium (i.e. the translation-rotation temperature is set equal to the vibration temperature).

The computational domain extends to 𝑠 = 1.8 m and is discretized using 384 points in the wall-normal direction and
about 10 points per millimeter in the streamwise direction. In the azimuthal direction, the grid resolution is chosen
based on the vertical wavelength (𝜆𝑦) of the freestream disturbance. We attempt to maintain a minimum of 6 points per
wavelength, which should be sufficient considering that Fourier spectral collocation is used to compute the derivatives
in this direction. Due to body divergence, the number of points in the azimuthal direction must be increased moving
downstream to maintain a fixed number of points per wavelength. Accordingly, we use 32, 64, and 128 points in the
azimuthal direction depending on the streamwise location.

Table 1 Freestream conditions

Parameter Value Parameter Value
𝑀∞ 15 𝐻0,∞ 10.34 MJ/kg
𝜌∞ 3.405 ×10−2 kg/m3 𝑝∞ 2188 Pa
𝑇∞ 222.5 K 𝑅𝑒1 10.5×106

𝑌𝑁2 0.78 𝑌𝑂2 0.22
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Fig. 1 Wall temperature variation versus streamwise distance

III. Governing Equations and Gas Model
The gas model is formulated for thermochemical nonequilibrium assuming a two-temperature model. The rotational

mode is assumed to be fully excited and in equilibrium with the translation mode. Two temperatures are used to represent
translation-rotation energy and vibration energy, respectively. The five species model (N2, O2, NO, N and O) is used to
simulate air chemistry. The governing equations are the Navier-Stokes equations in conservative form, consisting of
five species mass conservation equations, three momentum conservation equations, the total energy equation, and the
vibration energy equation. The governing equations in vector form are written as

𝜕𝑈

𝜕𝑡
+
𝜕𝐹𝑗

𝜕𝑥 𝑗
+
𝜕𝐺 𝑗

𝜕𝑥 𝑗
= 𝑊 (1)

where𝑈 is the state vector of conserved quantities and𝑊 is the source terms defined by

𝑈 =



𝜌1
...

𝜌𝑛𝑠

𝜌𝑢1

𝜌𝑢2

𝜌𝑢3

𝜌𝑒

𝜌𝑒𝑣



, 𝑊 =



𝜔1
...

𝜔𝑛𝑠

0
0
0
0∑𝑛𝑚𝑠

𝑠=1
(
𝑄𝑇−𝑉,𝑠 + 𝜔𝑠𝑒𝑣,𝑠

)



.
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The inviscid and viscous flux vectors, 𝐹𝑗 and 𝐺 𝑗 , respectively, are defined by

𝐹𝑗 =



𝜌1𝑢 𝑗

...

𝜌𝑛𝑠𝑢 𝑗

𝜌𝑢1𝑢 𝑗 + 𝑝𝛿1 𝑗

𝜌𝑢2𝑢 𝑗 + 𝑝𝛿2 𝑗

𝜌𝑢3𝑢 𝑗 + 𝑝𝛿3 𝑗

(𝑝 + 𝜌𝑒) 𝑢 𝑗

𝜌𝑒𝑣𝑢 𝑗



𝐺 𝑗 =



𝜌1𝑣1 𝑗
...

𝜌𝑛𝑠𝑣𝑛𝑠 𝑗

𝜏1 𝑗

𝜏2 𝑗

𝜏3 𝑗

−𝑢𝑖𝜏𝑖 𝑗 − 𝑘𝑇 𝜕𝑇
𝜕𝑥 𝑗

− 𝑘𝑉 𝜕𝑇𝑉
𝜕𝑥 𝑗

+∑𝑛𝑚𝑠
𝑠=1 𝜌𝑠ℎ𝑠𝑣𝑠 𝑗

−𝑘𝑉 𝜕𝑇𝑉
𝜕𝑥 𝑗

+∑𝑛𝑚𝑠
𝑠=1 𝜌𝑠𝑒𝑣,𝑠𝑣𝑠 𝑗


where 𝑣𝑠 𝑗 is the species diffusion velocity, and

𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
− 2

3
𝜇
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗 (2)

is the viscous stress. The total energy per unit volume, 𝜌𝑒, is defined as

𝜌𝑒 =

𝑛𝑠∑︁
𝑠=1

𝜌𝑠𝑐𝑣,𝑠𝑇 + 𝜌𝑒𝑣 +
1
2
𝜌

(
𝑢2

1 + 𝑢
2
2 + 𝑢

2
3

)
+

𝑛𝑠∑︁
𝑠=1

𝜌𝑠ℎ
𝑜
𝑠 (3)

where ℎ𝑜𝑠 is the species heat of formation, 𝑒𝑣,𝑠 is the species vibration energy, and 𝑐𝑣,𝑠 is the species translation-rotation
specific heat at constant volume, defined as

𝑐𝑣,𝑠 =

{
5
2

𝑅
𝑀𝑠

𝑠 = 1, 2, . . . , 𝑛𝑚𝑠
3
2

𝑅
𝑀𝑠

𝑠 = 𝑛𝑚𝑠 + 1, . . . , 𝑛𝑠.
(4)

The vibration energy per unit volume, 𝜌𝑒𝑣 , is defined as

𝜌𝑒𝑣 =

𝑛𝑚𝑠∑︁
𝑠=1

𝜌𝑠𝑒𝑣,𝑠 =

𝑛𝑚𝑠∑︁
𝑠=1

𝜌𝑠
𝑅

𝑀𝑠

𝜃𝑣,𝑠

exp
(
𝜃𝑣,𝑠/𝑇𝑉

)
− 1

(5)

where 𝜃𝑣,𝑠 is the characteristic vibrational temperature of each vibrational mode. The characteristic vibration
temperatures are taken from Park [14]. To model chemical nonequilibrium, three dissociation reactions and three
exchange reactions are used. Each reaction is governed by a forward and backward reaction rate determined from

𝑘 𝑓 = 𝐶 𝑓𝑇
𝜂
𝑎 exp (−𝜃𝑑/𝑇𝑎) (6)

𝑘𝑏 = 𝑘 𝑓 /𝐾𝑒𝑞 (7)

where all forward reaction rates are obtained from Park [14]. The equilibrium coefficient, 𝐾𝑒𝑞 , is determined by using

𝐾𝑒𝑞 = 𝐴0 exp
(
𝐴1
𝑍

+ 𝐴2 + 𝐴3 ln(𝑍) + 𝐴4𝑍 + 𝐴5𝑍
2
)
, (8)
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𝑍 =
10000
𝑇

(9)

which is a curve fit to experimental data from Park [14].
The source term in the vibration energy equation representing the exchange of energy between the translation-rotation

and vibration energies is calculated using the Landau-Teller formulation:

𝑄𝑇−𝑉,𝑠 = 𝜌𝑠
𝑒𝑣,𝑠 (𝑇) − 𝑒𝑣,𝑠 (𝑇𝑉 )

< 𝜏𝑠 > +𝜏𝑐𝑠
(10)

where < 𝜏𝑠 > is the Landau-Teller relaxation time given by Lee [15]. The term 𝜏𝑐𝑠 from Park [14] is used to more
accurately model the relaxation time in areas of high temperatures occurring just downstream of the bow shock.

The viscosity of each species is computed using a Blottner curve fit shown in Eq. 11, with coefficients from Blottner
et al.[16]. The mixture viscosity is found using Wilke’s [17] mixing rule (Eq. 12-14). The overall heat conductivities
for each energy mode are computed in a similar way. The diffusion velocity is calculated using Fick’s law (Eq. 15) and
a constant Schmidt number of 0.5 (Eq. 16).

𝜇𝑠 = 0.1 exp
[ (
𝐴
𝜇
𝑠 ln(𝑇) + 𝐵𝜇

𝑠

)
ln(𝑇) + 𝐶𝜇

𝑠

]
(11)

𝜇 =

𝑛𝑠∑︁
𝑠=1

𝑋𝑠𝜇𝑠

𝜙𝑠
(12)

𝑋𝑠 =
𝑐𝑠

𝑀𝑠

(13)

𝜙𝑠 =

∑𝑛𝑠
𝑟=1 𝑋𝑟

[
1 +

(
𝑀𝑠

𝑀𝑟

)1/4
]2

[
8
(
1 + 𝑀𝑠

𝑀𝑟

)]1/2 (14)

𝜌𝑠𝑣𝑠, 𝑗 = −𝜌𝐷𝑠

𝜕𝑐𝑠

𝜕𝑥 𝑗
(15)

𝑆𝑐 =
𝜇

𝜌𝐷
= 0.5 (16)

IV. Numerical Methods

A. Direct Numerical Simulation (DNS)
The DNS is performed using the thermochemical nonequilibrium shock-fitting code of Mortensen and Zhong

[18–23], which is capable of simulating 5-species or 11-species thermochemical nonequilibrium flow. As is typical of
shock-fitting codes, the upper boundary of the computational domain is the shock, which evolves in time. In order to use
finite difference stencils, we use a time dependent coordinate transformation of the governing conservation equations
written as 

𝜉 = 𝜉 (𝑥, 𝑦, 𝑧)
𝜂 = 𝜂(𝑥, 𝑦, 𝑧, 𝑡)
𝜁 = 𝜁 (𝑥, 𝑦, 𝑧)
𝜏 = 𝑡

⇐⇒


𝑥 = 𝑥(𝜉, 𝜂, 𝜁 , 𝜏)
𝑦 = 𝑦(𝜉, 𝜂, 𝜁 , 𝜏)
𝑧 = 𝑧(𝜉, 𝜂, 𝜁 , 𝜏)
𝑡 = 𝜏

(17)

where 𝜉 is in the streamwise direction, 𝜂 is normal to the body, 𝜁 is in the azimuthal direction, 𝜁𝑡 = 0, and 𝜉𝑡 = 0. The
governing equation can then be transformed into computational space as

1
𝐽

𝜕𝑈

𝜕𝜏
+ 𝜕𝐸

′

𝜕𝜉
+ 𝜕𝐹

′

𝜕𝜂
+ 𝜕𝐺

′

𝜕𝜁
+
𝜕𝐸 ′

𝑣

𝜕𝜉
+
𝜕𝐹′

𝑣

𝜕𝜂
+
𝜕𝐺′

𝑣

𝜕𝜁
+𝑈 𝜕 (1/𝐽)

𝜕𝜏
=
𝑊

𝐽
(18)

where 𝐽 is the Jacobian of the coordinate transformation and

𝐸 ′ =
𝐹1𝜉𝑥 + 𝐹2𝜉𝑦 + 𝐹3𝜉𝑧

𝐽
(19)

5

D
ow

nl
oa

de
d 

by
 U

C
L

A
 L

ib
ra

ry
 L

ic
. &

 E
-R

es
. A

cq
. o

n 
Fe

br
ua

ry
 8

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

34
45

 



𝐹′ =
𝐹1𝜂𝑥 + 𝐹2𝜂𝑦 + 𝐹3𝜂𝑧

𝐽
(20)

𝐺′ =
𝐹1𝜁𝑥 + 𝐹2𝜁𝑦 + 𝐹3𝜁𝑧

𝐽
(21)

𝐸 ′
𝑣 =

𝐺1𝜉𝑥 + 𝐺2𝜉𝑦 + 𝐺3𝜉𝑧

𝐽
(22)

𝐹′
𝑣 =

𝐺1𝜂𝑥 + 𝐺2𝜂𝑦 + 𝐺3𝜂𝑧

𝐽
(23)

𝐺′
𝑣 =

𝐺1𝜁𝑥 + 𝐺2𝜁𝑦 + 𝐺3𝜁𝑧

𝐽
. (24)

A seven-point stencil is used to discretize the spatial derivatives

𝜕 𝑓𝑖

𝜕𝑥
=

1
ℎ𝑏𝑖

3∑︁
𝑘=−3

𝛼𝑖+𝑘 𝑓𝑖+𝑘 −
𝛼

6!𝑏𝑖
ℎ5

(
𝜕 𝑓 6

𝜕6𝑥

)
(25)

where

𝛼𝑖±3 = ±1 + 1
12
𝛼, 𝛼𝑖±2 = ∓9 − 1

2
𝛼

𝛼𝑖±1 = ±45 + 5
4
𝛼, 𝛼𝑖 = −5

3
𝛼

𝑏𝑖 = 60

and where ℎ is the step size, 𝛼 < 0 is a fifth order upwind explicit scheme, and 𝛼 = 0 reduces to a sixth order central
scheme. Here the inviscid terms use 𝛼 = −6 which yields a low dissipation fifth-order upwinded difference whereas
the viscous terms are discretized using 𝛼 = 0. The derivatives in the transverse direction, if required, are treated with
Fourier collocation. Second derivatives are computed by applying the first-order derivative operator twice. Our tests
indicate that, because of the absence of numerical dissipation in Fourier collocation, higher azimuthal wavenumber
modes can grow unbounded, eventually destroying the solution. Therefore, it is necessary to filter the solution in
the azimuthal direction, either through solution filtering, in which the solution is filtered after some fixed number of
timesteps or through derivative filtering, in which the Fourier coefficients of the derivatives of the solution are modified.
In this paper, the 24th-order exponential derivative filter of Pruett and Chang [24] is used.

The inviscid flux terms are treated using flux splitting,

𝐹′ = 𝐹′+ + 𝐹′− (26)

where
𝐹′± =

1
2
(𝐹′ ± Λ𝑈) (27)

and Λ is a diagonal matrix that ensures 𝐹′+ and 𝐹′− contain only pure positive and negative eigenvalues, respectively.
For thermochemical nonequilibrium, the eigenvalues of Λ were derived by Liu and Vinokur [25].

A method-of-lines approach is then used to advance the solution in time. For steady-state computations, the forward
Euler method is used to advance the solution. For unsteady computations, the 3rd-order Runge-Kutta method of Shu
and Osher [26] is used. The flow conditions immediately behind the shock are calculated from the Rankine-Hugoniot
relations. The chemical composition and vibrational energy in the freestream are frozen. The shock is assumed to be
infinitely thin, such that there is a constant chemical composition and vibration temperature across the shock. A complete
derivation of the thermochemical nonequilibrium shock fitting procedure can be found in the work of Mortensen [23].

B. Linear Stability Theory (LST)
The LST analysis is performed using the thermochemical nonequilibrium LST code of Mortensen and Zhong [20],

which was later expanded upon by Knisely and Zhong [27]. The code allows the user to partially relax the parallel
mean flow assumption so that the mean wall-normal velocity is no longer assumed to be zero and also implements the
freestream shock boundary conditions of Knisely and Zhong [27]. The LST equations are derived from the Navier-Stokes
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equations by a perturbation expansion of the form 𝑞 = 𝑞 + 𝑞′, where 𝑞 represents the value of some flow quantity, 𝑞
is the mean flow quantity, and 𝑞′ is the perturbation quantity. The steady flow terms can then be removed under the
assumption that they satisfy the governing equations themselves. The perturbation quantities are assumed to be small
such that higher-order terms can be ignored. In addition, it is assumed that the mean flow is parallel, such that the mean
flow terms are functions of 𝑦 only. This is an appropriate assumption since gradients in the wall-normal direction are
often negligible compared to gradients in the streamwise direction. The perturbation terms are then assumed to take the
form of a normal mode such that 𝑞′ = 𝑞(𝑦) exp [𝑖 (𝛼𝑥 + 𝛽𝑧 − 𝜔𝑡)], where 𝜔 is the circular frequency of the disturbance
and 𝛼 and 𝛽 are the wave numbers. Note that in this context, 𝑥, 𝑦, and 𝑧 are local coordinates in the streamwise,
wall-normal, and spanwise directions respectively. This study considers the spatial stability problem, where 𝜔 and 𝛽 are
real and specified a priori. In addition, 𝛼 is assumed to be complex such that 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖 . In spatial stability theory, 𝛼𝑟
is the streamwise wave number, and −𝛼𝑖 is the growth rate. A positive value for −𝛼𝑖 corresponds to growth, whereas a
negative value of −𝛼𝑖 corresponds to decay. Substituting the normal mode form of the perturbation quantity into the
governing equations then yields a set of 𝑛𝑠 + 5 coupled ordinary differential equations of the form(

A 𝑑2

𝑑𝑦2 + B 𝑑

𝑑𝑦
+ C

)
®𝜙 = ®0. (28)

where ®𝜙 =
[
�̂�1, �̂�2, . . . , �̂�𝑛𝑠 , �̂�, �̂�, �̂�, 𝑇, 𝑇𝑉

]𝑇 , A, B and C are complex square matrices of size 𝑛𝑠 + 5, and 𝑛𝑠 is the
number of species in the gas model. Further details regarding the derivation of these matrices can be found in the work
of Knisely [28].

C. Freestream Disturbance Model
For the freestream disturbance, we consider an oblique planar vorticity wave translating through a uniform meanflow

in the axial (x) direction at the mean flow velocity 𝑢∞. The model can be written as
𝑢′

𝑣′

𝑤′

∞ =


Δ𝑢

Δ𝑣

Δ𝑤

∞ cos
[
𝑘𝑥 (𝑥 − 𝑢∞𝑡) + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 + 𝜓

]
(29)

where ( )′ is the perturbation, Δ( ) is the amplitude, 𝑘𝑥 , 𝑘𝑦 , and 𝑘𝑧 are the wavenumbers in the axial (x), vertical (y) and
spanwise (z) directions, and 𝜓 is the phase angle. In a manner similar to Schrader et al. [3], the disturbance is specified
with the amplitude function given by 

Δ𝑢

Δ𝑣

Δ𝑤

∞ =
𝜖𝑢∞√︃
𝑘2
𝑥 + 𝑘2

𝑦


−𝑘𝑦
𝑘𝑥

0

 (30)

where 𝜖 is the scale factor of the velocity perturbation vector. The circular frequency of the disturbance is given by 𝜔 =
𝑘𝑥𝑢∞. The square-root term in the denominator in Eq. 30 ensures that the amplitude of the wave is independent of 𝑘𝑥
and 𝑘𝑦 . In this study, we set 𝑘𝑧 = 0 to reduce the computational workload through symmetry conditions on the y-axis.
The incident angle is then 𝜃 = tan−1 (𝑘𝑦/𝑘𝑥). The computational setup associated with this disturbance is shown in Fig.
2.

We consider several cases with different values of 𝑘𝑥 and 𝑘𝑦 , corresponding to different frequencies and incident
angles. A description of each case is provided in Table 2. The incident angle is indirectly varied by changing the
value of 𝑘𝑦 . To save on computational time, cases with the same letter (e.g. case A) are imposed simultaneously to
the freestream mean flow in the unsteady DNS. For each wave, the phase angle is chosen randomly from a uniform
distribution on the interval [0,2𝜋]. The scale factor is set to a small value, in this case 𝜖 = 2 × 10−7, to ensure linearity.
Note that when simultaneously imposing multiple planar waves with different wavenumber vectors in 3-D space, it is
difficult to eliminate local peaks where the amplitude exceeds that of each wave. Therefore, 𝜖 must be small enough so
that the maximum amplitude of the overall disturbance (here it would be 𝜖𝑚𝑎𝑥 = 6 × 10−7) still corresponds to a linear
disturbance.
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Fig. 2 Schematic of receptivity simulation setup

Table 2 Description of considered cases

Case 𝑘𝑥 (m−1) 𝑘𝑦 (m−1) 𝑓 (kHz) 𝜆𝑦 (mm) 𝜃 (deg.)
A1 558.5 0 400 - 0
A2 1117 0 800 - 0
A3 1676 0 1200 - 0

B1 558.5 157.1 400 40 15.7
B2 1117 157.1 800 40 8.00
B3 1676 157.1 1200 40 5.35

C1 558.5 314.2 400 20 29.4
C2 1117 314.2 800 20 15.7
C3 1676 314.2 1200 20 10.6
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V. Steady DNS Results
Fig. 3a shows the mean flow temperatures in the nose region. The highest translation-rotation temperatures are

found at the stagnation line. Thermal nonequilibrium (TNE) effects are fairly strong throughout, as shown by the
large differences between 𝑇 (translation-rotation temperature) and 𝑇𝑣 (vibration temperature). Fig. .3b shows the mass
fractions of O2 and O in the nose region. There is a moderate level of chemical nonequilibrium (CNE) effects, as
indicated by the mass fraction of O, which reaches about 11% at the stagnation point, primarily through the dissociation
of O2. While other reactions are present in the flowfield (e.g. dissociation of N2 into N), the lower levels of O2 toward
the wall mean that O2 dissociation is the dominant reaction in the flowfield. This is due to the fact that O2 dissociation
begins to occur at lower temperatures than N2 dissociation.

(a) (b)

Fig. 3 Steady DNS contours of various quantities in the nose region. (a) Translation-rotation and vibration
temperature. (b) Mass fraction of O2 and O.

Fig. 4 shows the typical wall-normal mean flow profiles of streamwise velocity, temperature and the mass fraction
of O on the cone frustum, in this case located at 𝑠 = 0.1 m. The large discrepancies in the profiles of 𝑇 and 𝑇𝑣 indicate
that TNE effects are still fairly strong. In contrast, the minuscule amounts of O suggest that CNE effects are weak.
This means that while TNE effects could have a significant impact on boundary-layer stability, CNE effects are likely
negligible. Regarding TNE, Knisely and Zhong [29] found that for a Mach 5 flow, if 𝑇 < 𝑇𝑣 (as is the case here), TNE
effects can have a destabilizing effect on the second-mode instability, leading to higher growth rates, extended unstable
regions and higher N-factor envelopes when compared to a frozen flow. Furthermore, since the receptivity process
begins at the leading edge, where both TNE and CNE effects are much stronger, both of those effects could be significant
in that regard.
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(a) (b) (c)

Fig. 4 Wall-normal profiles of various mean flow quantities at 𝑠 = 0.1 m, obtained from steady DNS. (a)
Wall-tangent velocity. (b) Translation-rotation and vibration temperatures. (c) Mass fraction of O.

VI. LST Results
To identify the unstable mode and its characteristics, we perform linear stability theory (LST) analysis on the steady

DNS mean flow. Fig. 5 shows the streamwise behavior of the relevant boundary-layer modes in terms of streamwise
phase speed and growth rate at 𝑓 = 400 kHz. Note that 𝑘𝑐 is the azimuthal wavenumber, which is the number of
wavelengths around the circumference of the cone. For axisymmetric waves, 𝑘𝑐 = 0. Since the domain is periodic in
the azimuthal direction, only integer values of 𝑘𝑐 are admissible. The two relevant boundary-layer modes are mode
S and mode F1. Mode S begins in the slow acoustic spectrum near the leading edge, and increases in phase speed
downstream. Conversely, mode F1 begins in the fast acoustic spectrum near the leading edge, but decreases in phase
speed downstream. Mode F1 eventually coalesces with the entropy/vorticity spectrum downstream, at which point a
new mode emerges [30]. However, to be consistent with the literature, we treat mode F1 as if it were a single mode.
Even further downstream, mode S and F1 become coupled, as indicated by their "mirrored" growth rate plots. This
destabilization of mode S is consistent with the second-mode instability.

A more complete view of the behavior of the mode S can be found from a stability map, which is shown in Fig. 6
for various values of 𝑘𝑐. The contoured regions indicate the range of frequencies and streamwise locations at which
mode S is unstable. The point at which mode S initially becomes unstable is called the branch I neutral point, whereas
the point at which it becomes stable again is called the branch II neutral point. Evidently there is also a third-mode
instability, associated with the coupling of mode S with mode F2 (a higher mode similar to mode F1), as well as a
first-mode instability, which is the compressible analog of the Tollmien-Schlichting wave. The third mode and first mode
instabilities occur at higher and lower frequency ranges, respectively, when compared to the second-mode instability.
However, these additional instabilities are not expected to be relevant to transition due to their relatively small growth
rates. The stability map also shows that increasing 𝑘𝑐 leads to a smaller unstable second mode frequency range and
lower peak growth rates, although this effect is less noticeable moving downstream.

It is possible to predict transition locations using the so-called 𝑒𝑁 method, in which one of the key assumptions
is that transition occurs once an unstable mode at a given frequency and azimuthal wavenumber reaches a certain
amplitude ratio, or N-factor, defined as

𝑁 (𝑠, 𝑓 , 𝑘𝑐) = ln
(
𝐴(𝑠, 𝑓 , 𝑘𝑐)
𝐴0 ( 𝑓 , 𝑘𝑐)

)
=

∫ 𝑠

𝑠0 ( 𝑓 ,𝑘𝑐 )
−𝛼𝑖 (𝑠, 𝑓 , 𝑘𝑐)𝑑𝑠 (31)
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(a)

(b)

Fig. 5 Streamwise behavior of relevant axisymmetric (𝑘𝑐 = 0) discrete modes at 𝑓 = 400 kHz, obtained from
LST. (a) Streamwise phase speed. (b) Growth rate. The horizontal lines in the phase speed plot denote the
phase speeds of the 2-D continuous spectra. Discrete mode phase speeds are normalized using the post-shock
streamwise velocity 𝑢𝑝𝑠 = 4473 m/s. Continuous spectra phase speeds are computed using the post-shock Mach
number 𝑀𝑝𝑠 = 12.26.

Fig. 6 LST mode S stability map for selected values of 𝑘𝑐. Only unstable regions are contoured.
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Fig. 7 LST mode S N-factor map for selected values of 𝑘𝑐. N-factors associated with only third-mode
amplification are not shown. For each frequency, N-factors are computed relative to the first point at which mode
S becomes unstable.

where 𝐴 is the disturbance amplitude at some streamwise location downstream of the branch I neutral point, 𝐴0 is
the amplitude at the branch I neutral point (the initial amplitude), and 𝑠0 is the location of the branch I neutral point.
In free-flight, transition N-factors are usually around 10 or more. Fig. 7 shows the N-factor map for mode S at
various azimuthal wavenumbers. The dashed vertical lines indicate the location at which the highest N-factor out of all
frequencies (the N-factor envelope) reaches a given value. For instance, at 𝑘𝑐 = 0, the N-factor envelope reaches a value
of 10 around 𝑠 = 1.76 m. This "level" is indicated by the red dashed line. Here, increasing 𝑘𝑐 has a stabilizing effect,
since the point at which the N-factor envelope reaches each level moves downstream. This is not much of a surprise, as
it is well-known that the axisymmetric second-mode disturbance is most unstable for straight cone geometries at zero
angle-of-attack.

VII. Unsteady DNS Results
In this section, we present the results of the DNS receptivity simulations involving the freestream vorticity

disturbances described in Table 2. Recall from Section IV that vorticity waves with the same vertical wavenumber (𝑘𝑦),
but different frequencies are imposed simultaneously. To extract the flowfield at each frequency, we apply a 1-D FFT
in time to the unsteady DNS data. To extract the flowfield at each frequency and azimuthal wavenumber, we apply
a 2-D FFT in time and in the azimuthal direction. In all of the figures shown, the disturbance quantities (density or
pressure fluctuations) are nondimensionalized by their freestream mean values (𝜌∞ or 𝑝∞), and then normalized by the
amplitude of the freestream disturbance (𝜖).

A. General Description of Flowfield
To begin, we consider some of the DNS results from the 𝑓 = 400 kHz, 𝜃 = 29.4◦ case to demonstrate the typical

characteristics of the unsteady flowfield. Fig. 8 shows the instantaneous density fluctuation field in the upstream
region of the cone (up to 𝑠 = 50 mm). Starting from the nose and moving downstream, the freestream vorticity wave
interacts with the shock and then transmits/generates disturbances behind the shock. These post-shock disturbances then
enter the boundary layer. The boundary-layer disturbance then grows moving downstream, eventually overtaking the
freestream disturbance in amplitude. This upstream growth is not due to second-mode amplification, which occurs
further downstream. Instead, it is related to the leading-edge receptivity process. The disturbance is concentrated
primarily on the leeward (𝜑 = 180◦) and windward rays (𝜑 = 0◦), and is attenuated significantly along the 𝜑 = 90◦ ray.
Here, the terms leeward and windward refer to the rays of the cone facing away and towards the freestream disturbance
respectively. Towards the end of this upstream region, the boundary-layer disturbance is noticeably stronger on the
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Fig. 8 Instantaneous density fluctuation field in upstream region. ( 𝑓 = 400 kHz, 𝜃 = 29.4◦)

leeward ray compared to the windward ray. Fig. 9 shows the instantaneous density fluctuation field much further
downstream (around 𝑠 = 1 m), where mode S (the unstable mode) has become unstable through the second-mode
instability. The fluctuations are typical of the second-mode instability, with visible perturbations at the wall and the
critical layer (the wall-normal distance at which the phase speed of the unstable mode is equal to the mean streamwise
velocity), which is close to the boundary-layer edge. The amplitude on the leeward ray is again seen to be stronger than
on the windward ray, but this variation is much more prominent here.

Fig. 11 shows a 2-D map of the wall-pressure fluctuation amplitude in 𝑠-𝜑 space. The amplification at the end of the
domain corresponds to the second-mode instability. It is again apparent that the disturbance is stronger on the leeward
ray (𝜑 = 180◦) than the windward ray (𝜑 = 0◦). However, the minimum amplitude occurs close to the 𝜑 = 90◦ ray. Fig. 10
shows a 2-D map of the wall-pressure fluctuation amplitude in 𝑠-𝑘𝑐 space. This map is obtained by applying a 2-D FFT
(in time and in the azimuthal direction) to the wall-pressure fluctuation at each streamwise location. The region upstream
of the branch I neutral point is marked by areas of local amplification and decay associated with the leading-edge
receptivity process, whereby the internal modes (mode S, mode F1, etc.) undergo forcing from the external waves
originating from the interaction of the freestream vorticity waves with the shock. There is also constructive/destructive
interference between modes here. The specific receptivity mechanism will be considered in a future study. At any given
streamwise location the amplitude generally decreases with increasing 𝑘𝑐. Moving downstream, the azimuthal spectrum
becomes broader. This spectral broadening was also noted by Balakumar [31] in his study of receptivity to acoustic
freestream waves for an axisymmetric cone. In the second-mode amplification region, there is an abrupt dip in amplitude
at 𝑘𝑐 = 4, causing a dark horizontal line to appear in the contours. It is still unclear as to what causes this behavior.

B. Effect of Incident Angle on Receptivity Coefficients
We now consider the effect of incident angle on the resulting boundary-layer disturbance. Fig. 12 shows a comparison

of the azimuthal spectrum of the wall-pressure fluctuation at 𝑠 = 1.1 m for the cases at 𝑓 = 400 kHz. As will be shown
later, the disturbance at this location is expected to be dominated by mode S (due to second-mode amplification). Note
that the zero incident angle disturbance excites only a single 𝑘𝑐 component, specifically 𝑘𝑐 = 1, which is represented as
a single point. In both of the nonzero incident angle cases, it can be seen that the amplitudes generally decrease with
increasing 𝑘𝑐. If we increase the incident angle, the low 𝑘𝑐 components are affected inconsistently. That is, while the
amplitudes increase for 𝑘𝑐 between 0 and 2, they also decrease for 𝑘𝑐 between 3 and 7. On the other hand, increasing the
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Fig. 9 Instantaneous density fluctuation contours downstream, near 𝑠 = 1 m. (a) zoomed-out, (b) zoomed-in.
Contours are clipped to better show disturbance structure. ( 𝑓 = 400 kHz, 𝜃 = 29.4◦)

Fig. 10 Unsteady DNS contours of Fourier-transformed wall-pressure fluctuation amplitude in 𝑠-𝑘𝑐 space (a)
upstream and (b) downstream. An exponential distribution of contour levels is used in (b) to better illustrate
exponential growth via the second-mode instability. Note that only integer values of 𝑘𝑐 are actually admissible.
( 𝑓 = 400 kHz, 𝜃 = 29.4◦)
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Fig. 11 Unsteady DNS contours of Fourier-transformed wall-pressure fluctuation amplitude in 𝑠-𝜑 space (a)
upstream and (b) downstream. An exponential distribution of contour levels is used in (b) to better illustrate
exponential growth via the second-mode instability. ( 𝑓 = 400 kHz, 𝜃 = 29.4◦)

incident angle causes the highest 𝑘𝑐 components (in this case 𝑘𝑐 ≥ 8) to consistently amplify. Despite this increase, the
higher 𝑘𝑐 components are still very weak compared to their low 𝑘𝑐 counterparts, bringing into question their relevance
to transition.

Next we consider the receptivity coefficients, which are the amplitudes of the unstable mode at its branch I neutral
point. In the DNS, the boundary-layer disturbance contains many competing modes. In order to extract receptivity
coefficients from the DNS, it is necessary to isolate the amplitude of the unstable mode from the overall disturbance.
There are a couple of methods available to achieve this, the most rigorous of which is multimodal decomposition, which
Gaydos and Tumin [32] and Miselis et al.[33] have used to great effect. However, the multimodal decomposition method
has not yet been extended to real-gas flows. For this study, we use a more approximate method from Ma and Zhong [34],
involving LST-derived N-factors. This method relies on the fact that in the DNS, the unstable mode will eventually
dominate the overall disturbance after amplification. Therefore it is possible to "backtrack" the initial amplitude of the
unstable mode by (1) sampling the DNS disturbance amplitude at a location where the unstable mode is dominant and
(2) dividing that amplitude by the LST N-factor at that location. Hence the receptivity coefficient, denoted by 𝐶𝑅, can
be computed as

𝐶𝑅 ( 𝑓 , 𝑘𝑐) = 𝐴0 ( 𝑓 , 𝑘𝑐) =
𝐴(𝑠, 𝑓 , 𝑘𝑐)
𝑒𝑁 (𝑠, 𝑓 ,𝑘𝑐 )

(32)

where 𝐴 is some measure of the DNS disturbance amplitude and 𝑁 is the N-factor obtained from LST, both of which
are evaluated at the sampling location 𝑠 for a given frequency and azimuthal wavenumber.

Based on the requirement that the disturbance be dominated by mode S (the unstable mode), we find a sampling
point as close as possible to the branch II neutral point, where LST predicts mode S to be at its maximum amplitude. At
𝑓 = 400 kHz, the branch II neutral point is located downstream of 𝑠 = 1.8 m. However, the unsteady DNS was only
performed up to 𝑠 = 1.1 m. Hence, 𝑠 = 1.1 m was chosen to be the sampling location. It can be confirmed that mode S
is dominant at this location by comparing the phase speed and growth rate with the LST results. Such a comparison
is shown in Fig. 13. Here, the DNS phase speed and growth rate were obtained from an FFT of the wall-pressure
fluctuation. Looking at the phase speed, there is good agreement between the DNS and LST starting from 𝑠 ≈ 0.8 m,
and the relative difference in values at 𝑠 = 1.1 m is only about 0.7%. The growth rates do not agree that well, but the
DNS growth rate does appear to oscillate about the LST growth rate. The discrepancy in growth rate is most likely due
to nonparallel effects, which are neglected in LST. That is, in a growing boundary layer, the growth rate of the unstable
mode will vary according to the disturbance quantity (pressure, density, etc.) and the wall-normal distance. In the LST
framework, all quantities and wall-normal distances are given the same growth rate. This means that there could be
noticeable discrepancies in the growth rate between the DNS and LST, even if the unstable mode is dominant. We also
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Fig. 12 Comparison of Fourier-transformed wall-pressure fluctuation amplitudes vs. azimuthal wavenumber at
𝑠 = 1.1 m. Only positive values of 𝑘𝑐 are shown due to symmetry. ( 𝑓 = 400 kHz)

computed growth rates using the density perturbation close to the critical layer (where the fluctuation amplitudes are
highest), and found that the DNS growth rate still does not match particularly well with the LST results. Hence, for
simplicity, we use the wall-pressure fluctuation amplitude, specifically the normalized version given by Δ𝑝/(𝜖 𝑝∞), to
compute the receptivity coefficients. We caution that due to the issues mentioned above, there is a fair bit of uncertainty
regarding the exact values of these coefficients. Nevertheless, the overall trends (like the effect of incident angle) should
be the same.

Fig. 14 shows the azimuthal receptivity coefficient spectra for mode S for the cases at 𝑓 = 400 kHz. Again these
coefficients were computed using 𝑠 = 1.1 m as the sampling location. Here the receptivity coefficient for each 𝑘𝑐 is
normalized by the same value, which in this case is the amplitude of the freestream disturbance (denoted by 𝜖). This is
done because there is no fixed azimuthal spectrum by which the receptivity coefficients can be normalized. As shown
by Varma et al.[35], the azimuthal spectrum of an oblique vorticity wave varies according to the distance from the cone
axis (the radial coordinate). This is in contrast to the study of He and Zhong [36], where receptivity coefficients were
normalized on a spectral basis, i.e. the receptivity coefficient spectrum was divided by the corresponding spectrum in
the freestream disturbance, rather than a fixed value. The receptivity coefficient spectra look almost exactly the same as
the overall disturbance spectra at 𝑠 = 1.1 m (see Fig. 12) aside from the lower overall amplitudes, so the discussion is
also the same. When we increase the incident angle, the low 𝑘𝑐 components are again affected inconsistently, whereas
for high 𝑘𝑐 (specifically 𝑘𝑐 ≥ 8) components, the amplitude increases consistently.

C. Effect of Incident Angle on Overall Disturbance
Fig. 15 shows the azimuthal variation of the wall-pressure fluctuation amplitude at 𝑠 = 1.1 m for the cases at 𝑓 = 400

kHz. Similar variations are found in most of the second-mode unstable region except for a small region near the branch
I neutral point. At 𝜃 = 0◦, the amplitudes are the same on the windward and leeward rays. When the incident angle is
increased, the amplitude increases on the leeward ray and decreases on the windward ray. This shift of amplitudes at the
windward and leeward rays is similar to the results of Wan et al.[12], even though they considered slow acoustic waves.
The only difference is that in our study, the minimum amplitude occurs at or near the 𝜑 = 90◦ ray, whereas in their study,
the minimum amplitude is at the windward ray. The present results also show some similarities to the results of Malik
and Balakumar [10] and Balakumar and Kegerise [11], who considered acoustic waves and 2-D geometries, i.e. wedges
and blunted flat plates. Their studies also found that as the incident angle increases, the disturbance amplitude decreases
on the windward side. However, the disturbance amplitude varied less consistently and more weakly on the leeward side.
Note that because their geometry was 2-D, there was no continuous variation of amplitudes between the leeward and
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(a) (b)

Fig. 13 Comparison of (a) streamwise phase speed and (b) growth rate between DNS (using wall-pressure
fluctuations) and LST at 𝑘𝑐 = 10. ( 𝑓 = 400 kHz, 𝜃 = 29.5◦)

Fig. 14 Comparison of receptivity coefficient spectra using 𝑠 = 1.1 m as the sampling location. Only positive
values of 𝑘𝑐 are shown due to symmetry. ( 𝑓 = 400 kHz)
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Fig. 15 Comparison of Fourier-transformed wall-pressure fluctuation amplitudes vs. azimuthal angle at 𝑠 = 1.1
m. ( 𝑓 = 400 kHz)

windward sides.
It is interesting to note that although the two nonzero-incident-angle cases have smaller peak amplitudes in their

azimuthal spectra compared to the 𝜃 = 0◦ case (see Fig. 12), those cases have higher amplitudes along the leeward
ray. This suggests that there is constructive interference between different azimuthal components. Understanding this
effect requires further study. In particular, phase angle data for mode S could be useful in this regard. The changes in
amplitude along the leeward and windward rays when increasing the incident angle is particularly interesting in terms of
transition prediction. The experiments of Marineau et al.[37] have shown that transition locations can be correlated with
the amplitude (specifically the root-mean-square, RMS) of the local wall pressure fluctuation, normalized by the mean
pressure at the boundary-layer edge. While the disturbance amplitudes in the present study are far too low to cause
transition, the effect of incident angle on potential transition locations can be still be understood from the trends seen
here. In particular, the results suggest that if the incident angle is increased, transition locations could move upstream on
the leeward ray (due to higher amplitudes) and downstream on the windward ray (due to lower amplitudes).

D. Frequency Effects
We now consider the unsteady DNS results for the two higher frequencies ( 𝑓 = 800 kHz and 𝑓 = 1200 kHz). Note

that at these frequencies, the combination of weaker instabilities (low N-factors) and upstream-shifted unstable regions
makes receptivity coefficients difficult to obtain and potentially misleading. As such, we did not compute receptivity
coefficients for these cases. Also note that the incident angles span a smaller range of values. This is because for a
high frequency wave (high 𝑘𝑥), we must increase 𝑘𝑦 to a larger value to get the same incident angle as a low frequency
wave. However, if 𝑘𝑦 is large, the vertical wavelength 𝜆𝑦 will be very small, which means that a much larger number of
points must be used in the azimuthal direction, increasing the computational workload substantially. To use the same
azimuthal resolution as the 𝑓 = 400 kHz cases, we are limited to a smaller range of incident angles.

A comparison of the azimuthal spectra of the wall-pressure fluctuations at these frequencies are shown in Fig. 16.
The spectra are evaluated at streamwise locations where the wall-pressure fluctuations attain their highest amplitudes
within the second-mode unstable region. The azimuthal spectra (and variations) at most other locations within the
unstable region look similar, except for a small region near the branch I neutral point. Compared to the 𝑓 = 400 kHz
cases, the azimuthal spectra are qualitatively similar. As 𝑘𝑐 increases, the amplitudes generally decrease. When the
incident angle is increased, there does not appear to be a clear pattern of variations in the spectra at low 𝑘𝑐, with some
components being amplified while others are attenuated. In contrast, the highest 𝑘𝑐 components (𝑘𝑐 ≥ 3 for 𝑓 = 800
kHz and 𝑘𝑐 ≥ 2 for 𝑓 = 1200 kHz) are consistently amplified. But again, these components are still weak compared to
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(a) (b)

Fig. 16 Comparison of Fourier-transformed wall-pressure fluctuation amplitude spectra for (a) 𝑓 = 800 kHz at
𝑠 = 0.31 m. and (b) 𝑓 = 1200 kHz at 𝑠 = 0.134 m. Only positive values of 𝑘𝑐 are shown due to symmetry.

the low 𝑘𝑐 components. The azimuthal variation of the wall-pressure fluctuations at the same locations are shown in Fig.
17. Like the 𝑓 = 400 kHz cases, increasing the incident angle leads to an increase in amplitude on the leeward ray and a
decrease in amplitude on the windward ray. There are a few notable differences between these results and those at 𝑓 =
400 kHz. Perhaps the most obvious is that the azimuthal spectrum falls off with increasing 𝑘𝑐 much more quickly, such
that a much smaller range of 𝑘𝑐 are actually relevant. The other is that the overall amplitudes are much smaller. This is
likely due to the much lower N-factors at these frequencies. Lastly, the 𝜃 = 0◦ wave no longer produces the highest
amplitude within the azimuthal spectrum.
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(a) (b)

Fig. 17 Comparison of Fourier-transformed wall-pressure fluctuation amplitudes vs. azimuthal angle for (a) 𝑓
= 800 kHz at 𝑠 = 0.31 m. and (b) 𝑓 = 1200 kHz at 𝑠 = 0.134 m.

VIII. Summary and Conclusion
We investigated the receptivity of a hypersonic boundary-layer over a Mach 15 straight cone to freestream oblique

vorticity waves at various frequencies and incident angles using a combination of DNS and LST. LST results showed that
the second-mode instability was dominant, with mode S being the unstable mode. Oblique mode S waves were overall
more stable since their N-factor envelopes reached certain values further downstream compared to the axisymmetric
wave. Unsteady DNS results showed that the oblique freestream vorticity waves led to a boundary-layer disturbance
containing a spectrum of azimuthal wavenumber components. Receptivity coefficient spectra were computed for the
low frequency case ( 𝑓 = 400 kHz). For the oblique freestream waves, the receptivity coefficients generally decreased
with increasing azimuthal wavenumber. Increasing the incident angle had mixed effects on receptivity coefficients,
depending on the azimuthal wavenumber. Although low wavenumber components could be amplified or attenuated,
the higher wavenumber components beyond a certain value were consistently amplified. Again, note that we did not
obtain receptivity coefficients for the two higher frequency ( 𝑓 = 800 kHz and 𝑓 = 1200 kHz) cases, which means the
results at those frequencies may be different. Unlike the receptivity coefficient spectra, the azimuthal variation of the
boundary-layer disturbance gave a more straightforward result. For all of the frequencies considered, increasing the
incident angle within their respective ranges amplified the boundary-layer disturbance at the leeward ray and attenuated
it at the windward ray in most of the second-mode unstable region, except for a small region near the branch I neutral
point.

In order to make a connection between the receptivity coefficients and the amplitudes along the leeward/windward
rays, it will be necessary to analyze the phase angles of mode S. This will be accomplished in a future study. Also note
that there are two main limitations in this study. Because we performed these simulations for a limited range of incident
angles, it still remains to be seen what happens when incidence angles are increased even further. This is especially true
for the two higher frequency cases, which were more limited in the range of incident angles considered. In addition, we
considered a very specific type of vorticity wave, in which the resulting velocity field is symmetric about the xy-plane.
However, there can also exist vorticity waves with the same incident angle, but different velocity components, yielding a
velocity field with no symmetry plane. In these cases, the conclusions could be different, so they require additional
study.
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